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Abstract: In this research paper, we utilize an analytical technique to investigate the behavior of the
Drinfeld-Sokolov-Wilson equation of arbitrary order. The implemented technique is an adequate
composition of the Kharrat-Toma transform and the g-homotopy analysis approach. Here, a
regularized form of the Hilfer-Prabhakar derivative of arbitrary order is used to formulate the
problem. The Drinfeld-Sokolov-Wilson equation of arbitrary order is utilized to model the dispersive
water waves and plays a very significant role in fluid dynamics. The results of the discussed model
are presented graphically to show the efficiency and reliability of the obtained results.
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1. Introduction

Mathematical models provide a practical way to describe and analyze various real-world
problems by offering simplified representations of physical phenomena through mathematical
expressions. Among these, some models are formulated using partial differential equations. In
particular, partial differential equations of arbitrary order are highly effective in capturing the
physical characteristics of many everyday challenges. A quantitative and qualitative study of the



nonlinear (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation was done by Wang et al. [1].
Here, by utilizing the semi-inverse method the authors constructed the variational principle.

Fractional calculus, a field with origins dating back approximately four centuries, has seen a
surge in interest and applications among mathematicians and researchers over the past few
decades [2—5]. Various fractional-order integrals and derivatives, such as the Katugampola, Caputo,
Atangana-Baleanu, Caputo-Fabrizio, Riemann-Liouville, and Hilfer-Prabhakar, have been developed
by eminent mathematicians to extend traditional differential equations to fractional orders. Liang and
Wang [6] employed a local fractional derivative on Vakhnenko-Parker equation for the fractal
relaxation medium and obtained exact fractal wave solutions. Wang [7] derived a new fractal active
low-pass filter within the local fractional derivative on the cantor set. A new J-order non
differentiable R-C zero state response circuit was derived by Wang and Liu [8] by utilizing the local
fractional derivative for the first time on the cantor set. A new exothermic reaction model of
fractional order with constant heat source in porous media was proposed by Wang [9] using the He’s
fractional derivative and solved utilizing the Ritz technique. These arbitrary order models usually
yield more accurate results than their classical counterparts because they incorporate the system's
memory effects. This unique characteristic of fractional calculus has led to its application in diverse
fields, including the study of viscoelastic materials, earthquake modeling, chemical process analysis,
traffic flow dynamics, mathematical biology, engineering, and ecology [10—15].

Here, we are analyzing the behavior of the Drinfeld-Sokolov-Wilson (DSW) equation, which is
used in dispersive water waves and fluid mechanics. The generic form of the DSW equation [16] is
provided as

Uy (E’ 19) + alw(fl 19)0){ (E, 19) = 0:

0)19(5,19) + azwffg’(f'ﬁ) + agu(f,l?)a)f(f, 19) + a4uE(EJ 19)(1)(5, 19) = 0. (1)

In Eq (1), a4, a,, as, and a,are constants, and u(é,9) and w(¢,9) represent the amplitude of the
wave modes with respect to (w.r.t.) time 9 and space . In this paper, we have taken the particular
values of these constants as a; = 3,a, = 2,a; = 2,and a, = 1.

In this work, we employ a regularized form of the Hilfer-Prabhakar (HP) derivative of non-integer
order to model the problem. The HP derivative serves as a generalized framework that encompasses
the Prabhakar, Hilfer, Caputo, Caputo-Fabrizio, and Riemann-Liouville derivatives for specific
values of its parameters. Consequently, the regularized HP derivative is capable of retaining more
system memory compared to other fractional derivatives, allowing it to more effectively capture and
describe the physical behavior of the system. Thus, the time fractional DSW equation associated with
the regularized form of the HP derivative of non-integer order is given as

DI g (6,9) + 3w (E, Dwe (§,9) = 0,

CDﬁwaﬁ(f,ﬁ) + 2w (€,9) + 2u(§, D we (€,9) + us(§,9)w(&,9) = 0. (2)

Here, CDf g” o+ (&, 9) and CDf c# o+ Wy (&, 9) stand for the regularized form of HP derivative of

order u of u and w, respectively, w.r.t. time 9. Atu = 1, the fractional DSW equation becomes a
classical DSW equation.
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In general, exact solutions for a nonlinear differential equation of integer order are not available.
The same occurs for a nonlinear fractional differential equation. Therefore, scientists have developed
numerous analytical as well as numerical techniques [17-19] to obtain approximate results to those
equations. Researchers have also proposed and utilized several techniques for solving the DSW
equation. Singh et al. [16] employed the homotopy analysis Sumudu transform method to attain the
effective results of fractional DSW equation. Here, the authors utilized the Caputo derivative of
arbitrary order to model the problem. The homotopy analysis technique was employed by Arora and
Kumar [20] to find out the approximate series solution of the DSW equation, and the author
compared the attained solutions with the exact solution. Homotopy perturbation transform method
was implemented by Singh et al. [21] to acquire the result of the arbitrary order DSW equation. Jin
and Lu [22] implemented the variational iteration approach to acquire the solution of the DSW
equation. Gao et al. [23] employed g-homotopy analysis transform approach to find out the solution
of coupled DSW equation. The homotopy perturbation transform technique and Sumudu transform
decomposition method was implemented by Noor et al. [24] to acquire the result of arbitrary order
coupled DSW equation. Shahen et al. [25] attained a distinct set of analytic results of the fractional
DSW equation utilizing the exp(—qb(f)) -expansion technique and expressed that in terms of
trigonometric, hyperbolic, and rational functions. Shahzad et al. [26] employed the ¢°-model
expansion technique to obtain the solitary wave solution of the DSW equation. Nadeem and
Alsayaad [27] suggested a new iterative procedure to attain the approximate analytical solution of the
fractional DSW equation.

Here, we employ an analytical approach, namely g-homotopy analysis Kharrat-Toma transform
technique (g-HAKTM), which is an adequate amalgamation of the Kharrat-Toma (KT) transform [28]
and g-homotopy analysis approach (g-HAM) [29]. The implemented technique is very reliable and
efficient for solving and analyzing the behavior of partial differential equations and requires less
computational work. The paper is organized as: Some basic definitions are discussed in Section 2;
Section 3 contains an elementary description of the implemented analytical method; In Section 4; the
q-HAKTM solution of DSW equation of arbitrary order is provided; Graphical behavior of obtained
solution and its discussion are given in Section 5; and finally, Section 6 provides the concluding
observations of this research work.

2. Some basic definitions

Definition 1: [2] Suppose that A € L[aq, &4], where &4 > a4, is a locally integrable and
real-valued function. The Riemann-Liouville derivative of A () of non-integer order p (k — 1 <
U <k, k € N) is defined as

1 dk

© = *
Da{h(ﬁ) T T(k-p) dok

ffl(a — X)R1RA () dx. 3)

Definition 2: [2,33] Suppose that 4 € L[a,, &1], where &, > a,, is a locally integrable and
real-valued function. The Caputo fractional derivative of £ (19) of non-integer order u (k —1 < pu <
k,k € N) is given as

1
I(k—p)

DAAW) = [* (0 — L A, @)

Definition 3: [31,32] T. R. Prabhakar introduced the following function, also known as the three
parameter Mittag-Leffler function, given as
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Du(®) = T2 (5)

pmtp) m’

for 8, p,u € Cand Re(p), Re(u) > 0, here (B),, represents for Pochhammer symbol and is provided

r'(B+m)
as (Bm = 1oy

Definition 4: [33] Suppose that u € (0,1], A € [0,1], 4 € L'[a,, #,], 61 > a4, and (h *

and C stands for the set of complex numbers.

ISJ;_“ )(1_’1)) (9) € ACY[a, #,], the Hilfer derivative of non-integer order u of the locally integrable
1
function £ () is defined as

(o174) @ = (£ 15n) 0

In the above definition, A is a parameter, I stands for the integral operator, and AC'[a, #1]
represents the set of absolutely continuous functions in the interval [a,, &1].

At A = 0 the Hilfer derivative given in Eq (6) reduces to the Riemann-Liouville fractional
derivative, and at 1 = 1, it reduces to Caputo fractional derivative.

Definition 5: [32,34] Consider that 4 € L1(0,4,), and 0 < 9 < #; < oo, then the Prabhakar
integral is provided as

B o0 09) = J (9 = P LED, [5(9 = )P 1RGO = (£ ef, ) (), ™

where, p, B, 1, ¢ € C with Re(p), Re(u) > 0 and * denotes the convolution of two functions. Here,
ehuc(®) = 94y, (5 9P).
Definition 6: [31,34] Suppose that a locally integrable function 4 € L*(0, £,),0 < 4, < o, and
A ep_‘f_ u c(-) € Wk1[0, 4], k = [u], accordingly the Prabhakar fractional derivative is given as

B -B
D o A = S B R(D), (®)
where, p, B, 1, ¢ € Cwith Re(p), Re(u) > 0, and W*1[0, #,] is a sobolev space.

Definition 7: [35] Suppose that u € (0,1], A € [0,1], A € L'[0,44], 0 <V < 4, < oo, and

also consider(h * e; fl(_lgf()l_ u),c) (9) € AC'[0, 4], then the HP derivative of fractional order u of

function A () can be defined as

BuA — (w82 d (r=BA-2)
Do, o+ () = (]Ep,/l(l—u).r,O‘“ a9 ([Ep.(l—il)(l—u).c.O’rh)) @), ©)

where 8, ¢ € R, p>0andIEpOC
becomes the Hilfer fractional derivative for § = 0.

Definition 8: [35] Consider that 0 < 9 < #; < o, h € AC'[0, &,], also u € (0,1], A € [0,1],
B, ¢ € R, and p > 0. The regularized form of the HP derivative of fractional order u of function

£.(9) is denoted by CDf cﬂ o+71(9) and can be defined as

o+t = A. Thus, we can say that the HP derivative of order u

cnbBu _ -BA -B(1-2)
D OJL(ﬁ) ( pA(1- u)cO*IEp(l -)(1-w), 70t 49 )(ﬁ) (10)

Also, we know the property of the Prabhakar integral as
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B [ _ B+o
(B o0 B uorh) @) = (EF*2, L 8) @), an

Using Eq (11), the aforementioned Eq (10) transformed as

, - d
DYy A = (B o0 35 1) O (12)

Definition 9: [28] Suppose that a real-valued function £ () subject to (s.t.) 2 (9) > 0 forJ >
0 and A(9) = 0 for 9 < 0. If A(I) is a piecewise continuous function and of exponential order then,
the KT transform of £ () is given as

BIA()] = Fw) =w? [~ e‘%h(ﬁ) do;w > 0, (13)

where, w stands for the transform variable, and B represents the KT transform.
Definition 10: [28] The inverse KT transform is defined as

B HFW)](®) = A(@®) = B~ |w? [ h(ﬁ)e‘%dﬁ ,9 > 0. (14)

In above Eq (14), F(w) denotes the KT transform of 4 (9).

Definition 11: [36] The KT transform of the regularized form of the HP fractional derivative
CDB'#

e o+71(9) given in Eq (12) is provided as

B (D}t A@)) (w) = [1 - cw? P w 2BLAM)I(W) — s*24A0D].  (15)

3. Elementary description of analytical technique

To demonstrate the fundamental working plan of the implemented analytical approach [37], let
us suppose a non-homogeneous nonlinear fractional differential equation of order u:

Cpﬁ';‘omﬁ(g,a) + RAE,9) + NAE,9) = p(§,9), k—1<u<k keN, (16)

where, CDf C“ o+ represents the regularized form of the HP derivative of non-integer order p, #(&,9)

is a function of ¢ and ¥, R is a bounded linear operator of ¢ and 9, NV'stands for the general nonlinear
operator that is Lipschitz continuous, and ¢ (¢, 9) represents the source term.
On employing the KT transform on Eq (16), we attain the following equation:

B|CDE™  ho(§,0)| + BIRA(E, 9) + WA, 0)] = BI(£,9)]. (17)

Using the KT transform of the regularized form of the HP derivative of arbitrary order, we
obtain the consequent equation:

[1 = qw?* P [w=#BLA(E, 9)](W) — w3 21A(E,01)] + B[RA(,9) + VA&, 9)] = B[p(E, 9)].
(18)

After simplification, Eq (18) becomes
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BIA(, )W) = wiA(E,0%) + w1 — cw?] P [B[RA(, 9) + N A, 9)] - B[ (£, 9)]] = 0.
(19)

According to Eq (19), the nonlinear operator can be written as
NWE, 95 )] = BIY(E,9; )] — wW(E, 0; q) + w2 [1 — cw?’ ] P[B[RW(E,9; q) +

NY(E,9; )] — Blp(E, D], (20)

where W(&,9; q) is a function of &, 9, and q, and also q is an embedding parameter s. t. g € [0, %],

where n > 1 and the homotopy can be given as
(1 =nq)B[Y (&, 9; q) — #0(§,9)] = qhH(E, OIN[¥(E, ¥; )], 2y,

where B stands for KT transform, W(¢§,9;q) is an unknown function, £,(&,9) is an initial
approximation of A(§,9), H(,9) # 0 denotes an auxiliary function, and & # 0 is an auxiliary
parameter. Furthermore, we can observe that, on putting the values of the embedding parameter g = 0

along with g = %, it gives

W(E0;0) = Ao(§9),  W(§8:7) = A0, (22)

respectively. Thus, from Eq (22) we can notice that when the value of g varies from 0 to %, the

outcome of W(&,9; q) varies from the initial guess #4,(&,9) to the solution £4(&,9). The Taylor’s
series expansion for the W(&,9; q) can be given as

lp(f; 7-9; CI) = ’h’O (f' 19) + Z?;Jl=1 ’ﬁm(fr 19)qm9 (23)
where,
Am(E9) = = {9 E 0 Y (24)
! q=0

If the asymptotic parameter n, convergence control parameter h, arbitrary function H(¢,9), and
the initial approximation £, (&, 9) are chosen adequately, s.t. Eq (23) converges at q = % Then we
acquire the subsequent equation:

m

A(E,0) = ho(£,9) + Tiney A (£,9) (3) (25)

The solution obtained in Eq (25) represents one of the solutions of the discussed nonlinear

differential equation of non-integer order u. The governing equation is obtained by using Eqs (25)
and (21) as

P = {A1(E,0), 25(8,9), A3 (§,9), .., A (§,9)). (26)

Now, differentiating Eq (21) m times w.r.t. g and then setting g = 0 subsequently, dividing by
m!, yields the consequent equation:
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B[ Am(§,9) = xmAm-1(E9)] = hH(E )R (An-1). 27)

Next, by employing the inverse KT transform on Eq (27), we obtain the subsequent equation:

Ao (§,0) = KmPom—1(,9) + RBTUHE )R (Am—s)],  (28)
where, y,,, is defined as
00 m<1
Xm = {n m>1 (29)

and the value of R,,, (fim_l) can be written as

Ron (A1) = BlAm1 (§,0)] = (1= 22) [wSA(E,0) + w1 — cw??] P Bl (£, 9)]| +
w2H[1 — ¢w?P] PB[RA,_1 + A1) (30)
In the above Eq (30), 4,,, narrates the homotopy polynomial [38] and is provided as

_ 1 [o™
™ " T(m) lagm

NYE )] . 31
q=0
and

W(,9;q) =W + q¥; + q*¥, + - (32)

Utilizing Eq (30) in Eq (28), we obtain the approximate analytical solution £(&,9) of the
subsequent form:

A(E,9) = So An(E0) (2)". (33)

4. Solution of the fractional DSW equation

The fractional DSW equation associated with the regularized form of the HP derivative of
fractional order is given as

Dy g (§6,0) + 3w (E, Dwe (£,9) = 0,

CDﬁ’gl_Low)ﬁ(f;ﬁ) + 2w (§,9) + 2u(, Dwe (§,9) + ug(§,Nw(,9) =0, (34)

with initial conditions

uO(E’ﬁ) = U(E, O) = 3S€Ch2(f),

wo(§,9) = w(§,0) = 2sech($). (35)

The exact solution [13] of the integer order DSW equation obtained by substituting u = 1 in
Eq (34) is given as
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u(§,9) = %sech2 (\E (= 619)),

w(&,9) = tcsech (\/é (& - 019)). (36)

Now, implementing the KT transform on Eq (34) both sides and utilizing the initial guess given
by Eq (35), we acquire

Blu(§,9)] — wou(§,0) + w[1 — cw?P]PB[3w (¢, 9w (§,9)] = 0,
Blw(&,9)] — wPw(§,0) + w?H[1 — ngP]‘[”B[Zw;g(E,ﬁ) + 2u(é, Dws(€,9) +
ug (§,9)w(§,9)] = 0. 37)

Next, the nonlinear operator for the discussed problem is provided as

‘Ni [lp(l) (fi v; CI); lIJ(2) (fl U; Q)]
= B[‘P(l) (E' U; Q)] - quj(l) (E! 0; CI)

+ w21 — cw?P]7F [3[3‘1’(2)(5,19: ¥ 2): (€, 9; CI)]],

Ny [Py (€95 9), Wy (€,9; @)] = B[P (£, 95 )] — wo¥ (€, 0; q) + w?H[1 —

cw2P]7F [B[Zw(z)fgf(f,ﬁ; q) + 2%y (&, 9; ) W2)e (€, 95 q) + W1y (€,9; QW2 (&, 9; Q)]],
(38)
and the value of Ry, (Um—1, Om—1), Rom Um—1, @m—1) can be written as

R o1, Bn-1) = Blitm-1 (€ 9] = (1= 27) [wu(E, 0)] + w (1 = w??| P B[34y_,],

) [wSw (€, 0)] + w2H[1 —

n

Rom (-1, Bm-1) = Blam-1 (€ 9] — (
w21 PB[2wan-1y¢ee(§,9) + 2Bi—q + Cps - (39)

Now, substituting the values of Ry, (Uyp—1, Dm—1), Rom (Um—1, @m—1) in the iterative formula
given in Eq (28), we get

U (§,0) = Ctm + Wt 1 (6 9) = (1 = 22) B [wu(E, 0)]

+hB1 [w2#[1 - ngP]—ﬁB[3Am_1]],
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(&) = Ctm + Wm 1 (€ 9) = 1 (1= 22) BH{wSw(§, 0)] + hB~* |[w2t[1 -
w21 P B[20m_1ysee (€, 9) + 2By + cm_l]]. (40)

Now, by substituting m = 1 in Eq (40) and using the initial approximation given in Eq (35), we get
uy (¢,9) = —12h tanh(¢) sech?(€)el ., (9),

w;(¢,9) = —4hsech(§) tanh(&) e? ., (9. (41)

Thus, proceeding in the same way, one can find many components u,,(§,9) and w,,(&,9) for
m = 2, and the approximate solution using g-HAKTM is obtained.
Consequently, the g-HAKTM solution is given as

u(,9) = lim Sy un(€9) (2)"

w(9) = lim T4 w0 (2)". (“2)

5. Numerical results and discussion

Graphical representation serves as a way to depict the characteristics of the approximate
solution. Thus, in this section, we analyze the behavior of the outcomes of the DSW equation of
arbitrary order utilizing an analytical method, namely g-HAKTM. A numerical simulation is
conducted for numerous values of fractional order u, space variable , and time variable ¥.The
outcomes of this numerical simulation are described in the form of Figures 1-16. Figures 1-4
corresponds to u(&,9), in which Figures 1-3 depict the surface of the ¢-HAKTM solution u(&,9)at
u=1, u=0.90,and pu = 0.80, respectively. Figure 4 plots the exact solution of u(§,9). Figures 5-8
are plotted for w(¢,1), in which Figures 5-7 depict the surface of the g-HAKTM solution w(§,9) at
u=1, u=0.90, and p = 0.80, respectively. Figure 8 plots the exact solution of w(&,9). From
Figures 1-8, we see the obtained solutions are very much similar to exact solution. Figures 9 and 10
exhibit the influence of arbitrary order u w.r.t. £ and 9, respectively for u(§, ). Similarly, Figures 11
and 12 exhibit the influence of arbitrary order u w.r.t. £ and 9, respectively for w(&,9). Figures 13
and 14 are drawn between the exact and approximate results of u(§,9) and w(§,9), respectively to
show the accuracy of the obtained solution. Next, Figures 15 and 16 are n-curve u(¢,9) and w(&,19),
which show the asymptotic behavior of the obtained solution via g-HAKTM. From Figures 15 and 16 we
can observe that initially the value of u and w increase rapidly and then decrease but after some time,

m
it becomes almost constant, which is due to the appearance of the term (%) in the solution.
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Figure 1. Nature of u(¢,9) for the ¢-HAKTM outcome at u = 1.

Figure 2. Nature of u(¢,9) for the ¢-HAKTM outcome at 4 = 0.90.
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Figure 3. Nature of u(¢,9) for the ¢-HAKTM outcome at 4 = 0.80.

Figure 4. The surface of the exact solution u(¢,9).
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Figure 5. The surface of w(¢,9) for the g-HAKTM solution at u = 1.

Figure 6. The surface of w(¢,9) for the g-HAKTM solution at 4 = 0.90.
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Figure 8. The surface of the exact solution w(&,9).
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Figure 10. Characteristic of u(&,9) w. r. t. 9 for distinct values of u.
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Figure 11. Characteristic of w(&,9) w. r. t. & for distinct values of p.

135 v
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Figure 12. Characteristic of w (&, 9) w. r. t. 9 for distinct values of u.
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Figure 13. Comparative graph for the approximate and exact solutions of u(§,9).
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Figure 14. Comparative graph for the exact and approximate outcomes of w(¢,9).
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Figure 16. n-curve of w(¢,9) for distinct values of y.

Networks and Heterogeneous Media Volume 21, Issue 1, 1-21.



18

6. Conclusions

To describe the nature of dispersive water waves, the DSW equation is widely used. Here, we
implemented an analytical method, g-HAKTM, to obtain the result of fractional DSW associated
with the regularized form of the HP derivative of arbitrary order. Graphical behavior of the attained
solutions is given to show the authenticity and efficiency of the results. Hence, we can say that the
implemented method is very reliable, powerful, and needs less computational work to analyze the
nature of arbitrary order differential equations.
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