Although an Oleinik inequality is not expected for general heterogeneous scalar balance laws, there is a favorable case, when the source term $ g(x) $ is smooth and nondecreasing. In this setting, we are able to obtain an Oleinik-type inequality and, consequently, a smoothing effect.
Citation: Rida Harb, Stéphane Junca. An Oleinik inequality for a class of heterogeneous balance laws[J]. Networks and Heterogeneous Media, 2026, 21(1): 22-54. doi: 10.3934/nhm.2026002
Although an Oleinik inequality is not expected for general heterogeneous scalar balance laws, there is a favorable case, when the source term $ g(x) $ is smooth and nondecreasing. In this setting, we are able to obtain an Oleinik-type inequality and, consequently, a smoothing effect.
| [1] | O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transl., 26 (1963), 95–172. |
| [2] | D. L. Peter, Hyperbolic Partial Differential Equation, Courant Institute, American Mathematical Society, 2006. |
| [3] |
A. Adimurthi, S. S. Ghoshal, G. D. V. Gowda, Exact controllability of scalar conservation laws with strict convex flux, Math. Control Relat. Fields, 4 (2014), 401–449. https://doi.org/10.3934/mcrf.2014.4.401 doi: 10.3934/mcrf.2014.4.401
|
| [4] |
A. Bressan, P. Goatin, Oleinik type estimates and uniqueness for $n\times n$ conservation laws, J. Differ. Equations, 156 (1999), 26–49. https://doi.org/10.1006/jdeq.1998.3606 doi: 10.1006/jdeq.1998.3606
|
| [5] | C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, 2005. |
| [6] |
P. Goatin, L. Gosse, Decay of positive waves for $n\times n$ hyperbolic systems of balance laws, Proc. Amer. Math. Soc., 132 (2004), 1627–1637. https://doi.org/10.1090/S0002-9939-04-07315-0 doi: 10.1090/S0002-9939-04-07315-0
|
| [7] | B. Haspot, A. Jana, Existence of bv solutions for $2\times2$ hyperbolic balance laws for $l^\infty$ initial data, preprint, arXiv: 2408.00849, 2024. https://doi.org/10.48550/arXiv.2408.00849 |
| [8] |
F. Ancona, S. Bianchini, A. Bressan, R. M. Colombo, K. T. Nguyen, Examples and conjectures on the regularity of solutions to balance laws, Quart. Appl. Math., 81 (2023), 433–454. https://doi.org/10.1090/qam/1647 doi: 10.1090/qam/1647
|
| [9] | R. Harb, S. Junca, Oleinik inequality for scalar autonomous balance laws, preprint 2025. Available from: https://hal.science/hal-05145112. |
| [10] |
C. Bourdarias, M. Gisclon, S. Junca, Fractional BV spaces and applications to scalar conservation laws, J. Hyperbolic Differ. Equ., 11 (2014), 655–677. https://doi.org/10.1142/S0219891614500209 doi: 10.1142/S0219891614500209
|
| [11] |
E. Marconi, Regularity estimates for scalar conservation laws in one space dimension, J. Hyperbolic Differ. Equ., 15 (2018), 623–691. https://doi.org/10.1142/S0219891618500200 doi: 10.1142/S0219891618500200
|
| [12] |
B. Guelmame, S. Junca, D. Clamond, Regularizing effect for conservation laws with a Lipschitz convex flux, Commun. Math. Sci., 17 (2019), 2223–2238. https://doi.org/10.4310/cms.2019.v17.n8.a6 doi: 10.4310/cms.2019.v17.n8.a6
|
| [13] |
H. K. Jenssen, J. Ridde, On $\phi$-variation for 1-d scalar conservation laws, J. Hyperbolic Differ. Equ., 17 (2020), 843–861. https://doi.org/10.1142/S0219891620500277 doi: 10.1142/S0219891620500277
|
| [14] |
B. Gess, P..E Souganidis, Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws, Comm. Pure Appl. Math., 70 (2017), 1562–1597. https://doi.org/10.1002/cpa.21646 doi: 10.1002/cpa.21646
|
| [15] |
S. Bianchini, R. M. Colombo, F. Monti, $2\times 2$ systems of conservation laws with $\bf L^\infty$ data, J. Differ. Equations, 249 (2010), 3466–3488. https://doi.org/10.1016/j.jde.2010.09.015 doi: 10.1016/j.jde.2010.09.015
|
| [16] | O. Glass, $2\times 2$ hyperbolic systems of conservation laws in classes of functions of bounded p-variation, preprint, arXiv: 2405.02123, 2024. https://doi.org/10.48550/arXiv.2405.02123 |
| [17] | J. Glimm, P. D. Lax. Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, 101 (1970), American Mathematical Society Providence, Rhode Island. |
| [18] |
D. Amadori, L. Gosse, G Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Ration. Mech. Anal., 162 (2002), 327–366. https://doi.org/10.1007/s002050200198 doi: 10.1007/s002050200198
|
| [19] | A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, 20 (2000), Oxford University Press. |
| [20] | S. N. Kružkov, First order quasilinear equations in several independent variables. Mat. Sb. (N.S.), 10 (1970), 217. |
| [21] | J. Smoller, Shock Waves and Reaction–Diffusion Equations, 258 (1994), 2nd edition, Springer-Verlag, New York. |
| [22] |
V. Duchêne, L. M. Rodrigues, Stability and instability in scalar balance laws: Fronts and periodic waves, Anal. PDE, 15 (2022), 1807–1859. https://doi.org/10.2140/apde.2022.15.1807 doi: 10.2140/apde.2022.15.1807
|
| [23] | M. Bruneau, Variation Totale D'une Fonction, in Variation Totale d'une Fonction. Lecture Notes in Mathematics, 413 (1974), Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0066146 |
| [24] | J. Musielak, W. Orlicz, On generalized variation (i), Studia Math., 18 (1959), 11–41. https://doi.org/10.4064/sm-18-1-11-41 |
| [25] |
L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., 67 (1936), 251–282. https://doi.org/10.1007/BF02401743 doi: 10.1007/BF02401743
|