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Abstract: In this research paper, we utilize an analytical technique to investigate the behavior of the 
Drinfeld-Sokolov-Wilson equation of arbitrary order. The implemented technique is an adequate 
composition of the Kharrat-Toma transform and the q-homotopy analysis approach. Here, a 
regularized form of the Hilfer-Prabhakar derivative of arbitrary order is used to formulate the 
problem. The Drinfeld-Sokolov-Wilson equation of arbitrary order is utilized to model the dispersive 
water waves and plays a very significant role in fluid dynamics. The results of the discussed model 
are presented graphically to show the efficiency and reliability of the obtained results. 
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1. Introduction 

Mathematical models provide a practical way to describe and analyze various real-world 
problems by offering simplified representations of physical phenomena through mathematical 
expressions. Among these, some models are formulated using partial differential equations. In 
particular, partial differential equations of arbitrary order are highly effective in capturing the 
physical characteristics of many everyday challenges. A quantitative and qualitative study of the 
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nonlinear (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation was done by Wang et al. [1]. 
Here, by utilizing the semi-inverse method the authors constructed the variational principle. 

Fractional calculus, a field with origins dating back approximately four centuries, has seen a 
surge in interest and applications among mathematicians and researchers over the past few 
decades [2–5]. Various fractional-order integrals and derivatives, such as the Katugampola, Caputo, 
Atangana-Baleanu, Caputo-Fabrizio, Riemann-Liouville, and Hilfer-Prabhakar, have been developed 
by eminent mathematicians to extend traditional differential equations to fractional orders. Liang and 
Wang [6] employed a local fractional derivative on Vakhnenko-Parker equation for the fractal 
relaxation medium and obtained exact fractal wave solutions. Wang [7] derived a new fractal active 
low-pass filter within the local fractional derivative on the cantor set. A new ℑ -order non 
differentiable R-C zero state response circuit was derived by Wang and Liu [8] by utilizing the local 
fractional derivative for the first time on the cantor set. A new exothermic reaction model of 
fractional order with constant heat source in porous media was proposed by Wang [9] using the He’s 
fractional derivative and solved utilizing the Ritz technique. These arbitrary order models usually 
yield more accurate results than their classical counterparts because they incorporate the system's 
memory effects. This unique characteristic of fractional calculus has led to its application in diverse 
fields, including the study of viscoelastic materials, earthquake modeling, chemical process analysis, 
traffic flow dynamics, mathematical biology, engineering, and ecology [10–15]. 

Here, we are analyzing the behavior of the Drinfeld-Sokolov-Wilson (DSW) equation, which is 
used in dispersive water waves and fluid mechanics. The generic form of the DSW equation [16] is 
provided as 𝑢ణ(𝜉, 𝜗) + 𝑎ଵ𝜔(𝜉, 𝜗)𝜔క(𝜉, 𝜗) = 0, 

𝜔ణ(𝜉, 𝜗) + 𝑎ଶ𝜔కకక(𝜉, 𝜗) + 𝑎ଷ𝑢(𝜉, 𝜗)𝜔క(𝜉, 𝜗) + 𝑎ସ𝑢క(𝜉, 𝜗)𝜔(𝜉, 𝜗) = 0.    (1) 

In Eq (1), 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, and 𝑎ସare constants, and 𝑢(𝜉, 𝜗) and 𝜔(𝜉, 𝜗) represent the amplitude of the 
wave modes with respect to (w.r.t.) time 𝜗 and space 𝜉. In this paper, we have taken the particular 
values of these constants as 𝑎ଵ = 3, 𝑎ଶ = 2, 𝑎ଷ = 2, and 𝑎ସ = 1. 

In this work, we employ a regularized form of the Hilfer-Prabhakar (HP) derivative of non-integer 
order to model the problem. The HP derivative serves as a generalized framework that encompasses 
the Prabhakar, Hilfer, Caputo, Caputo-Fabrizio, and Riemann-Liouville derivatives for specific 
values of its parameters. Consequently, the regularized HP derivative is capable of retaining more 
system memory compared to other fractional derivatives, allowing it to more effectively capture and 
describe the physical behavior of the system. Thus, the time fractional DSW equation associated with 
the regularized form of the HP derivative of non-integer order is given as 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝑢ణ(𝜉, 𝜗) + 3𝜔(𝜉, 𝜗)𝜔క(𝜉, 𝜗) = 0, 

𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝜔ణ(𝜉, 𝜗) + 2𝜔కకక(𝜉, 𝜗) + 2𝑢(𝜉, 𝜗)𝜔క(𝜉, 𝜗) + 𝑢క(𝜉, 𝜗)𝜔(𝜉, 𝜗) = 0.   (2) 

Here, 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝑢ణ(𝜉, 𝜗) and 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝜔ణ(𝜉, 𝜗) stand for the regularized form of HP derivative of 
order 𝜇 of 𝑢 and 𝜔, respectively, w.r.t. time  𝜗. At 𝜇 = 1, the fractional DSW equation becomes a 
classical DSW equation.  
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In general, exact solutions for a nonlinear differential equation of integer order are not available. 
The same occurs for a nonlinear fractional differential equation. Therefore, scientists have developed 
numerous analytical as well as numerical techniques [17–19] to obtain approximate results to those 
equations. Researchers have also proposed and utilized several techniques for solving the DSW 
equation. Singh et al. [16] employed the homotopy analysis Sumudu transform method to attain the 
effective results of fractional DSW equation. Here, the authors utilized the Caputo derivative of 
arbitrary order to model the problem. The homotopy analysis technique was employed by Arora and 
Kumar [20] to find out the approximate series solution of the DSW equation, and the author 
compared the attained solutions with the exact solution. Homotopy perturbation transform method 
was implemented by Singh et al. [21] to acquire the result of the arbitrary order DSW equation. Jin 
and Lu [22] implemented the variational iteration approach to acquire the solution of the DSW 
equation. Gao et al. [23] employed q-homotopy analysis transform approach to find out the solution 
of coupled DSW equation. The homotopy perturbation transform technique and Sumudu transform 
decomposition method was implemented by Noor et al. [24] to acquire the result of arbitrary order 
coupled DSW equation. Shahen et al. [25] attained a distinct set of analytic results of the fractional 
DSW equation utilizing the 𝑒𝑥𝑝൫−𝜙(𝜉)൯ -expansion technique and expressed that in terms of 
trigonometric, hyperbolic, and rational functions. Shahzad et al. [26] employed the 𝜙଺ -model 
expansion technique to obtain the solitary wave solution of the DSW equation. Nadeem and 
Alsayaad [27] suggested a new iterative procedure to attain the approximate analytical solution of the 
fractional DSW equation. 

Here, we employ an analytical approach, namely q-homotopy analysis Kharrat-Toma transform 
technique (q-HAKTM), which is an adequate amalgamation of the Kharrat-Toma (KT) transform [28] 
and q-homotopy analysis approach (q-HAM) [29]. The implemented technique is very reliable and 
efficient for solving and analyzing the behavior of partial differential equations and requires less 
computational work. The paper is organized as: Some basic definitions are discussed in Section 2; 
Section 3 contains an elementary description of the implemented analytical method; In Section 4; the 
q-HAKTM solution of DSW equation of arbitrary order is provided; Graphical behavior of obtained 
solution and its discussion are given in Section 5; and finally, Section 6 provides the concluding 
observations of this research work.  

2. Some basic definitions 

Definition 1: [2] Suppose that 𝒽 ∈ 𝐿[𝒶ଵ, 𝒷ଵ], where 𝒷ଵ > 𝒶ଵ, is a locally integrable and 
real-valued function. The Riemann-Liouville derivative of 𝒽(𝜗) of non-integer order 𝜇 (𝑘 − 1 <𝜇 ≤ 𝑘, 𝑘 ∈ ℕ) is defined as 𝐷𝒶భశఓ 𝒽(𝜗) = ଵ୻(௞ିఓ) ௗೖௗణೖ ׬ (𝜗 − 𝑥)௞ିଵିఓ𝒽(𝑥)𝑑𝑥ణ𝒶భ .        (3) 

Definition 2: [2,33] Suppose that 𝒽 ∈ 𝐿[𝒶ଵ, 𝒷ଵ], where 𝒷ଵ > 𝒶ଵ, is a locally integrable and 
real-valued function. The Caputo fractional derivative of 𝒽(𝜗) of non-integer order 𝜇 (𝑘 − 1 < 𝜇 ≤𝑘, 𝑘 ∈ ℕ) is given as 𝐷 ஼ 𝒶భశఓ 𝒽(𝜗) = ଵ୻(௞ିఓ) ׬ (𝜗 − 𝑥)௞ିଵିఓ ௗೖௗ௫ೖ 𝒽(𝑥)𝑑𝑥ణ𝒶భ .    (4) 

Definition 3: [31,32] T. R. Prabhakar introduced the following function, also known as the three 
parameter Mittag-Leffler function, given as 
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𝐸ఘ,ఓఉ (𝜗) = ∑ (ఉ)೘୻(ఘ௠ାఓ) ణ೘௠!ஶ௠ୀ଴ ,                            (5)  

for 𝛽, 𝜌, 𝜇 ∈ ℂ and 𝑅𝑒(𝜌), 𝑅𝑒(𝜇) > 0, here (𝛽)௠ represents for Pochhammer symbol and is provided 
as (𝛽)௠ = ୻(ఉା௠)୻(௠)  and ℂ stands for the set of complex numbers. 

Definition 4: [33] Suppose that 𝜇 ∈ (0,1], 𝜆 ∈ [0,1], 𝒽 ∈ 𝐿ଵ[𝒶ଵ, 𝒷ଵ], 𝒷ଵ > 𝒶ଵ,  and ቀ𝒽 ∗ 𝐼𝒶భశ(ଵିఓ)(ଵିఒ)ቁ (𝜗) ∈ 𝐴𝐶ଵ[𝒶ଵ, 𝒷ଵ], the Hilfer derivative of non-integer order 𝜇 of the locally integrable 
function 𝒽(𝜗) is defined as ቀ𝐷𝒶భశఓ,ఒ𝒽ቁ (𝜗) = ቀ𝐼𝒶భశఒ(ଵିఓ) ௗௗణ 𝐼𝒶భశ(ଵିఓ)(ଵିఒ)𝒽ቁ (𝜗).            (6) 

In the above definition, 𝜆 is a parameter, 𝐼 stands for the integral operator, and 𝐴𝐶ଵ[𝒶ଵ, 𝒷ଵ] 
represents the set of absolutely continuous functions in the interval [𝒶ଵ, 𝒷ଵ]. 

At 𝜆 = 0  the Hilfer derivative given in Eq (6) reduces to the Riemann-Liouville fractional 
derivative, and at 𝜆 = 1, it reduces to Caputo fractional derivative. 

Definition 5: [32,34] Consider that 𝒽 ∈ 𝐿ଵ(0, 𝒷ଵ),  and 0 < 𝜗 < 𝒷ଵ ≤ ∞, then the Prabhakar 
integral is provided as 𝔼ఘ,ఓ,చ,଴శఉ 𝒽(𝜗) = ׬ (𝜗 − 𝑥)ఓିଵ𝐸ఘ,ఓఉ [𝜍(𝜗 − 𝑥)ఘ]𝒽(𝑥)𝑑𝑥ణ଴ = ቀ𝒽 ∗ 𝑒ఘ,ఓ,చఉ ቁ(𝜗),         (7) 

where, 𝜌, 𝛽, 𝜇, 𝜍 ∈ ℂ with 𝑅𝑒(𝜌), 𝑅𝑒(𝜇) > 0 and * denotes the convolution of two functions. Here, 𝑒ఘ,ఓ,చఉ (𝜗) = 𝜗ఓିଵ𝐸ఘ,ఓఉ (𝜍 𝜗ఘ). 
Definition 6: [31,34] Suppose that a locally integrable function 𝒽 ∈ 𝐿ଵ(0, 𝒷ଵ), 0 < 𝒷ଵ < ∞, and 𝒽 ∗ 𝑒ఘ,௞ିఓ,చିఉ (∙) ∈ 𝑊௞,ଵ[0, 𝒷ଵ], 𝑘 = ⌈𝜇⌉, accordingly the Prabhakar fractional derivative is given as 

𝐷ఘ,ఓ,చ,଴శఉ 𝒽(𝜗) = ௗೖௗణೖ 𝔼ఘ,௞ିఓ,చ,଴శିఉ 𝒽(𝜗),                            (8) 

where, 𝜌, 𝛽, 𝜇, 𝜍 ∈ ℂ with 𝑅𝑒(𝜌), 𝑅𝑒(𝜇) > 0, and 𝑊௞,ଵ[0, 𝒷ଵ] is a sobolev space. 
Definition 7: [35] Suppose that 𝜇 ∈ (0,1], 𝜆 ∈ [0,1], 𝒽 ∈ 𝐿ଵ[0, 𝒷ଵ], 0 < 𝜗 < 𝒷ଵ ≤ ∞, and 

also considerቀ𝒽 ∗  𝑒ఘ,(ଵିఒ)(ଵିఓ),చିఉ(ଵିఒ) ቁ (𝜗) ∈ 𝐴𝐶ଵ[0, 𝒷ଵ], then the HP derivative of fractional order 𝜇 of 
function 𝒽(𝜗) can be defined as 𝐷ఘ,చ,଴శఉ,ఓ,ఒ 𝒽(𝜗) = ൬𝔼ఘ,ఒ(ଵିఓ),ఛ,଴శିఉఒ ௗௗణ ቀ𝔼ఘ,(ଵିఒ)(ଵିఓ),చ,଴శିఉ(ଵିఒ) 𝒽ቁ൰ (𝜗),                     (9) 

where 𝛽, 𝜍 ∈ ℝ, 𝜌 > 0 and 𝔼ఘ,଴,చ,଴శ଴ 𝒽 = 𝒽 . Thus, we can say that the HP derivative of order 𝜇 
becomes the Hilfer fractional derivative for 𝛽 = 0. 

Definition 8: [35] Consider that 0 < 𝜗 < 𝒷ଵ < ∞, ℎ ∈ 𝐴𝐶ଵ[0, 𝒷ଵ], also 𝜇 ∈ (0,1], 𝜆 ∈ [0,1],𝛽, 𝜍 ∈ ℝ, and 𝜌 > 0. The regularized form of the HP derivative of fractional order 𝜇 of function 𝒽(𝜗) is denoted by 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝒽(𝜗) and can be defined as 

𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝒽(𝜗) = ቀ𝔼ఘ,ఒ(ଵିఓ),చ,଴శିఉఒ 𝔼ఘ,(ଵିఒ)(ଵିఓ),ఛ,଴శିఉ(ଵିఒ) ௗௗణ 𝒽ቁ (𝜗).                    (10) 

Also, we know the property of the Prabhakar integral as 
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ቀ𝔼ఘ,ఓ,చ,଴శఉ 𝔼ఘ,ఒ,చ,଴శద 𝒽ቁ (𝜗) = ቀ𝔼ఘ,ఓାఒ,చ,଴శఉାద 𝒽ቁ (𝜗).                       (11) 

Using Eq (11), the aforementioned Eq (10) transformed as 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝒽(𝜗) = ቀ𝔼ఘ,ଵିఓ,చ,଴శିఉ ௗௗణ 𝒽ቁ (𝜗).              (12) 

Definition 9: [28] Suppose that a real-valued function 𝒽(𝜗) subject to (s.t.) 𝒽(𝜗) > 0 for 𝜗 ≥0 and 𝒽(𝜗) = 0 for 𝜗 < 0. If 𝒽(𝜗) is a piecewise continuous function and of exponential order then, 
the KT transform of 𝒽(𝜗) is given as 𝐵[𝒽(𝜗)] = 𝐹(𝑤) = 𝑤ଷ ׬ 𝑒ି ഛೢమ𝒽(𝜗) 𝑑𝜗ஶ଴ ; 𝑤 > 0,             (13) 

where, 𝑤 stands for the transform variable, and 𝐵 represents the KT transform. 
Definition 10: [28] The inverse KT transform is defined as 𝐵ିଵ[𝐹(𝑤)](𝜗) = 𝒽(𝜗) = 𝐵ିଵ ൤𝑤ଷ ׬ 𝒽(𝜗)𝑒ି ഛೢమ𝑑𝜗ஶ଴ ൨ , 𝜗 > 0.         (14) 

In above Eq (14), 𝐹(𝑤) denotes the KT transform of 𝒽(𝜗). 
Definition 11: [36] The KT transform of the regularized form of the HP fractional derivative 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝒽(𝜗) given in Eq (12) is provided as 

𝐵 ቀ 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝒽(𝜗)ቁ (𝑤) = [1 − 𝜍𝑤ଶఘ]ఉ[𝑤ିଶఓ𝐵[𝒽(𝜗)](𝑤) − 𝑠ହିଶఓ𝒽(0ା)].          (15) 

3. Elementary description of analytical technique 

To demonstrate the fundamental working plan of the implemented analytical approach [37], let 
us suppose a non-homogeneous nonlinear fractional differential equation of order 𝜇: 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝒽ణ(𝜉, 𝜗) + ℛ𝒽(𝜉, 𝜗) + 𝒩𝒽(𝜉, 𝜗) = 𝜙(𝜉, 𝜗),       𝑘 − 1 < 𝜇 ≤ 𝑘, 𝑘 ∈ ℕ,    (16) 

where, 𝐷ఘ,చ,଴శఉ,ఓ ஼  represents the regularized form of the HP derivative of non-integer order 𝜇, 𝒽(𝜉, 𝜗) 
is a function of 𝜉 and 𝜗, ℛ is a bounded linear operator of 𝜉 and 𝜗, 𝒩stands for the general nonlinear 
operator that is Lipschitz continuous, and 𝜙(𝜉, 𝜗) represents the source term. 

On employing the KT transform on Eq (16), we attain the following equation: 𝐵 ቂ 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝒽ణ(𝜉, 𝜗)ቃ + 𝐵[ℛ𝒽(𝜉, 𝜗) + 𝒩𝒽(𝜉, 𝜗)] = 𝐵[𝜙(𝜉, 𝜗)].               (17) 

Using the KT transform of the regularized form of the HP derivative of arbitrary order, we 
obtain the consequent equation: [1 − 𝜍𝑤ଶఘ]ఉ[𝑤ିଶఓ𝐵[𝒽(𝜉, 𝜗)](𝑤) − 𝑤ହିଶఓ𝒽(𝜉, 0ା)] + 𝐵[ℛ𝒽(𝜉, 𝜗) + 𝒩𝒽(𝜉, 𝜗)] = 𝐵[𝜙(𝜉, 𝜗)].

 (18) 

After simplification, Eq (18) becomes 
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𝐵[𝒽(𝜉, 𝜗)](𝑤) − 𝑤ହ𝒽(𝜉, 0ା) + 𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉൣ𝐵[ℛ𝒽(𝜉, 𝜗) + 𝒩𝒽(𝜉, 𝜗)] − 𝐵[𝜙(𝜉, 𝜗)]൧ = 0.
 (19) 

According to Eq (19), the nonlinear operator can be written as    𝒩[Ψ(𝜉, 𝜗; 𝑞)] = 𝐵[Ψ(𝜉, 𝜗; 𝑞)] − 𝑤ହΨ(𝜉, 0; 𝑞) + 𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉൣ𝐵[ℛΨ(𝜉, 𝜗; 𝑞) +𝒩Ψ(𝜉, 𝜗; 𝑞)] − 𝐵[𝜙(𝜉, 𝜗)]൧,                         (20) 

where Ψ(𝜉, 𝜗; 𝑞) is a function of 𝜉, 𝜗, and 𝑞, and also 𝑞 is an embedding parameter s. t. 𝑞 ∈ ቂ0, ଵ௡ቃ, 
where 𝑛 ≥ 1 and the homotopy can be given as (1 − 𝑛𝑞)𝐵[Ψ(𝜉, 𝜗; 𝑞) − 𝒽଴(𝜉, 𝜗)] = 𝑞ℏ𝐻(𝜉, 𝜗)𝒩[Ψ(𝜉, 𝜗; 𝑞)],  (21) 

where 𝐵 stands for KT transform, Ψ(𝜉, 𝜗; 𝑞)  is an unknown function, 𝒽଴(𝜉, 𝜗)  is an initial 
approximation of 𝒽(𝜉, 𝜗) , 𝐻(𝜉, 𝜗) ≠ 0  denotes an auxiliary function, and ℏ ≠ 0  is an auxiliary 
parameter. Furthermore, we can observe that, on putting the values of the embedding parameter 𝑞 = 0 
along with 𝑞 = ଵ௡, it gives 

Ψ(𝜉, 𝜗; 0) = 𝒽଴(𝜉, 𝜗),       Ψ ቀ𝜉, 𝜗; ଵ௡ቁ = 𝒽(𝜉, 𝜗),               (22) 

respectively. Thus, from Eq (22) we can notice that when the value of 𝑞 varies from 0 to ଵ௡, the 
outcome of Ψ(𝜉, 𝜗; 𝑞) varies from the initial guess 𝒽଴(𝜉, 𝜗) to the solution 𝒽(𝜉, 𝜗). The Taylor’s 
series expansion for the Ψ(𝜉, 𝜗; 𝑞) can be given as Ψ(𝜉, 𝜗; 𝑞) = 𝒽଴(𝜉, 𝜗) + ∑ 𝒽௠(𝜉, 𝜗)𝑞௠ஶ௠ୀଵ ,             (23) 

where, 𝒽௠(𝜉, 𝜗) = ଵ௠! డ೘డ௤೘ ሼΨ(𝜉, 𝜗; 𝑞)ሽቚ௤ୀ଴.                         (24) 

If the asymptotic parameter 𝑛, convergence control parameter ℏ, arbitrary function 𝐻(𝜉, 𝜗), and 
the initial approximation 𝒽଴(𝜉, 𝜗) are chosen adequately, s.t. Eq (23) converges at 𝑞 = ଵ௡. Then we 
acquire the subsequent equation: 𝒽(𝜉, 𝜗) = 𝒽଴(𝜉, 𝜗) + ∑ 𝒽௠(𝜉, 𝜗) ቀଵ௡ቁ௠ஶ௠ୀଵ .             (25) 

The solution obtained in Eq (25) represents one of the solutions of the discussed nonlinear 
differential equation of non-integer order 𝜇. The governing equation is obtained by using Eqs (25) 
and (21) as 𝒽ሬ⃗ ௠ = ሼ𝒽ଵ(𝜉, 𝜗), 𝒽ଶ(𝜉, 𝜗), 𝒽ଷ(𝜉, 𝜗), … , 𝒽௠(𝜉, 𝜗)ሽ.            (26) 

Now, differentiating Eq (21) m times w.r.t. 𝑞 and then setting 𝑞 = 0 subsequently, dividing by 𝑚!, yields the consequent equation: 
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𝐵[𝒽௠(𝜉, 𝜗) − 𝜒௠𝒽௠ିଵ(𝜉, 𝜗)] = ℏ𝐻(𝜉, 𝜗)ℜ௠൫𝒽ሬ⃗ ௠ିଵ൯.           (27) 

Next, by employing the inverse KT transform on Eq (27), we obtain the subsequent equation: 𝒽௠(𝜉, 𝜗) = 𝜒௠𝒽௠ିଵ(𝜉, 𝜗) + ℏ𝐵ିଵൣ𝐻(𝜉, 𝜗)ℜ௠൫𝒽ሬ⃗ ௠ିଵ൯൧,          (28) 

where, 𝜒௠ is defined as 𝜒௠ = ቄ0,    𝑚 ≤ 1𝑛,    𝑚 > 1,                (29) 

and the value of ℜ௠൫𝒽ሬ⃗ ௠ିଵ൯ can be written as ℜ௠൫𝒽ሬ⃗ ௠ିଵ൯ = 𝐵[𝒽௠ିଵ(𝜉, 𝜗)] − ቀ1 − ఞ೘௡ ቁ ቂ𝑤ହ𝒽(𝜉, 0) + 𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉ𝐵[𝜙(𝜉, 𝜗)]ቃ +𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉ𝐵[ℛ𝒽௠ିଵ + 𝐴௠ିଵ].              (30) 

In the above Eq (30), 𝐴௠ narrates the homotopy polynomial [38] and is provided as 𝐴௠ = ଵ୻(௠) ቂ డ೘డ௤೘ 𝒩Ψ(𝜉, 𝜗; 𝑞)ቃ௤ୀ଴,              (31) 

and 

 Ψ(𝜉, 𝜗; 𝑞) = Ψ଴ + 𝑞Ψଵ + 𝑞ଶΨଶ + ⋯.              (32) 

Utilizing Eq (30) in Eq (28), we obtain the approximate analytical solution 𝒽(𝜉, 𝜗)  of the 
subsequent form: 𝒽(𝜉, 𝜗) = ∑ 𝒽௠(𝜉, 𝜗) ቀଵ௡ቁ௠ஶ௠ୀ଴ .              (33) 

4. Solution of the fractional DSW equation  

The fractional DSW equation associated with the regularized form of the HP derivative of 
fractional order is given as 𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝑢ణ(𝜉, 𝜗) + 3𝜔(𝜉, 𝜗)𝜔క(𝜉, 𝜗) = 0, 

𝐷ఘ,చ,଴శఉ,ఓ ஼ 𝜔ణ(𝜉, 𝜗) + 2𝜔కకక(𝜉, 𝜗) + 2𝑢(𝜉, 𝜗)𝜔క(𝜉, 𝜗) + 𝑢క(𝜉, 𝜗)𝜔(𝜉, 𝜗) = 0,    (34) 

with initial conditions 𝑢଴(𝜉, 𝜗) = 𝑢(𝜉, 0) = 3𝑠𝑒𝑐ℎଶ(𝜉), 𝜔଴(𝜉, 𝜗) = 𝜔(𝜉, 0) = 2𝑠𝑒𝑐ℎ(𝜉).                    (35) 

The exact solution [13] of the integer order DSW equation obtained by substituting 𝜇 = 1 in 
Eq (34) is given as 
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𝑢(𝜉, 𝜗) = ଷ௖ଶ 𝑠𝑒𝑐ℎଶ ൭ට௖ଶ (𝜉 − 𝑐𝜗)൱, 

𝜔(𝜉, 𝜗) = ±𝑐𝑠𝑒𝑐ℎ ൭ට௖ଶ (𝜉 − 𝑐𝜗)൱.               (36) 

Now, implementing the KT transform on Eq (34) both sides and utilizing the initial guess given 
by Eq (35), we acquire 𝐵[𝑢(𝜉, 𝜗)] − 𝑤ହ𝑢(𝜉, 0) + 𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉ𝐵ൣ3𝜔(𝜉, 𝜗)𝜔క(𝜉, 𝜗)൧ = 0, 

𝐵[𝜔(𝜉, 𝜗)] − 𝑤ହ𝜔(𝜉, 0) + 𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉ𝐵ൣ2𝜔కకక(𝜉, 𝜗) + 2𝑢(𝜉, 𝜗)𝜔క(𝜉, 𝜗) +𝑢క(𝜉, 𝜗)𝜔(𝜉, 𝜗)൧ = 0.             (37) 

Next, the nonlinear operator for the discussed problem is provided as 𝒩ଵൣΨ(ଵ)(𝜉, 𝜗; 𝑞), Ψ(ଶ)(𝜉, 𝜗; 𝑞)൧= 𝐵ൣΨ(ଵ)(𝜉, 𝜗; 𝑞)൧ − 𝑤ହΨ(ଵ)(𝜉, 0; 𝑞)+ 𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉ ቂ𝐵ൣ3Ψ(ଶ)(𝜉, 𝜗; 𝑞)Ψ(ଶ)క(𝜉, 𝜗; 𝑞)൧ቃ, 
𝒩ଶൣΨ(ଵ)(𝜉, 𝜗; 𝑞), Ψ(ଶ)(𝜉, 𝜗; 𝑞)൧ = 𝐵ൣΨ(ଶ)(𝜉, 𝜗; 𝑞)൧ − 𝑤ହΨ(ଶ)(𝜉, 0; 𝑞) + 𝑤ଶఓ[1 −𝜍𝑤ଶఘ]ିఉ ቂ𝐵ൣ2Ψ(ଶ)కకక(𝜉, 𝜗; 𝑞) + 2Ψ(ଵ)(𝜉, 𝜗; 𝑞)Ψ(ଶ)క(𝜉, 𝜗; 𝑞) + Ψ(ଵ)క(𝜉, 𝜗; 𝑞)Ψ(ଶ)(𝜉, 𝜗; 𝑞)൧ቃ,

 (38) 

and the value of ℜଵ௠(𝑢ሬ⃗ ௠ିଵ, 𝜔ሬሬ⃗ ௠ିଵ), ℜଶ௠(𝑢ሬ⃗ ௠ିଵ, 𝜔ሬሬ⃗ ௠ିଵ) can be written as ℜଵ௠(𝑢ሬ⃗ ௠ିଵ, 𝜔ሬሬ⃗ ௠ିଵ) = 𝐵[𝑢௠ିଵ(𝜉, 𝜗)] − ቀ1 − 𝜒௠𝑛 ቁ [𝑤ହ𝑢(𝜉, 0)] + 𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉ𝐵[3𝐴௠ିଵ], 
ℜଶ௠(𝑢ሬ⃗ ௠ିଵ, 𝜔ሬሬ⃗ ௠ିଵ) = 𝐵[𝜔௠ିଵ(𝜉, 𝜗)] − ቀ1 − ఞ೘௡ ቁ [𝑤ହ𝜔(𝜉, 0)] + 𝑤ଶఓ[1 −𝜍𝑤ଶఘ]ିఉ𝐵ൣ2𝜔(௠ିଵ)కకక(𝜉, 𝜗) + 2𝐵௠ିଵ + 𝐶௠ିଵ൧.   (39) 

Now, substituting the values of ℜଵ௠(𝑢ሬ⃗ ௠ିଵ, 𝜔ሬሬ⃗ ௠ିଵ), ℜଶ௠(𝑢ሬ⃗ ௠ିଵ, 𝜔ሬሬ⃗ ௠ିଵ) in the iterative formula 
given in Eq (28), we get 𝑢௠(𝜉, 𝜗) = (𝜒௠ + ℏ)𝑢௠ିଵ(𝜉, 𝜗) − ℏ ቀ1 − 𝜒௠𝑛 ቁ 𝐵ିଵ[𝑤ହ𝑢(𝜉, 0)]+ ℏ𝐵ିଵ ቂ𝑤ଶఓ[1 − 𝜍𝑤ଶఘ]ିఉ𝐵[3𝐴௠ିଵ]ቃ, 
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𝜔௠(𝜉, 𝜗) = (𝜒௠ + ℏ)𝜔௠ିଵ(𝜉, 𝜗) − ℏ ቀ1 − ఞ೘௡ ቁ 𝐵ିଵ[𝑤ହ𝜔(𝜉, 0)] + ℏ𝐵ିଵ ቂ𝑤ଶఓ[1 −𝜍𝑤ଶఘ]ିఉ𝐵ൣ2𝜔(௠ିଵ)కకక(𝜉, 𝜗) + 2𝐵௠ିଵ + 𝐶௠ିଵ൧ቃ.     (40) 

Now, by substituting 𝑚 = 1 in Eq (40) and using the initial approximation given in Eq (35), we get 𝑢ଵ(𝜉, 𝜗) = −12ℏ tanh(𝜉) 𝑠𝑒𝑐ℎଶ(𝜉)𝑒ఘ,ఓାଵ,చఉ (𝜗), 

𝜔ଵ(𝜉, 𝜗) = −4ℏ sech(𝜉) tanh(𝜉) 𝑒ఘ,ఓାଵ,చఉ (𝜗).        (41) 

Thus, proceeding in the same way, one can find many components 𝑢௠(𝜉, 𝜗) and 𝜔௠(𝜉, 𝜗) for  𝑚 ≥ 2, and the approximate solution using q-HAKTM is obtained. 
Consequently, the q-HAKTM solution is given as 𝑢(𝜉, 𝜗) = limெ→ஶ ∑ 𝑢௠(𝜉, 𝜗) ቀଵ௡ቁ௠ெ௠ୀ଴ , 

𝜔(𝜉, 𝜗) = limெ→ஶ ∑ 𝜔௠(𝜉, 𝜗) ቀଵ௡ቁ௠ெ௠ୀ଴ .     (42) 

5. Numerical results and discussion  

Graphical representation serves as a way to depict the characteristics of the approximate 
solution. Thus, in this section, we analyze the behavior of the outcomes of the DSW equation of 
arbitrary order utilizing an analytical method, namely q-HAKTM. A numerical simulation is 
conducted for numerous values of fractional order 𝜇 , space variable 𝜉 , and time variable 𝜗 .The 
outcomes of this numerical simulation are described in the form of Figures 1–16. Figures 1–4 
corresponds to 𝑢(𝜉, 𝜗), in which Figures 1–3 depict the surface of the q-HAKTM solution 𝑢(𝜉, 𝜗)at 𝜇 = 1, 𝜇 = 0.90, and  𝜇 = 0.80, respectively. Figure 4 plots the exact solution of 𝑢(𝜉, 𝜗). Figures 5–8 
are plotted for 𝜔(𝜉, 𝜗), in which Figures 5–7 depict the surface of the q-HAKTM solution 𝜔(𝜉, 𝜗) at 𝜇 = 1, 𝜇 = 0.90, and  𝜇 = 0.80, respectively. Figure 8 plots the exact solution of 𝜔(𝜉, 𝜗). From 
Figures 1–8, we see the obtained solutions are very much similar to exact solution. Figures 9 and 10 
exhibit the influence of arbitrary order 𝜇 w.r.t. 𝜉 and 𝜗, respectively for 𝑢(𝜉, 𝜗). Similarly, Figures 11 
and 12 exhibit the influence of arbitrary order 𝜇 w.r.t. 𝜉 and 𝜗, respectively for 𝜔(𝜉, 𝜗). Figures 13 
and 14 are drawn between the exact and approximate results of 𝑢(𝜉, 𝜗) and 𝜔(𝜉, 𝜗), respectively to 
show the accuracy of the obtained solution. Next, Figures 15 and 16 are 𝑛-curve 𝑢(𝜉, 𝜗) and 𝜔(𝜉, 𝜗), 
which show the asymptotic behavior of the obtained solution via q-HAKTM. From Figures 15 and 16 we 
can observe that initially the value of 𝑢 and 𝜔 increase rapidly and then decrease but after some time, 
it becomes almost constant, which is due to the appearance of the term ቀଵ௡ቁ௠

 in the solution. 
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Figure 1. Nature of 𝑢(𝜉, 𝜗) for the q-HAKTM outcome at 𝜇 = 1. 

 

Figure 2. Nature of 𝑢(𝜉, 𝜗) for the q-HAKTM outcome at 𝜇 = 0.90. 
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Figure 3. Nature of 𝑢(𝜉, 𝜗) for the q-HAKTM outcome at 𝜇 = 0.80. 

 

Figure 4. The surface of the exact solution 𝑢(𝜉, 𝜗).  
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Figure 5. The surface of 𝜔(𝜉, 𝜗) for the q-HAKTM solution at 𝜇 = 1. 

 

Figure 6. The surface of 𝜔(𝜉, 𝜗) for the q-HAKTM solution at 𝜇 = 0.90. 



13 
 

Networks and Heterogeneous Media  Volume 21, Issue 1, 1–21. 

 

Figure 7. The surface of 𝜔(𝜉, 𝜗) for the q-HAKTM solution at 𝜇 = 0.80. 

 

Figure 8. The surface of the exact solution 𝜔(𝜉, 𝜗). 
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Figure 9. Characteristic of 𝑢(𝜉, 𝜗) w. r. t. 𝜉 for distinct values of 𝜇. 

 

Figure 10. Characteristic of 𝑢(𝜉, 𝜗) w. r. t. 𝜗 for distinct values of 𝜇. 
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Figure 11. Characteristic of 𝜔(𝜉, 𝜗) w. r. t. 𝜉 for distinct values of 𝜇. 

 

Figure 12. Characteristic of 𝜔(𝜉, 𝜗) w. r. t. 𝜗 for distinct values of 𝜇. 
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Figure 13. Comparative graph for the approximate and exact solutions of 𝑢(𝜉, 𝜗). 

 

Figure 14. Comparative graph for the exact and approximate outcomes of 𝜔(𝜉, 𝜗). 
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Figure 15. 𝑛-curve of 𝑢(𝜉, 𝜗) for distinct values of 𝜇. 

 

Figure 16. 𝑛-curve of 𝜔(𝜉, 𝜗) for distinct values of 𝜇. 
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6. Conclusions 

To describe the nature of dispersive water waves, the DSW equation is widely used. Here, we 
implemented an analytical method, q-HAKTM, to obtain the result of fractional DSW associated 
with the regularized form of the HP derivative of arbitrary order. Graphical behavior of the attained 
solutions is given to show the authenticity and efficiency of the results. Hence, we can say that the 
implemented method is very reliable, powerful, and needs less computational work to analyze the 
nature of arbitrary order differential equations. 
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