Research article

Computational analysis of fractional Drinfeld-Sokolov-Wilson equation associated with regularized form of Hilfer-Prabhakar derivative

  • Published: 09 January 2026
  • In this research paper, we utilize an analytical technique to investigate the behavior of the Drinfeld-Sokolov-Wilson equation of arbitrary order. The implemented technique is an adequate composition of the Kharrat-Toma transform and the q-homotopy analysis approach. Here, a regularized form of the Hilfer-Prabhakar derivative of arbitrary order is used to formulate the problem. The Drinfeld-Sokolov-Wilson equation of arbitrary order is utilized to model the dispersive water waves and plays a very significant role in fluid dynamics. The results of the discussed model are presented graphically to show the efficiency and reliability of the obtained results.

    Citation: Jagdev Singh, Arpita Gupta, Juan J. Nieto, Moisés Rutkoski. Computational analysis of fractional Drinfeld-Sokolov-Wilson equation associated with regularized form of Hilfer-Prabhakar derivative[J]. Networks and Heterogeneous Media, 2026, 21(1): 1-21. doi: 10.3934/nhm.2026001

    Related Papers:

  • In this research paper, we utilize an analytical technique to investigate the behavior of the Drinfeld-Sokolov-Wilson equation of arbitrary order. The implemented technique is an adequate composition of the Kharrat-Toma transform and the q-homotopy analysis approach. Here, a regularized form of the Hilfer-Prabhakar derivative of arbitrary order is used to formulate the problem. The Drinfeld-Sokolov-Wilson equation of arbitrary order is utilized to model the dispersive water waves and plays a very significant role in fluid dynamics. The results of the discussed model are presented graphically to show the efficiency and reliability of the obtained results.



    加载中


    [1] K. Wang, K. Yan, F. Shi, G. Li, X. Liu, Qualitative study of the (2+1)-dimensional BLMPE equation: Variational principle, Hamiltonian and diverse wave solutions, AIMS Math., 10 (2025), 26168–26186. https://doi.org/10.3934/math.20251152 doi: 10.3934/math.20251152
    [2] I. Podlubny, Fractional Differential Equations, New York: Academic Press, 1999.
    [3] K. B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, 1974.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier: Amsterdam, The Netherlands, 2006.
    [5] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons: New York, NY, USA, 1993.
    [6] Y. H. Liang, K. J. Wang, Dynamics of the new exact wave solutions to the local fractional Vakhnenko-Parkes equation, Fractals, 34 (2026). https://doi.org/10.1142/S0218348X25501026 doi: 10.1142/S0218348X25501026
    [7] K. J. Wang, The fractal active low-pass filter within the local fractional derivative on the Cantor set, COMPEL, 42 (2023), 1396–1407. https://doi.org/10.1108/COMPEL-09-2022-0326 doi: 10.1108/COMPEL-09-2022-0326
    [8] K. J. Wang, J. H. Liu, On the zero state-response of the $ \mathfrak{I} $-order R-C circuit within the local fractional calculus, Int. J. Comput. Math. Electr. Electron. Eng., 42 (2023), 1641–1653. https://doi.org/10.1108/COMPEL-11-2022-0380 doi: 10.1108/COMPEL-11-2022-0380
    [9] K. J. Wang, Variational approach for the fractional exothermic reactions model with constant heat source in porous medium, Therm. Sci., 27 (2023), 2879–2885. https://doi.org/10.2298/TSCI22092221W doi: 10.2298/TSCI22092221W
    [10] J. Singh, A. Gupta, D. Kumar, Computational analysis of the fractional Riccati differential equation with Prabhakar type memory, Mathematics, 11 (2023), 1–17. https://doi.org/10.3390/math11030644 doi: 10.3390/math11030644
    [11] J. Singh, A. M. Alshehri, Sushila, D. Kumar, Computational analysis of fractional Lineard's equation with exponential memory, J. Comput. Nonlinear Dynam., 18 (2023), 041004. https://doi.org/10.1115/1.4056858 doi: 10.1115/1.4056858
    [12] J. Singh, R. Babu, V. P. Dubey, D. Kumar, A homotopy based computational scheme for local fractional Helmholtz and Laplace equations, J. Comput. Anal. Appl., 31 (2023), 444–457.
    [13] S. Abbas, M. Benchohra, J. E. Lazreg, J. J. Nieto, Y. Zhou, Fractional Differential Equations and Inclusions: Classical and Advanced Topics, World Scientific, 2023.
    [14] M. Jornet, J. J. Nieto, On a nonlinear stochastic fractional differential equation of fluid dynamics, Physica D: Nonlinear Phenom, 470 (2024), 134400. https://doi.org/10.1016/j.physd.2024.134400 doi: 10.1016/j.physd.2024.134400
    [15] I. Area, J. J. Nieto, Fractional-order logistic differential equation with Mittag–Leffler-type Kernel, Fractal Fract., 5 (2021), 273. https://doi.org/10.3390/fractalfract5040273 doi: 10.3390/fractalfract5040273
    [16] J. Singh, D. Kumar, D. Baleanu, S. Rathore, An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335 (2018), 12–24. https://doi.org/10.1016/j.amc.2018.04.025 doi: 10.1016/j.amc.2018.04.025
    [17] D. Kumar, H. Nama, D. Baleanu, Dynamical and computational analysis of fractional order mathematical model for oscillatory chemical reaction in closed vessels, Chaos Solitons Fract., 180 (2024), 114560. https://doi.org/10.1016/j.chaos.2024.114560 doi: 10.1016/j.chaos.2024.114560
    [18] J. Singh, J. Kumar, D. Kumar, D. Baleanu, A reliable numerical algorithm based on an operational matrix method for treatment of a fractional order computer virus model, AIMS Math., 9 (2024), 3195–3210. https://doi.org/10.3934/math.2024155 doi: 10.3934/math.2024155
    [19] M. Partohaghighi, A. Yusuf, A. S. Alshomrani, T. A. Sulaiman, D. Baleanu, Fractional heper-chaotic system with complex dynamics and high sensitivity: Applications in engineering, Int. J. Mod. Phys. B, 38 (2024). https://doi.org/10.1142/S0217979224500115 doi: 10.1142/S0217979224500115
    [20] R. Arora, A. Kumar, Solution of the coupled Drinfeld's-Sokolov-Wilson (DSW) system by homotopy analysis method, Adv. Sci. Eng. Med., 5 (2013), 1105–1111. https://doi.org/10.1166/asem.2013.1399 doi: 10.1166/asem.2013.1399
    [21] P. K. Singh, K. Vishal, T. Son, Solution of fractional Drinfeld-Sokolov-Wilson equation using homotopy perturbation transform method, Appl. Appl. Math., 10 (2015), 460–472. Available from: https://digitalcommons.pvamu.edu/aam/vol10/iss1/27.
    [22] L. Jin, J. F. Lu, Variational iteration method for the classical Drinfeld-Sokolov-Wilson equation, Therm. Sci., 18 (2014), 1543–1546. https://doi.org/10.2298/TSCI1405543J doi: 10.2298/TSCI1405543J
    [23] W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, G. Yel, A powerful approach for fractional Drinfeld-Sokolov-Wilson equation with Mittag-Leffler Law, Alex. Eng. J., 58 (2019), 1301–1311. https://doi.org/10.1016/j.aej.2019.11.002 doi: 10.1016/j.aej.2019.11.002
    [24] S. Noor, A. S. Alshehry, H. M. Dutt, R. Nazir, A. Khan, R. Shah, Investigating the dynamics of time-fractional Drinfeld-Sokolov-Wilson system through analytical solutions, Symmetry, 15 (2023), 703. https://doi.org/10.3390/sym15030703 doi: 10.3390/sym15030703
    [25] N. H. M. Shahen, Md. Al Amin, Foyjonnesa, M. M. Rahman, Soliton structures of fractional coupled Drinfeld-Sokolov-Wilson equation arising in water wave mechanics, Sci. Rep., 14 (2024), 18894. https://doi.org/10.1038/s41598-024-64348-2 doi: 10.1038/s41598-024-64348-2
    [26] M. U. Shahzad, H. Ur Rehman, A. U. Awan, Z. Zafar, A. M. Hassan, I. Iqbal, Analysis of the exact solutions of nonlinear coupled Drinfeld-Sokolov-Wilson equation through ϕ6-model expansion method, Results Phys., 52 (2023), 106771. https://doi.org/10.1016/j.rinp.2023.106771 doi: 10.1016/j.rinp.2023.106771
    [27] M. Nadeem, Y. Alsayaad, A new study for the investigation of nonlinear fractional Drinfeld-Sokolov-Wilson equation, Math. Probl. Eng., 2023 (2023). https://doi.org/10.1155/2023/9274115 doi: 10.1155/2023/9274115
    [28] B. N. Kharrat, G. A. Toma, A new integral transform: Kharrat-Toma transform and its properties, World Appl. Sci. J., 38 (2020), 436–443. https://doi.org/10.5829/idosi.wasj.2020 doi: 10.5829/idosi.wasj.2020
    [29] M. A. El Tawil, S. N. Huseen, The q-homotopy analysis method (q-HAM), Int. J. Appl. Math. Mech., 8 (2012), 51–75.
    [30] M. Caputo, Linear models of dissipation whose Q is almost frequency independent Ⅱ, Geophys. J. R. Astr. Soc., 13 (1967), 529–539.
    [31] A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio, et al., A practical guide to Prabhakar fractional calculus, Fract. Calc. Appl. Anal., 23 (2020), 9–54. https://doi.org/10.1515/fca-2020-0002 doi: 10.1515/fca-2020-0002
    [32] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
    [33] R. Hilfer, Fractional calculus and regular variation in thermodynamics, Appl. Fractional Calculus Phys., (2000), 429–463. https://doi.org/10.1142/9789812817747_0009 doi: 10.1142/9789812817747_0009
    [34] F. Polito, Z. Tomovski, Some properties of Prabhakar-type fractional calculus operators, Fractional Differ. Calculus, 6 (2016), 73–94. https://doi.org/10.7153/fdc-06-05 doi: 10.7153/fdc-06-05
    [35] R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput., 242 (2014), 576–589. https://doi.org/10.1016/j.amc.2014.05.129 doi: 10.1016/j.amc.2014.05.129
    [36] V. P. Dubey, J. Singh, S. Dubey, D. Kumar, Analysis of Cauchy problems and diffusion equations associated with the Hilfer-Prabhakar fractional derivative via Kharrat-Toma transform, Fractal Fract., 7 (2023), 1–16. https://doi.org/10.3390/fractalfract7050413 doi: 10.3390/fractalfract7050413
    [37] J. Singh, A. Gupta, D. Baleanu, A novel efficient analytical technique and its application to fractional Cauchy reaction-diffusion equations, Mod. Phys. Lett. B, 39 (2024). https://doi.org/10.1142/S0217984925500381 doi: 10.1142/S0217984925500381
    [38] Z. Odibat, A. S.Bataineh, An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: Construction of homotopy polynomials, Math. Methods Appl. Sci., 38 (2015), 991–1000. https://doi.org/10.1002/mma.3136 doi: 10.1002/mma.3136
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(264) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog