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1. Introduction

The Oleinik one-sided inequality [1] is a fundamental tool in the analysis of scalar conservation
laws with strictly convex fluxes (i.e., f” is strictly increasing, although f” may vanish at some points).
Introduced in the 1950s, it provides a precise description of the nonlinear smoothing effect and 1s pivotal
to establish the well-posedness of entropy solutions, as well as in the study of the large-time asymptotics
of solutions [2] and in control theory [3]. Beyond the scalar case, see [4] for Oleinik-type one-sided
estimates for particular hyperbolic systems of conservation laws, [5] for genuinely nonlinear 2 x 2
systems, and [6, 7] for balance laws systems with small data.

In this work, we extend the classical Oleinik one-sided inequality to a broader setting of scalar
conservation laws by allowing a nontrivial source term g(x) in the equation. A partial explanation for
why an Oleinik-type estimate with source appeared only decades after Oleinik’s seminal result is that,
when the source is spatial dependent (i.e., g = g(x)), such an estimate can fail: In reference [8], even for
uniformly convex fluxes, namely f”'(u) > ¢ > 0 for some constant ¢, one can construct entropy solutions
whose spatial profiles have an infinite total variation. This precludes any global Oleinik bound.

However, the inviscid Burgers equation admits global smooth solutions for nondecreasing initial
data. The same remains true in the presence of a smooth nondecreasing spatial source term: one still
obtains global smooth solutions. This motivates us to focus on spatially nondecreasing sources, namely
g = g(x) with g’(x) > 0. In this regime, an Oleinik inequality is available. For this purpose, we introduce


https://https://www.aimspress.com/journal/nhm
https://dx.doi.org/10.3934/nhm.2026002

23

a time and space-dependent monotone reparametrization H = H(t, x, u) such that for every fixed (¢, x),
the map u — H(t, x, u) is increasing. With this choice, we recover a one-sided Oleinik-type control in
the H-variables: for a.e. r > 0and all x <y,

H(t,y,u(t,y)) — H(t, x,u(t, x)) < y-—x,

where H is a function that only depends on the flux f and the source term g, but not on the solution itself.

The one-dimensional hyperbolic balance law studied in this paper is as follows:

{atu +0,(f(w) = g(x), (1.1)

u(0, x) = uo(x),

where the unknown u = u(t, x) depends on time and space variables (¢, x) € [0, c0) X R and the initial
data uy € L*(R). The flux function f is of class C? on R, and the source term g is Lipschitz, bounded,
and of class C! on R that satisfies g’(x) > 0.

Let u be the unique entropy solution of Eq (1.1). Since v(z, x) = H(¢, x, u(t, x)) is bounded on any
bounded strip in time due to the maximum principle for « and v is one sided-Lipschitz by the Oleinik
inequality, v is in BV, in space. It is important that the function H we construct is strictly increasing
with respect to u; this property is crucial to control the variation of u by the variation of v.

A distinctive feature of the balance law with spatial source g = g(x) is revealed by the method of
characteristics: ~ The resulting characteristic relations form a coupled system for the
pair (X(¢, xo), u(t, X(t, xo))). In contrast, when the source only depends on the unknown, g = g(u) [9],
the evolution of u along characteristics satisfies a scalar ordinary differential equation (ODE)
independent of the spatial position, so the system is decoupled. In the present g(x) setting, the position
and the state influence each other along characteristic curves and the dynamics are naturally described
by a two-dimensional vectorial flow in the (x, u)-plane, see Section 2.1.

It is crucial that the source term g(x) be a C! nondecreasing function. The C! regularity is useful
because g directly appears in the characteristic system, and the construction of these characteristics
requires g to be sufficiently smooth. The monotonicity assumption g’(x) > 0 is equally important: It
ensures a global-in-time well-posedness theory for the generalized Riemann problem introduced in
Section 4, and it allows us to control the wave interactions that arise from such data.

However, when g is a decreasing source term, the situation becomes substantially more complex. It
is well known that the inviscid Burgers equation cannot admit global smooth solutions for decreasing
initial data: Shocks necessarily form in finite time and possibly multiple shocks. In our setting, such
behavior may prevent the existence of a smooth global solution, which, in turn, breaks the construction
based on generalized Riemann problems. This scenario is discussed in Section 6, where we present two
examples that illustrate how and where the breakdown of global smoothness may occur.

Classical results of Oleinik and Peter, [1,2] show that for scalar conservation laws with no source
(g = 0) and uniformly convex fluxes, entropy solutions exhibit instantaneous spatial smoothing: For
every ¢t > 0, one has u(t, -) € BV|,(R). This BV-regularization fails once uniform convexity is lost. Still,
in the strictly convex case with polynomial degeneracy (for instance f(u) = |ul® or f(u) = u*), a weaker

Networks and Heterogeneous Media Volume 21, Issue 1, 22-54.



24

yet quantitative form of regularity survives: the solution belongs to a fractional bounded-variation class
BV} (R) for some s € (0, 1) [10, 11] or more generalized BV spaces [12,13].

A result of this paper is to show that even when the flux is only strictly convex, we can still recover full
BV, regularity under an additional assumption on the spatial source g(x). This mirrors the well-known
mechanism, where the source acts as an effective damping to restore BV regularity; see [14] for a
stochastic source and [9] for the autonomous source. In the systems setting, the BV regularizing effects
is rare; see [15—17] for 2 X 2 nonlinear systems. This is the reason why the initial data are already BV
for balance laws system [18].

For the proof of the one-sided Oleinik inequality, a key methodological point is that we do not use
the classical wave—front tracking algorithm [5, 19]. In fact, we do not need to restrict ourselves to
piecewise-constant solutions. Nevertheless, we will borrow the piecewise-constant approximation of
the initial data from wave-front tracking (WFT) to reduce the dynamics to a finite number of Riemann
problems, track and control wave interactions, and verify Oleinik’s one-sided estimate on each piece.
By the additivity of the H-increment across interfaces,

[H(t, Xie1, u(t, Xi01)) — H(E, X u(t, x;))] < Xip1 — 23,

and summing over a partition yields the global bound AH < Ax. This avoids classical front tracking
and results in a simpler proof mechanism. Finally, passing to the limit in the initial-data approximation
and using the stability and uniqueness of entropy solutions, the inequality persists in the limit, so the
generalized Oleinik bound holds.

The paper is organized as follows. In Section 2, we introduce the vectorial flow generated by
the characteristic system of Eq (1.1) and record its key properties; then, we use this flow to prove
Oleinik’s equality in the setting of strong solutions. Section 3 focuses on our main theorem and its key
consequences for the regularizing effects of entropy solutions. In Section 4, we study the generalized
Riemann problem associated with the balance law (1.1) and provide semi explicit formulas for the
solution. Section 5 is devoted to the proof of Oleinik’s one-sided inequality in the framework of
entropy solutions using the exact WFT (eWFT) detailed in Subsection 5.1. We analyze interactions
between consecutive Riemann problems and show that the inequality holds; moreover, we establish
the regularizing effects enjoyed by the entropy solution. Finally, Section 6 shows that when g is
decreasing, the situation is considerably more complicated, and we illustrate this with two examples for
Burgers equation.

2. Oleinik equality for smooth solutions

This section is devoted to the proof of Oleinik’s equality for strong solutions of the balance law (1.1).
For such solutions, the one-sided Oleinik Lipschitz condition holds with equality. By contrast, for
discontinuous solutions (e.g., across shocks), the corresponding statement becomes an inequality.

2.1. Characteristics system for heterogenous balance laws

Using the method of characteristics, the solution u satisfies the following system of ordinary

differential equations along each characteristic:
dX(t, xp) du

i I (u(t, X(2, x0))), I g(X(, x0)). 2.1
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. X . .
We introduce the vector U = (u) € R2, so that the system of characteristics can be compactly written

as follows:
dUu — F(U)
dr ’
where F : R? — R2 is the vector field
f’(u))
F(x,u) = ,
(- ) (g(x)

with f € C3(R) and g € C'(R).

Vectorial flow. Let ¢, : R? — R? be the flow generated by the following:

d
7 @i(x0,v) = F(@(x0,v)), @o(x0, v) = (X0, V). (2.2)

We write its components as follows:

@:(x0,v) = (9] (X0, ), @7 (X0, V). (2.3)

Restriction to the initial profile. Given u, : R — R, evaluate the flow along the curve v = uy(x):

@i(x0, ug(x0)) = (X(t, x0), u(t, X(t, x0))).

We set
X(t, xo) := ¢, (xo, to(X0)), @7 (x0, uo(x0)) = ult, X(t, xo)).

where:

e ¢! (xo, up(xp)) is the position at time 7 along the characteristic curve issued from x,
° tptz(xo, up(xp)) is the value of the solution evaluated along this characteristic.

Hyperbolicity. It is important to have hyperbolicity, which means a finite speed for the propagation of
the information.

For this purpose, we assume that
ug € L*(R), lletol| Loy < Mo,
and the source term is bounded,
g € L(R), llgllzem) < M.
Fix T > 0. Then, for every (¢, x) € [0, T] X R, we have the L*—estimate as follows:

u(t, x)| < Mo+ TM,.
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In particular,
||bt(t, ')”LDO(R) < M, + TMg, te [0, T].

Since f” is continuous, we can define the following:
A(T) = sup{|f'W)|: V| < My+TM,} < co.

It follows that
| (u(t, x))| < A(T), (t,x) € [0,T] X R.

Then, the hyperbolic propagation of information with finite speed is clear on every strip [0, 7] X R,
with a maximal possible speed A(T).

Fix x¢ < x; and define the trapezoid as follows:
Kr:={(t,x) € [0, TIXR:xg = AT)(T —1) <x < x; + A(T)(T —1)}.

By finite speed of propagation, the solution « in K7 only depends on the initial data and the source
term g(x) on the bounded interval

[xo — A(T)T, x; + A(T)T].

Since, u is bounded in [0, T] X R for all 7 > 0 and g is Lipschitz, the phase—space flow ¢; is globally
defined for all > 0.

Invariant. Let E(x,u) := f(u) — G(x) with G’(x) = g(x). Along the characteristic curves,

d v/ Y/ /4 /4
= Hepi (xo, u0), @7 (xo, u0) = f(#7) Oy = Gler) i = f1) depr) = dpi) f(7) = 0.
Hence, E is conserved for smooth solutions: E(¢,(xg, ug)) = E(xo, up) for all ¢.

Proposition 2.1. [Monotonicity of the flow in each initial variable] Let F(x,u) = (f’(u), g(x)) with
feC? geCl and assume f” >0, g > 0. Let o5 = (¢!, ¢?) be the flow of F. Fix (xo,uo) € R?* and
s > 0. Define the following four variational quantities:

A(S) = axo‘Pl(xO’ MO)’ B(S) = axogoi(x()’ MO)’ C(S) = augSDl(an MO), D(S) = 6”0‘)0%()(0’ MO)'

Then,
A(s) > 1, B(s) > 0, C(s) =0, D(s) > 1. 2.4)

Proof. We consider the following characteristic system:

d /!
$¢i(xo, uo) = f'(¢3(x0, up)),

d
gﬁ(xo, ug) = g} (x0, o)), (2.5)
‘Pé(xo, Up) = Xo, 903(360, Up) = Up.
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By standard ODE theory and the regularity of f and g, the flow
(X0, Uo) > @5(x0, Uo)
is of class C! for every fixed s > 0. In particular, the partial derivatives
A(8) 1= Oyp5(xX0, o), B($) := By (X0, o), C(8) := Bugspy (X0, o), D(8) := Buyp (X0, o)
are well-defined and continuous in s.

Step 1. ODE:s for (A, B) and (C, D). Differentiating Eq (2.5) with respect to x, and using the chain rule,
we obtain

d
ToAG) = 0y (f (930, w0))) = 17 (9330, 40)) Dy 5 (0. ) = () BC).

and
%B(s) = 0, (8(01(x0, 10))) = &'(0} (X0 U0)) Do) (X0, thg) = '(0}) A(s).
From the initial conditions in Eq (2.5), we obtain the following:
A(0) = By po(x0,0) = 1, B(0) = 0y, (x0, o) = 0.

Hence, (A, B) solves the following system:
A'(s) = (g3 (x0, o)) B(s),
B'(5) = ' (¢, (%0, 10)) A(s), (2.6)
A0) =1, B(0)=0.

Similarly, differentiating Eq (2.5) with respect to u, yields
C'(s) = f"(¢)D(s),  D'(s) = g'(¢;) C(s),

with initial data
C(0) = 8,,0(x0, o) = 0, D(0) = 8,,¢5(x0, o) = 1.

Thus, (C, D) solves the following:
C'(s) = f"(g3(x0, u)) D(s),
D'(s) = g'(¢3(x0, g)) C(s), (2.7)
C0) =0, D) =1.
Step 2. Sign properties for (A, B). Since f is convex, we have f” > 0, and since g is nondecreasing,
g > 0. Define the following:
I:={t>0: A(s) > 1, B(s) > 0forall s € [0,7] }.
The set I is nonempty: By continuity and the initial conditions A(0) = 1, B(0) = 0 we have [0,6] C 1
for some 6 > 0. Set
T" :=supl € (0, +c0].
On the interval [0, T*), we have A(s) > 1 and B(s) > 0 by the definition of 7; hence, from Eq (2.6)
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and the assumptions f” > 0, g’ > 0, we obtain the following:
A'(s) = f"(¢2) B(s) 2 0, B'(s) = g'(¢})A(s) >0 forall s € [0,T").
Thus, A and B are nondecreasing on [0, 7). Using A(0) = 1 and B(0) = 0, it follows that
A(s)>1, B(s)>0 forall sel0,T").
Then, by continuity of A and B, we have
AT > 1, B(T*)>0

whenever T < +oco.

Evaluating Eq (2.6) at s = T, we still have the following:

A(T) = f"(¢7.) BT 20,  B(T") =g (¢p)AT") > 0.
Hence, there exists € > 0 such that
A(s)>1, B(s)>0 forallse [T, T +e¢),
which implies [0, T* +¢) C 1. This contradicts the definition of 7* as the supremum of / unless 7 = +co.
Therefore,
A(s) 21, B(s)=0 forall s>0.
Step 3. Sign properties for (C, D). The argument for (C, D) is completely analogous. Define
J:={t>0: C(s) >0, D(s) > 1forall s € [0,7] }

and let $* := sup J. From the initial conditions C(0) = 0, D(0) = 1 and continuity, we have J # @ and
S*>0.

On [0, §), by the definition of J and Eq (2.7) together with f”” > 0, g’ > 0, we obtain the following:
C'(s)=f"(@)D(s) >0,  D'(s) =g () C(s) > 0.
Thus, C and D are nondecreasing on [0, S *), and using C(0) = 0, D(0) = 1, we obtain the following:
C(s)=>0, D(s)=1 forallse[0,S%).

By continuity, C(§*) > 0and D(S*) > 1 (if S$* < +00), and evaluating Eq (2.7) at s = §* again yields
C'(S") >0, D’(S*) = 0. Hence, we can extend the inequalities slightly beyond S *, which contradicts
the definition of S* unless §* = +oo.

We conclude that
C(s)>0, D(s)=1 foralls=>0.
Combining the conclusions of Steps 2 and 3, we have proved that for every s > 0,
ey (X0, 10) = A(s) 2 1, By (0, p) = B(s) 2 0,

and
O (X0, ) = C(s) = 0, 8,9 (x0, ug) = D(s) > 1,

which is precisely the statement of the proposition.
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Proposition 2.2. Under the same hypotheses as Proposition 2.1, for every s > 0 and all (x,v) € R?,
8. (2, (x,v) = 1; (2.8)

hence, v — ¢? (x,V) is strictly increasing.
Proof. Fix s > 0 and an arbitrary (x, v) in the domain of ¢_j, and set
(X0, uo) 1= ¢_(x,v) = (x,v) = @s(x0, Uo).
Consider the following:
M = Dp_i(x,v).

(i) By definition of the Jacobian,

0,0l 0,0"
M= QD; 902s .
O, 0vp7
N N (X,V)
(ii) By the chain rule applied to ¢_; o ¢, = Id at (xo, up),
Dop_(¢s(x0, up)) Doy(xo,up) =1 = M = (Dey(xo, Mo))_l-
Since div F = 0, Liouville’s formula gives det Dy, = 1; hence,

- Ou ‘P% -0, ‘10§~
Doty =( T,
0P x0%Ps (x0,u0)
Comparing the (2, 2) entries of the two expressions for M yields the following:
02 (2, v) = By (X0, o).

Using Proposition 2.1, 8,,¢!(xo, up) > 1, and since (x, up) = ¢_,(x, v) was chosen from the given
(x,v), we conclude the following:
0% (x,v) > 1.

As (x,v) was arbitrary in the domain of ¢_;, the claim follows.

Remark 2.3. Since f is strictly convex, f’ is a strictly increasing function. Using the previous
proposition, we obtain that v — H(t, x, v) is strictly increasing, where H is defined in Eq (2.10). Indeed,
for any v; < v, and any s € [0, ], by Proposition 2.2, the monotonicity of v gp%s(x, v) implies
the following:

@ (X, v1) < @2 (x,12);

hence, using the strict convexity of the flux, we obtain the following:

F1(@2(x,v) < /(@2 (x,v)).

Integrating in s over [0, ¢] yields H(t, x,v;) < H(t, x, v,); thus, v — H(t, x, v) is strictly increasing.
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2.2. Oleinik equality

As a first step, we derive the Oleinik inequality in the setting of smooth solutions. This preliminary
result clarifies that the one-sided regularity estimate controls the spatial spreading of characteristics. We
give the following Theorem.

Theorem 2.4 (Oleinik equality for strong solutions). Assume that f € C*(R) is strictly convex, and
g € C'(R) is Lipschitz, bounded, and satisfies g'(x) > O for all x € R. Let u be a strong solution of
Eq (1.1) with a bounded initial data. Then, for all t > 0 and any two points X < x, we have the following:

H(t, x,u(t,x)) — H(t,%,u(t,X)) = (x—Xx) — (xo — Xo), (2.9)

where xy and Xy denote the footpoints of the two corresponding characteristics. The function H is
defined on R* X R X R by the following:

!
H(t,x,v) = f fl? (x,v))ds, (2.10)
0
where ¢? is the second component of the characteristic flow introduced in Section 2.1.

Proof. Suppose that u € C'([0,T] x R) is a strong solution of the balance law (1.1).

By integrating the first equation of the ODE system (2.1) between 0 and 7, we obtain the following:
t
X = X+ f f’(‘Pz(xo, Mo(xo))) ds.
0

Now, consider another characteristic issued from X, and set Axy := xo — X > 0. Since we are dealing
with a strong solution (no shocks up to time ), characteristics do not intersect, so their ordering is
preserved as follows:

X(t,x9) — X(t,%) = 0 forall ¢ > 0.

Writing x := X(z, Xy), the same computation gives the following:
t
X = X+ f f’(‘ﬁ?()_fo, uO()_CO))) ds.
0

Using the semigroup property of the flow,

‘Pf(xo, Mo(xo)) = ‘Pi_z(%(xo, Mo(xo))) = QD%-_I(X, u(t, x)),
we obtain

t t
Ax = Axp + f f’(gpzs_,(x, u(t, x))) ds — f f’(gpzs_,()'c, u(t, X))) ds.
0 0
Applying the change of variables s = ¢ — s in each integral,
! t
Ax = Axg + f £/(? (x (e, x))) ds - f (2 (% u(t, %)) ds.
0 0

Hence,
Ax = Axy + H(t,x,u(t,x)) — H(t, x,u(t,X)) =: Axo+ AH,
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where )
H(, x,v) = f £(¢2xv)) ds;
0
thus, we obtain the following generalized Oleinik identity for smooth solutions as follows:

Ax = Axy + AH. 2.11)

Remark 2.5. Since Axy > 0, we can write the equality (2.11) as follows:

AH < Ax. (2.12)
3. Oleinik inequality for entropy solutions

In this section, we present our main theorem and outline some consequential implications. The
central tool is the Oleinik one-sided Lipschitz inequality for entropy solutions, which is proven under the
hypotheses stated below. As a consequence, we obtain quantitative regularizing effects for the unique
entropy solution, which are made precise in the results that follow.

Theorem 3.1. [Generalized Oleinik inequality] Assume that f € C*(R) is strictly convex, and g € C'(R)
is bounded, Lipschitz that satisfies g'(x) > 0,Vx € R. Let uy € L*(R), and u be the unique entropy
solution of Eq (1.1). Then, for a.e. t > 0 and any two points X < x, we have the following estimate:

AH < Ax, 3.1

where the function H is defined by the relation (2.10).

This result is particularly significant. One-sided Oleinik inequalities have far-reaching implications
in the theory of scalar conservation laws. In this paper, we focus on the regularizing effect on the unique
entropy solution to Eq (1.1).

We begin with the classical case of a uniformly convex flux. In this setting, the Oleinik one-sided

Lipschitz bound yields the following spatial regularity result.

Corollary 3.2. [BV regularizing effect] Under the assumptions of Theorem 3.1 and f uniformly convex,
the unique entropy solution u(t, -) of Eq (1.1) belongs to BV|,(R) for every t > 0.

When the assumption of uniform convexity is relaxed to strict convexity, the BV smoothing effect
can fail. To quantify this loss, we introduce the notion of the polynomial degeneracy of f.

Definition 3.3. (Degeneracy). Let f € C!'(K,R), where K C R is a closed interval, and let a(u) := f'(u).
We say that the degeneracy of f on K is at least p > 0 if

IKORNEOIN

(wv)ekxk  |u—v|P
u#v

0. (3.2)

The smallest such real number p (if it exists) is called the degeneracy exponent of f on K.
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Next, we address the case where fluxes whose convexity may degenerate. In this setting, full BV
smoothing fails. However, the entropy solution still enjoys a fractional BV regularization. The following
result makes this precise.

Corollary 3.4. [BV® regularizing effect] Under the assumptions of Theorem 3.1 and f that satisfies
Eq (3.2), the unique entropy solution u(t,-) of (1.1) belongs to BV;} (R) for every t > 0, where s = 1/p.

Finally, we address the case where f is only strictly convex. An additional condition is added on the
source term g to recover the full BV regularity.

Theorem 3.5. Assume that g(x) # 0 for all x € R. Under the assumptions of Theorem 3.1, the unique
entropy solution u(t,-) of Eq (1.1) belongs to BV ,(R) for every t > 0.

Generically, to get the BV regularity, the condition g never vanishes can be relaxed by g' > O or g
vanishes only one time. Indeed, if g vanishes at exactly one point, the situation is more delicate: One
cannot always expect a BV, regularization, see the discussion in Section 5.4. In particular, there is no
transversal condition linking g and f” as in the case g = g(u) [9].

4. The Riemann problem

In this section, we study the Riemann problem associated with the balance law (1.1). This analysis is
a key step in the proof of Oleinik’s one-sided inequality for entropy solutions. Indeed, after discretizing
the initial data by a piecewise-constant function, the argument reduces to verifying the inequality on
a finite family of Riemann problems generated at the jump points. Because the source term is spatial,
the solution is no longer self-similar and explicitly depends on the space variable. To handle this, we
introduce a generalized Riemann problem in which the initial data consist of two nondecreasing smooth
profiles on the left and right.

4.1. The generalized Riemann problem

As explained just above, we now consider the generalized Riemann problem associated with the
balance law (1.1), given by the following:

o+ 0.(f(u) = gx), t>0, xeR,
“4.1)
40, x) = {UL(x), x<a,
Ur(x), x> a,

where U}, U, > 0,and Uy, Ug € C'.

Shock case Assume U;(a) > Ug(a). Let (¢,y(t)) parametrize the shock curve with y(0) = a. The
shock footpoints & (t) and &x(t) are the initial locations (at ¢t = 0) of the characteristics that reach the
shock at time ¢, which is implicitly defined by the following:

o€, ULE) =), ol Ur&®)) =0,  &0)=&0)=a.  (4.2)
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The left/right traces at the shock are the one-sided limits

U_(t) := lim u(t, x), U, := lim u(t, x). 4.3)
xTy(0) xly (D)

In terms of the characteristic flow, these traces are as follows:

U-(t) = ¢{&®), Unl&r®)),  UL(0) = o] &), Ur(E()). (4.4)

Then, the unique entropy solution is given by

Ax0, Ur(xp)), if x < y(f) with xq such that ¢(xo, UL(x0)) = x,
u(t,x) = 4.5)
@Ax0, Ur(xg)), if x > y(f) with xq such that ¢)(xo, Ug(xo)) = x,

and the shock speed satisfies the Rankine—Hugoniot condition expressed through the traces as follows:

_ AU.0) - AU-0)

U.()—U_(1) (+6)

¥(0)

Proposition 4.1 (Entropy shock (generalized data at «)). Assume f € C* with f” > 0, g € C! with
g >0, and Ui (a) > Ug(a). Let u be defined by Eq (4.5), with shock curve y solving Eq (4.6), traces
U. given by Eq (4.4), and footpoints &g as in Eq (4.2). Then, u is the unique entropy solution of the
generalized Riemann problem (4.1) at x = a.

Proof. Fix ¢ > 0 to be small and define &(t; u) by
@1 (Etw),u) = y(@),

and the trace map
Vi) 1= ¢} (£(t; u), u).

Differentiating the defining relation with respect to u (chain rule, ¢ fixed) gives the following:

Dy (€005 1), ) €/(130) + Dyugp} (E5 ), 1) = 0;

thus,
Ouyr
Oy, )

X0rt 1(xo,uo)=(&(t5u),u)

E(tu) = -

Consequently,

- axo()ot2 auo()otl + auo‘p? a)Co‘pt1

Wi (u) = Oup; € (1 1) + Oy = 5 ol :
0Pt (&),

Since det Dy, = 8., 0,97 — 0uyp! 0,7 = 1 (Liouville; div F = 0), we obtain the following:
1 .
Dot (E(t ), 1)’

¥i(u) =

thus, ¥, is strictly increasing. Let

up(t) == U(ér®),  up(t) := Up(&(D).
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By continuity and u!"(0) = U(@) > Ug(e) = ul5(0), there exists
T, :=inf{t > 0: (1) = ult(t)} € (0, 0]
such that u"(t) > u?(¢) for all t € (0, T). Then, for z € (0, T}),
U-(t) = ¥i(up () > ¥ (ug(®) = U, (1),

and strict convexity yields the following Lax inequalities:

JU-0) — fU.()

f'U-(0) > o) := U - 0.0

> f(U(1)).

Remark 4.2. (No gaps in the characteristic covering) For each fixed ¢ € (0, T), the side maps

Xi(t,€) = ¢ (&,ULé)) (<), X&) := ¢/ (& Ur€) (€>a)

are strictly increasing with X (¢, £.(¢)) = y(¢) = Xg(2, €r(?)) and tails Xy (2, ) — +o0 as & — +o0.
Hence,
ImXL(t’ ) = (_005 y(t)l ImXR(t’ ) = [')’(t), OO),

thus, their union is R: there is no uncovered spatial interval.

Remark 4.3. (Finite-time termination of the shock and continuation) If T, = oo, then U_(t) > U, (¢) for
all ¢ and the shock persists globally. If T < oo, then at t = T, the traces meet as follows:

U(T) =UTy) =:U..

The time slice u(T}, -) is continuous at x = y(7) (left and right limits coincide), nondecreasing, but
not necessarily C! at that point (the one-sided derivatives may differ). From ¢ = T onward, continue the
evolution with the continuous, nondecreasing theory.

Proposition 4.4. (Rarefaction wave solution) Consider the generalized Riemann problem at x = a with
Up(a) < Ug(@). Define the fan-edge curves and their values by the following:

y_(t) := @i, Ur(@), U_(1) := e, U(a)),

477
y:(0) = @, Ur()), U, = g{a, Ur(@)). “D

Then, the unique entropy solution u is given by the following:

©A(x0, Ur(x0)), if x < H(t, y-(t), U_(0)) with xq s.t. ¢(xo, Ur(x0)) = x,
u(t, x) = {AH®E xu) = Ax, i Ht, (1), U-(1) < x < H(t, y+(0), U+(D)), (4.8)
©(x0, Ur(xp)), if x > H(t, y.(1), Us(0)) with xo s.t. o)(x0, Ur(x0)) = x.

The proof of Proposition 4.4 is the same as in the autonomous case g = g(u). For details, see [9].
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Remark 4.5 (Constant-data reduction at @ = 0). When U;(x) = u; and Ugr(x) = uy are constants with
an interface at @ = 0, the generalized formulas reduce to the following classical Riemann solutions:

Shock case (up > ug). Let &.(1), Er(t) and y(¢) be defined by the following:
@ (E0(D), ur) = @] (€r(1), ug) = ¥(0), &1(0) = &r(0) = 0,

and set the traces
U_(t) := @X(E(D,ur),  U(t) := @X(Er(D), ug).

Then, the unique entropy solution « is given by the following:

go,z(xo, ur), if x <y(r) with xg s.t. 90,1 (x0, ur) = X,
u(t,x) = 4.9)

02 (xg, ug), if x > y(¢) with xy s.t. ¢! (xo, ug) = x,

and the shock speed satisfies the Rankine—Hugoniot condition expressed through the traces as follows:

_ W) - AU-0)

¥() 00— U0 (4.10)
Rarefaction case (uy < ug). Define the fan edges and their values by the following:
Y-() = 0l Ou), U-(0):=GOu), 7.0 = @ Oup),  Ust) := 920, up).
Then, the unique entropy solution u is given by the following:
©?(x0, Ur), if x < H(t,y_(¢), U_(t)) with xg s.t. ¢} (xo,uz) = X,
u(t,x) = {AH (@, x,u) = Ax, it H(t,y-(1), U-(1)) < x < H(1,y.(1), U.(1)), (4.11)
02 (X0, UR), if x > H(t,y, (1), Uy (1)) with xg s.t. ¢} (xg, ug) = X.
4.2. Example: Burgers equation with a linear source term
Let A4 > 0 be a real number. Consider the Burgers equation with a linear source:
{a,u +0(%5)=ax  on(0,+) xR, w2
u(0, x) = up(x) on R.

Characteristic system in matrix form.
X =u, i = AX, (X, “)L:o = (X0, Up).

Set the state vector and matrix as follows:

o) el

Then,
du
dr
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Closed form of the flow. Leta := VA and write
C := cosh(ar), S := sinh(at).

A direct computation yields the following:

S
etA:(C EJ (with%—n‘, as —>0asa—>0).

aS C

Therefore, the characteristic flows are as follows:

9011()60,140) =xC+ % S, (,Df(xo, Ug) = axyS + uyC.

Now, consider the Riemann problem centered at the origin:

2 0’
u(o, x) _ {ML x <

ug, x>0.

Case 1: u; > ug. Then, the unique entropy solution is given by

a x tanh(ar) + ﬂ, x < (1),
u(t, x) = < (4.13)
a x tanh(ar) + rok x > (1),

with the shock position
up + uUgp

2a

y(t) = S, v(0) = 0. (4.14)

Case 2: u; < ug. The unique entropy solution is given by the following:

u u
a x tanh(at) +—L, x < —LS,
C a

u(t, x) = da xcoth(ar), % S<x< %RS, (4.15)
a x tanh(ar) +@, x> u—RS.
C a

5. Proof of the Oleinik inequality for entropy solutions

This section is devoted to the proof of Theorem 3.1, which establishes Oleinik’s one-sided inequality
in the setting of entropy solutions. Then, as direct consequences of this estimate, we derive the
regularizing effects stated in Corollaries 3.2 and 3.4, and in Theorems 3.5 and 5.2. Additionally, we
discuss the case of a constant source term in Subsection 5.5.
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5.1. eWFT: An exact scheme

We introduce an eWFT, which inspired by the classical WFT and the method of characteristics.
Unlike numerical front tracking, eWFT builds exact entropy solutions at every stage.

Description of the method.

1. Piecewise-constant initialization. Discretize the initial datum into a piecewise-constant profile. At
t = 0, this yields a finite family of classical Riemann problems (left/right constants), as in WFT
and Godunov’s method.

2. Exact local solvers. Solve each Riemann problem exactly, and propagate the resulting waves via
the characteristic flow. Because of the spatial source g(x), the data at the interaction points are no
longer constant; the ensuing local problems are generalized Riemann problems, which we also
solve exactly.

3. Interactions and first interaction time. Wave interactions are handled as in WFT, but they are
resolved exactly in eWFT. Let T* > 0 denote the first interaction time between two distinct wave
fronts generated by the piecewise constant initial datum. At time ¢ = 0, any two neighboring
discontinuities are separated by at least the mesh size Ax, while each front propagates with speed
bounded in absolute value by A(T') (as given by the finite-speed estimate). Hence, before two
neighboring fronts can interact, they must close an initial gap with a size of at least Ax while
moving towards each other with a relative speed of at most 2A(T'). In particular, as long as

2A(T)t < Ax,

no interaction can occur, and we obtain the lower bound with a CFL condition as follows:

Ax
2N

*

For a strictly convex f, the interaction analysis shows that no new wave families are created; in
particular, the number of fronts does not increase in time in the domains we consider.

4. Oleinik along the evolution. Oleinik’s one-sided bound is verified on each elementary block
(smooth monotone segments, shocks, rarefactions) and is preserved across interactions by the
additivity of H. Hence, the exact entropy solution issued from the piecewise-constant datum
satisfies Oleinik’s inequality for all > 0.

5. Limit to the original datum. Letting the mesh size tend to zero and invoking L'-stability (Kruzkov
[20]), we pass to the limit and obtain Oleinik’s inequality for the entropy solution associated with
the original initial data.

5.2. Wave interactions

In this subsection, we study interactions between two adjacent Riemann problems. Since f is strictly
convex, interactions decrease the number of waves; hence, the number of fronts does not increase, and
the result extends (by induction) to any finite family of waves (see below).

It is important to verify that the structural properties of the data are preserved by the eWFT
construction. More precisely, on each trapezoidal domain of dependence K under consideration, the
solution consists of a finite number of singular curves (of SH- or SC—type), and between any two
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consecutive singular curves, the constructed solution is C' and nondecreasing with respect to the spatial
variable x. In the analysis of wave interactions, we shall check that whenever a new singular curve is
generated, it is again of an SH— or SC—type, and the above structural pattern of the solution is preserved
in time.

Fix T > 0 and x( < x;. By the finite speed of propagation, the solution « in K7 only depends on the
initial data on the bounded interval

[xo = A(D)T, x + A(T)T].

Since the initial datum will be discretized on a mesh with a size of Ax, only a finite number of
Riemann problems influence K.

On K, the solution u is piecewise C!, with a finite family of Lipschitz curves along which it is not
C'. We distinguish two types of such curves.

Definition 5.1 (Shock and singular curves). A Lipschitz curve y : [0, T,] — R is called a shock curve
(SH) if u has distinct left/right traces along it:

U™ (¢) := lim u(t, x), U*(®) := lim u(t, x),
© xTy(®) u(t, %) ® xy(n) u(t, x)
with U™(¢) # U*(¢) for a.e. t € (0, T,). The Rankine—Hugoniot relation holds as follows:

_fWrm) - f(U (D)
Ut -U@G)

¥(0)

A Lipschitz curve o : [0, T,.] — R is called a singular curve (SC) if u is continuous but not C' across
it, 1.e.,

lim u(z, x) = lim u(z, x) =: Uging(7),
xTo(t) xlo(f)

while the one-sided spatial derivatives do not coincide in general. There is no jump in u along such a
curve, only a loss of C!-regularity.

We denote the finite family of all shock and singular curves in K by F.

SH-SH interaction Assume that both y; and vy, are shock curves, issued from (¢, a) and (¢, b),
respectively, with a < b. For t < T*, along the two curves, we have

i (t,y1(0)7) > up(t, y1(0), ur(t, y2(1)7) > us(t, y2(0)"),
i.e., Lax shocks separating the phases u;(t, ), uo(t, -) and u,(t, -), us(t, -).

Fori = 1,2, denote the left/right traces along vy; by

U_;(®) := lim u(t, x), U, = lim) u(t, x),

x1yi(t) xlyi(t

so that
U_1() = ui(t,71(0)7), Upi() = wo(t, y1(0)7),
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U_x(1) = ua(t,2(t)7),  Usa(t) = us(t, y2(0)").

Each shock satisfies the Rankine—Hugoniot relation as follows:

o fWUL0) = f(U- (1)) .
yi(t) = U0—Uan i=1,2.

By strict convexity of f, one has y,(f) > y,(¢), so the distance
d(1) := y2(1) = y1(0)
is strictly decreasing. There is at most one interaction time
T" :=inf{t > t; : y1(2) = y2(1)}, a = y|(T") = yo(T").

Let u™(x) := limy7+ u(t, x) be the pre-interaction profile at time 7. Denote the left and right traces at
x = " coming from the outer phases u;(¢, -) and us(z, -) by the following:

uy = limu (x), uy = limu (x).
xTa* xla*

Moreover, for each t < T, the solution consists of three phases, u(z, -), u»(t, -), us(t, -), separated by
the shocks vy, (f) and y,(¢), with

ui(t, 1)) > wo(t, 1)) and  us(t,y2(6)7) > us(t, y2(1)").
This ordering is preserved along characteristics. In particular, this implies the following:

* *
u, = us.

Case (1): u} > uj. Define the restarted data at time 7" by the following
U/(x):=u(x) (x<a), Up(x) :=u (x) (x>a).

Then,
Uj(@) = uj, Ur(a@™) = uj,

and the inequality u] > u; shows that (U, Uy) form a shock-type generalized Riemann problem
at (T, a") (in the sense of Eq (4.1)). Therefore, The post-interaction evolution is given by a single
outgoing Lax shock vy that connects the transported traces, exactly as in the generalized setting.

Case (2): u} = u;. In this case, u™ is continuous at x = a”, but the one-sided spatial derivatives of u
at (T*, ") may differ, so u is not C' at that point. We do not create a new shock; instead, we declare
that a singular curve

1—‘sing ={(, ysing(l)) 2 T*}v

emanates from (7, a*). Along I, the solution remains continuous but can be not C ! In particular,
the SH-SH interaction either produces a new shock (case (1)) or degenerates into a singular curve
(case (2)); no additional fronts are generated.
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SC-SC no interaction Assume that we have two singular curves issued from (¢, @) and (z,, b) with
a < b. Let the corresponding inner curves be as follows:

Y140 = ¢ (a, Up(@),  y2-(t) := ¢! (b, Ui (b)),

where U }e(a) is the right trace of the left Riemann data at x = a, and Ui(b) is the left trace of the right
Riemann data at x = b, with

Uj(a) < Upla),  ULD) < Ux(b).
The curves vy, . and y, _ are singular curves: the solution u is continuous across each of them, but

not C'.

By the monotonicity of the forward flow in the spatial variable (with the second component fixed),
we have for all 1 > ¢,

Y140 = @ (a, Up(@) < ¢} (b, Up(@)) < ¢, (b, Ui()) = y2,-(1),

with strict < if @ < b. Since d,,¢] > 1, the gap between the two curves is nondecreasing and obeys
the following:

Y2 (t) = y1.+(D) = ¢} (b, Ui (D)) — ¢} (a, Ug(@)) = b—a>0.

Hence, the two singular curves never meet if they start from distinct points. If a = b, then y, ;. =y,
for all # > ¢#;, and the two rarefactions merge into a single fan bounded by two edges. In particular, two
distinct sing-curves do not interact when f is strictly convex.

SC-SH interaction Now, assume that the left front is a singular curve and the right front is a shock
curve. More precisely, let y; , be a singular curve issued from (0, a), and let y, be a shock curve issued
from (0, b), with a < b.

For t < T*, we have the following along these two curves:
ur(t, y1.4(07) = ua(t, y1.4(0)") =t Using (1),

usr(t, y2(1)7) > us(t, y2(0)").

Thus, ¥, , is a singular curve (no jump, only loss of C'), while 7y, is a shock curve between the
time-dependent phases u,(t, -) and us(t, -).

Let T* > 0 be the first time when the shock meets the right edge of the rarefaction (the singular curve):
a’ = y(T7) = y1.(T").

Define the pre-interaction profile
u (x) := limu(t, x),
1T

and denote the left/right traces at x = a* coming from the outer phases u;(¢,-) and us(¢,-) by
the following:
uj = liTrr} u (x), uy = liln} u (x),
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For each r < T*, the three phases u(t,-), us(t,-), and us(¢,-) occupy the regions to the left of
v1.+(1), between 7y ,(f) and y,(¢), and to the right of y,(¢), respectively. Along the two fronts, we have
the following:

ui(t,y1,+(07) = ux(t, y1+(0)7), ur(t, y2(1)7) > uz(t, y2()").

This ordering is preserved along characteristics. In particular, this implies the following:
U, > uj.

As in the SH-SH case, we consider two possibilities,

Case (1): uy > u;. We restart at (T, a*) with generalized Riemann data as follows:
Ui(x)=u(x) (x<a), Up(x) ==u (x) (x>a).

Then,

Ui(@) = uj, Up(@™) = u;,

and uj > u; shows that (U}, Uy) form a shock-type generalized Riemann problem at (T, o*). For ¢t > T*,
the solution is given by a single outgoing Lax shock y that connects the transported traces, exactly as is
in the generalized case.

Case (2): uj = uj. In this case, the solution is continuous at (7, a*) but not C! in general. We do not
create a new shock, but we continue the evolution along a new singular curve as follows

1—‘sing =1{@, ysing(t)) 1t >T,

issuing from (T, @*) and carrying the common value u] = u;. Along this sing-curve, the solution u is
continuous but not C!.

In summary, when f is strictly convex, interactions between shock and singular curves are resolved
without creating new fronts: a Shock—Shock interaction either yields a single shock or a singular curve;
two distinct singular curves never interact; and a Rarefaction—Shock interaction produces either a single
shock or a singular curve. In all cases, the number of fronts does not increase, and the local configuration
after the interaction is again of the generalized Riemann type.

5.3. Global solutions and the Oleinik inequality in the three canonical cases

In this subsection, we verify Oleinik’s one-sided inequality in three cases: (1) continuous,
nondecreasing initial data; (2) a shock Riemann problem; and (3) a rarefaction Riemann problem.
These cases are sufficient because the evolution decomposes into such pieces under our simplified WFT
scheme; thus, the inequality is preserved across interactions. Hence, the constructed exact solution
satisfies Oleinik’s bound. For clarity, we present the Riemann problems with constant left/right states;
the arguments are exactly the same in the generalized setting, where the initial data consist of two
piecewise C' nondecreasing functions.

Now, we establish the Oleinik one—sided inequality in the 3 cases mentioned above.
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Case 1: Global strong solution for increasing initial data. Let u, : R — R be a continuous and
nondecreasing function. Fix ¢ > 0 and yy > x(. Since uy(yo) > uo(xo),

X(t,y0) — X(, x0) = @(vo, (o)) — @(%o, to(x0))
> (0, Uo(X0)) — @H(Xo, to(X0))
Y0
= f 05} (€, up(x0)) d€ > yo — Xo.

Xo

Thus, X(¢,-) is strictly increasing and satisfies the one—sided bound X(z, yo) — X(#, xo) > yo — X, for
all yo > x¢. Taking y, = 0 and letting xy — +oo (resp. xo — —oo) yields the following
X(t,x9) = X(,0)+ xg = +o0 and X(¢, xg) < X(2,0) + xg > —o0;

thus,
lim X(t, xp) = +o0, lim X(¢, xp) = —oc0.

Xp—+00 Xp——00

Since X(t,-) is a bijection, let X~'(z, -) denote its inverse and define the following:

u(t, x) == eAX(t, x), udX'(t, x))).

Then, u € C([0, ) x R) by the continuity of ¢,, uy, and X~'. Additionally, for each x,, we have the
following:
(X(1, x0), u(t, X(t, x0))) = ¢i(x0, to(x0)),
thus, along the characteristics, X and u satisfy the ODEs. Because X(z, -) is bijective, characteristics do
not intersect; hence, u is globally well defined and strong solution. Thus, the Oleinik inequality (2.9) is
verified in this case using Section 2.2.

Case 2: Riemann shock u; > ugz. On each side of the interface, we have the smooth profiles obtained
by evolving the constant initial states u; and ug via the flow: ¢,(-,u;) and ¢,(-, ug) (they are not spatially
constant for # > 0). These side profiles are global because the flow is global. The shock curve y(r)
satisfies Rankine—Hugoniot with traces taken from the two side profiles; hence, exists for all # > 0.

Oleinik. Fix t > 0 and x < y.
o If x < y(#) <y, then split into three terms
R:= H(t,y,u(t,y)) — H(t, 7:(1), U.()),
J = H(t,y. 0, U.(0) - H(t,y-(1), U-(0)),
L:=H(t,y_(t), U_(1)) — H(t, x, u(t, x)),
so that
H(t,y,u(t,y)) — H(t, x,u(t,x)) =R+ J + L.
On each smooth side, the equality (2.11) gives the following:
R<y—y(@), L <y(t)—x.
At the shock point, v — H(t, y(t), v) is increasing and U_(¢) > U,(¢) (Lax); hence,
J <0.
Summing up yields H(z,y, u(t,y)) — H(z, x, u(t,x)) < y — x.
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Case 3: Riemann rarefaction u; < ugz. On each side, the solution is the profile obtained by evolving
the initial states u; and ug via the flow (go}, gof), which is global. Define the fan edges as follows:

Y- =0 (0,u), () = ¢ (0, up).

By forward—flow monotonicity in the second variable, y_(t) < y.(¢) for all ¢ > 0, so the fan is global
(the solution is smooth away from 7y..).

Oleinik. Fix t > 0 and x < y.

o If x,y lie inside the fan, then the two points trace back to the same footpoint x, = 0, and by
definition, we have the following:

H(t,y,u(t,y)) — H(t, x,u(t, x)) =y — x.

e If x,y lie on the same smooth side outside the fan, then the Oleinik inequality is automatically
verified.
e Across the whole fan, if x < y_(t) and y > vy, (), then it is split at the two edges as follows:

H(t,y, u(t, y)) = H(t, x,u(t, %)) = [H(t, y, u(t, ) = H@t, v (0, ut, v, (1))
+ [H(t v, (0, ut, v, (1) = H(t y-(0), u(t, y- (1) ]
+ [H(ty- (). ut y- (1)) = H(t, x, u(z, ).

The first and third brackets compare points within smooth regions; hence, Ax = Axy + AH,

H(t,y,u(t,y)) = H(t,y.(0), u(t, y.(1))) <y — y.(1),
H(t,y-(8), u(t,y_(1))) — H(t, x, u(t, x)) < y_(t) - x.

For the middle bracket, both points lie inside the fan, so Axy = 0; thus,

H(t,y (), u(t, y,.(1) = H(t,y- (1), u(t, y_(1))) = v.(t) — y-(0).

Summing the three contributions yields the following
H(t,y,u(t,y) —Ht, x,u(t, )) < —y) + (s —y) + (- —0) =y - x.

Finally, in all the 3 cases, the Oleinik inequality (3.1) is verified.

Completion of the proof of Theorem 3.1. Approximate the initial datum by a piecewise-constant,
monotone mesh u). For each mesh, solve exactly the finite family of Riemann problems and all ensuing
wave interactions. Because f is strictly convex, no new waves are created at the interactions and the
number of fronts does not increase; hence, the front-tracked solution u* exists globally for all # > 0. By
the results above, Oleinik’s one-sided inequality holds for each elementary piece (continuous monotone
data, shock, and rarefaction). Moreover, by the additivity of H, the one-sided bound is preserved under
concatenation of pieces and across interactions; therefore, u”(t, -) satisfies Oleinik’s inequality for every
t > 0. Finally, letting A — 0 and using Kruzkov’s L!-stability theorem for scalar balance laws (see
Kruzkov [20]), the inequality passes to the limit, thus yielding Oleinik’s estimate for Eq (1.1).
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5.4. Direct consequences of the Oleinik inequality

Now, we turn to the proofs of the regularizing effects, which directly follow from the Oleinik
inequality. first, we prove Corollary 3.2.

Proof. Fix ¢t > 0 and set
v(x) := H(t, x, u(t, x)).

We begin by noting that the generalized Oleinik inequality implies the following:
(AH)" < (Ax)", 5.1
where x* := max(x, 0).
We recall that the space BV™ is defined by the following:
BV* :={w : TV'(w) < +o0},

where the positive total variation is

TV'(w) = sup D W) = w(x)' (5.2)
L)

and
P:{{xl,...,xn} X< < Xy, ZSnGN}

is the set of all finite subdivisions of R.

Since u(t, -) satisfies a maximum principle, it remains uniformly bounded in L*(R). Consequently,
the composition v(-) = H(t, -, u(t, -)) remains uniformly bounded in L*(R) for every fixed ¢ > 0.

Additionally, we recall the identity
L” N BV* = BY, (5.3)

together with the estimate
TV(w) < 2|wllz> + 2TV (w). (5.4)

Combining Eq (5.1) with the bound on v in L*, and using Eqgs (5.3) and (5.4), we conclude that
H(t,-,u(t,-)) = v € BVjo.(R).

Furthermore, the derivative of H with respect to u is given by the following:

a—Hu, X,u) = f (@2 (x,u)) 0,2 (x, u) ds.
(91/[ 0

Since f is uniformly convex (i.e., f”(u) > a > 0 for all u € R), using Proposition 2.2, it follows that
0,H(t, x,u) > 0. Therefore, for each fixed (z, x), the map u — H(t, x,u) is a smooth diffeomorphism.
Since H(t,-,u(t,-)) € BVio(R), we conclude that

u(t,-) € BVjoc(R).

Now, we turn to the proof of Corollary 3.4.
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Proof. Fix ¢ > 0. We already know that the function
x —> H(t, x, u(t, x))
belongs to BV .(R).

Moreover, it is straightforward to verify that if the flux function f satisfies the degeneracy
condition (3.2) with exponent p, then H inherits the same degeneracy condition with the same exponent
p (for each fixed (¢, x)). Indeed, let u # v € K, and assume u > v without loss of generality. Since the
map u — H(t, x, u) is increasing for every fixed (z, x), it follows that

H(t, x,u) — H(t,x,v) > 0.

Hence,
\H(t, x,u) — H(t, x,v)| = H(t,x,u) — H(t, x,v) = f (/2,00 w) = £(@2,(x 1)) ) ds.
0

Since f satisfies the degeneracy condition of order p, and the flow ¢? (x,-) is Lipschitz continuous
in u, we obtain the following:

/ / c
P2 o) = (@, ()| 2 1 = v
Integrating over s € [0, ¢], we conclude that

t
H (2, x. 1) — H(t xv)] > % =P

Now, we may apply Corollary A.4. Hence, we deduce that
u(t,-) € BV}, (R) foreveryt> 0.

Now, we establish the proof of Theorem 3.5.

Proof. Recall the following expression of the derivative of H with respect to v:
t
0,H(t, x,v) = f FU* (x, ) 00> (x, V) ds.
0

Assume by contradiction that d,H(¢, x,v) = 0. The integrand is continuous and nonnegative. By
Proposition 2.2, 8,¢> (x,v) > 0; hence,

1%, (x,v) =0 forall s € [0,1].

Because f is strictly convex, f” is strictly increasing. In particular, the set {f” = 0} has an empty
interior; hence, it contains no nontrivial connected subsets. Define the following:

= {¢* (x,v): s €[0,1]}.

Since s go%_y(x, v) is continuous on the connected interval [0, 7], its image I" is connected, and
I' c {f” = 0}. Thus, I is a singleton, and

go%s(x, v)=v forall s € [0,r].
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However, the (backward) characteristic flow ¢_; = (gals, go%s.) satisfies the following:

d
ds ol (x,v) = = flg2(x, ), (5.5)
S
d
- @ (x,v) = —do (x,1), (5.6)
R)

Using Eq (5.6), we get a contradiction since g(x) # O for all x € R. Therefore d,H(¢, x,v) > 0 for
all u. In particular, since v(t,x) := H(t, x, u(t, x)) has a locally bounded variation and H(z, x, -) is a
diffeomorphism for each ¢ > 0, it follows that u(z, -) € BVjec(R).

Now, we discuss the regularizing effect in the presence of a spatially varying source with g’(x) > 0.
In this case, there exists at most one point X such that g(X¥) = 0, and at most one point it such that
f'(@@) = 0. Even if g vanishes at such a point, we can still recover the BV, regularity for the entropy
solution under a pointwise condition on f”, as stated in the following theorem.

Theorem 5.2. Let ug, g € L™ (R). Assume that g'(x) > 0 for all x and that f € C*(R) is strictly convex.
Additionally, if f”(it) # 0, then for every t > 0, the unique entropy solution u(t,-) of Eq (1.1) belongs to
BV]OC(R)'

Proof. Arguing in the same way as in the proof of Theorem 3.5, we obtain that
fA*(x,v)) =0 forall s €[0,¢], andthus ¢ (x,v)=v foralls.

Now, using both relations for Eqgs (5.5) and (5.6), and the fact that X is the only point such that
g(%¥) = 0 and i is the only point such that f’(it) = 0, we deduce that

go%s(x, v) =0 and ¢£S(X, v) =% foralls.

This is a contradiction, since f”(it) # 0.

Remark 5.3. As we have seen, 0, H(t, x, v) is nonnegative for all (z, x, v), and it can be equal to O only
on pairs (xo, vo) that satisfy the following:

g(x0) =0, f'(vo) =0, " (vo) = 0.

5.5. The case g’ =0

In this section, we record, without proofs, the key formulas and consequences for the following
constant source case:

{Gtu +0x(f(w)) = 4,
A1€R. (5.7)

u(0, x) = uo(x),

The special case g = A greatly simplifies the formulas and is already interesting in its own right.

Set t
H(t,v) = f fv—=2As)ds, forveR, andt> 0. (5.8)
0
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For f strictly convex and uy, € L*(R), the unique entropy solution satisfies the following:

AH < Ax, 5.9

where H is given by Eq (5.8).

The Riemann problem

Shock (u; > ug). The entropy solution is as follows:

{uL(t) = At +up, x <y,
u(t,x) =
ugp(t) := At + ug, x> y(1),

with the Rankine—Hugoniot speed

y(0) =

f(/ll‘ + MR) - f(/U’ + ML)

Urp — UL

Rarefaction (1, < ug). The unique entropy solution is given by the following:

ur(t) == At +uy, x<H(t,u(t)),
ut,x) =3 AH(t,u) = Ax,  H(t,ur (1)) < x < H(t, ug(2)),
ug(t) := At + ug, x> H(t,ug()).

Example: Burgers with constant source term

Consider the Burgers equation with the constant source term A.

Shock case u; > ug:

At +ur, x<vy(), Uup+u A
u(t, x) = 7 y(it) = =—L4 + 242
At +ug, x> Y1), 2 2
Rarefaction case u; < ug:
2
At + uy, XStML+7,
u(t, x) = x+/lt . +/lt2< < +/lt2
s X)=9—+ —, tup+— <x<tup+—,
t 2 LT )
Ar?
At + ug, XZ[MR-F?.
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Regularizing effect

In this case, the regularization effect directly follows from the general source term g(x). Assume
that 4 € R\ {0}. Under the assumptions of Theorem 3.1, the unique entropy solution u(t, -) of Eq (5.7)
belongs to BV .(R) for all £ > 0. This is an illustration of Theorems 3.5 and 5.2.

6. No global smooth solution with decreasing source term

In this section, we highlight how a decreasing spatial source can destroy regularity, even for smooth
initial data and smooth sources. We present two Burgers examples: (i) with a linear decreasing source,
the smooth solution blows up in finite time (as t — (7/2)7), so there is no global L™ entropy solution;
and (ii) with a piecewise bounded, globally Lipschitz source that is decreasing on a finite interval and
constant outside, a single Lax shock forms in finite time (at + = /2 when the outer bound is large
enough, and later otherwise), after which the entropy solution continues globally for all times. This
example parallels the one in [21], which analyzed the Burgers equation without a source term under
piecewise-continuous, decreasing initial data and proved the shock formation at a finite time #*. Thus,
allowing a decreasing source term makes the problem considerably more complicated.

Example 6.1. We consider the following Burgers equation with a decreasing source term and constant
initial data given by the following:

du + 0%) = -x.  u0.x) =1 (6.1)

Characteristic flow and values along characteristics

Let X = X(¢, xo) be the characteristic issued from x,, and write u(¢, X(t, xy)) for the solution value
along it. The characteristic system is as follows:

d d
EX(L xo) = ut, X(t, o)), EW X(t, x0)) = — X(1, x0),
with X(0, xo) = xo, (0, X(0, xo)) = 1. Solving gives the rotation flow as follows:
X(t, x0) = ¢! (x0, 1) = xpcost + sint, (6.22)
u(t, X(t, x0)) = *(x0, 1) = —xp sint + cos . (6.2b)
Method 1 — Jacobian (diffeomorphism criterion)
The Lagrangian—Eulerian Jacobian is as follows:
0,,X(t, xp) = cost. (6.3)
Hence, X(t,-) is a C! diffeomorphism for 0 < ¢ < 7, and loses invertibility at
t, = g since  0,,X(., x0) = 0.

Moreover, from Eq (6.2a),
X(g, xo) =1 forall xy;
thus, all characteristics focus at x, = 1. Therefore, no global strong solution exists; the classical
description breaks at ¢ = /2 by characteristic crossing (shock formation).
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Method 2 — Riccati (slope blow-up)
Let w = u,. Differentiating Eq (6.1) in x gives the following:
Wi+ uw, +w? = —1, (6.4)

Evaluating along the characteristic X(¢, xo) (so % = 0; + ud,), define W(t; xo) := w(t, X(t, x0)). Then,
W solves the following:
W=-1-Ww? W(0) = u)(xo) = 0. (6.5)

This integrates explicitly as follows:
W(t) = —tant, (6.6)

SO
. o Vg
l%rTn W(t) = —oo at the finite time T, = 3
AV

Thus, W(t; xo) = —oco as t T 5, which proves the finite-time blow-up of the gradient and rules out a
global C! solution.

Remark 6.2 (Blow-up for Burgers with linear source; no shock at 7 = 3). For 7 < 7, cosz > 0 and

X —sint
x=X(t; x9) = xo9 = ;

cost

hence, the Eulerian formula is as follows:
u(t,x) = —x tant + sect.
Therefore, as t — (’—zr)‘,

1_
W, x) ~ —=

—.
Z—t

In particular, for any a € (0, 1),

sup u(t,x) — +oo ast — (’—’)_.

2
x€[-a,a]
Conclusion. The solution undergoes a focusing blow-up at t = ’%; there are no finite left/right traces at a
discontinuity, so this is not a Lax shock, and there is no entropy solution (in L) that continues for z > 5
in this case.
Example 6.3. Consider the following Burgers equation:
2
Ou + @(”7) =g,  u@x)=1,

with a piecewise source term parametrized by A, a positive constant,

A, x<-A,
gx) =q—x, |x| <A,
—-A, x>A,
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Here, g is bounded (]J|g|lc = A) and globally Lipschitz (a.e. g’(x) € {0, —1}); hence, by the standard
theory for balance laws, there exists a unique global entropy solution. A single shock forms, with the
formation time given by the following:

z A1,

£(A) = (s0 F(A) > g when0<A<1). (67

V1 - A?
arcsin(A) + — 0<A<Il,

After t*, the solution consists of one Lax shock that persists for all later times.

Sketch of proof. To justify the above expression for the formation time ¢*, we follow the characteristic
curves. Writing the equation as
U+ uny = g(x),

the characteristic system is as follows:

X=U, U = g(X), X(0) = x, U0) = 1.

For the central characteristic xo = 0 and as long as |X(7)| < A, we have g(X) = —X; thus,
X=U, U=-X, X0)=0, UO) =1,

which gives X(¢) = sint¢, U(¢) = cost. Differentiating the partial differential equation (PDE) in x shows
that the slope W(¢) := u,(t, X(¢)) satisfies W = g’(X(¢)) — W? with W(0) = 0. In the inner region |x| < A,
we have g’(x) = —1; hence, W(¢) = —tant. If A > 1, then the central characteristic stays in |x| < A up to
t=7%,and W(t) » —coast T 7,501 = 3.

If 0 < A < 1, then the central characteristic leaves the inner region at the time #; = arcsin A, where
X(t;) = Aand W(t;) = —A/ V1 — A%. For x > A, one has g’(x) = 0; thus, for ¢ > #; while X(7) > A, the
slope solves W = —W?, which gives the following:

1
W) = .
f—f = NI=A
1 A
Hence, there is a blow-up at the following:
. V1 — A? ) V1 - A?
r(Ay=t + T = arcsinA + T

In both cases, namely A > 1 and 0 < A < 1, we showed that the classical solution develops an
infinite negative gradient along the central characteristic at the finite time as follows:

A>1,

r= VI—AZ

arcsinA+ ——, 0<A<I1.
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This is precisely the time of the first gradient blow-up (i.e., the classical solution ceases to be C).
For scalar conservation/balance laws with a strictly convex flux, this loss of regularity corresponds to
the formation of a (Lax) shock.

Because g is bounded and globally Lipschitz, the entropy solution exists globally in time and is
unique. The construction of the entropy solution after ¢* follows the standard recipe: One replaces the
multi-valued region generated by crossing characteristics with a single shock curve y(#), whose speed is
given by the Rankine—-Hugoniot condition as follows:

@) = far @) O ) (o)
Cowr @) —u () uwr @) -u () 2 ’

with left/right states determined by the transported characteristics.

¥(©)

In this example, the first and only breakdown of the flow map xy — X(#; xo) occurs at the central
characteristic; thus, exactly one shock is created at ¢ = ¢*. After its formation, the solution consists of a
single Lax shock that connects two smooth states, and this shock persists for all later times.

7. Conclusions and perspectives

We established a generalized Oleinik-type one-sided inequality for the class of heterogeneous scalar
balance laws considered in this work. The proof is based on an eWFT construction, in which wave
interactions are treated as interactions between SH and SC. On each bounded domain of dependence
‘Kr, the eWFT solution consists of finitely many such curves, and between any two consecutive fronts,
the solution is C' and nondecreasing with respect to x. This piecewise smooth non-decreasing structure
of approximate solutions allows us to verify the generalized Oleinik inequality on each elementary
piece and to propagate it in time. The proved Oleinik inequality yields a regularizing effect for the
unique entropy solution.

Several perspectives naturally follow. When the source g is decreasing, this piecewise C!
nondecreasing structure is no longer suitable, and a new strategy is required. Since the Oleinik
inequality obtained here is a property of the exact solution, it is also natural to seek numerical schemes
that preserve this one-sided control, which is analogous with known results for the Lax—Friedrichs
scheme in the homogeneous case, see [21]. Finally, the regularizing effect and the refined front
description may be useful both in control problems for scalar laws, as in [3], and in the large-time
analysis of balance laws and their coherent structures, in the spirit of [22].
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Appendix
A. BV* spaces

In this section, the definition of fractional BV spaces are recalled [23-25].

Definition A.1. Let p = é > 1. The TV’ variation, also called the total p-variation of any real function

v, 1s defined as follows:

TV'v= sup " Iv(x) = vl (A1)
xileP 4
where P = {{x1,...,x,}, x;1 <--- <Xx,, 2 <n € N}is the set of subdivisions of R.

The space BV*(R) is the subset of real functions such that

BV*(R) = {v: TV’(y) < co}. (A2)
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Remark A.2. For s = 1, we recover the classical space of functions of bounded variation as follows:

BV(I,R) = BV(D).

This theorem characterizes the space BV* with the holder space Lip® and the BV space due to
Michel Bruneau [23].

Theorem A.3. (Bruneau'’s factorization, 1974) For any u € BV*(R), there exists the following
factorization by an s-Holder function and a BV function:

ue BV’ (R) < 3dALeLip’(R,R), v € BV(R) such that u = Lo v.

That means that
BV*(R,R) = Lip*(R,R) o BV(R,R).

As a direct consequence of Bruneau’s factorization theorem, we obtain the following regularity result.

Corollary A.4. (Regularity Result). Let h : R — R be a strictly increasing function that satisfies the
degeneracy condition (3.2) with the degeneracy exponent p.

Suppose that for each fixed t > 0, the composition x — h(u(t, x)) belongs to BV .(R).
Then, it follows that
1
u(t,-) € BV .(R), withs=—.
p

In other words, the function u(t, -) inherits a fractional bounded variation regularity of order s = 1/p,
thanks to the non-degeneracy and monotonicity of 4.
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