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Abstract: In this work, we offer the novel class of (p, q)-Hermite-Appell polynomials. Some
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classes of two-dimensional (p, q)-Hermite-Appell polynomials are provided. Moreover, we acquire
a (p, q)-differential operator formula for (p, q)-Hermite-Appell polynomials. Finally, the Wolfram
Mathematica software is used to plot the graphical diagrams of select components of (p, q)-Hermite-
Appell, along with two-dimensional (p, q)-Hermite-Appell polynomials.
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1. Introduction

Recently, (p, q)-calculus and its applications in a variety of mathematical, physics, and engineering
domains have garnered increased attention. The theory of (p, q)-calculus was created by numerous
mathematicians and physicists as a supplement for q-calculus. Currently, (p, q)-calculus is commonly
utilized in numerous domains calculus, differential equations, quantum theory, number theory, and
approximation theory, etc. [1–4]. (p, q)-analogues for multiple ordinary special functions, as well as
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polynomials as Beta, Gamma, Euler, Bernoulli, and other polynomials, have been explored
and investigated [5–8].

Let 0 < q < p ≤ 1 and θ ∈ N. The (p, q)-number [θ]p,q corresponds to the following outline [9–14]:

[θ]p,q =
qθ − pθ

q − p
.

Let θ ≥ 1. The description of the (p, q)-factorial was stated as follows [9–14]:

[θ]p,q! =
θ∏
υ=0

[υ]p,q,

with [0]p,q! = 1. The next determines the (p, q)-binomial coefficient are as follows [2, 3]:[
υ

θ

]
p,q

=
[υ]p,q!

[θ]p,q![υ − θ]p,q!
.

The (p, q)-derivative for an expression f alongside regards to o, expressed as Dp,q;o f (o), is stated
as follows [15]:

Dp,q;o f (o) := Dp,q f (o) =
f (qo) − f (po)

(q − p) o

(
Dp,q f (o) when o , 0; f ′ (0) when o = 0

)
, (1.1)

which satisfies the next rule

Dp,q ( f (o) g (o)) = f (po) Dp,qg (o) + g (qo) Dp,q f (o) .

According to reference [2], each of the (p, q)-exponential expressions, symbolized through ep,q(o)
and Ep,q(o), are outlined below:

ep,q(o) =
∞∑
θ=0

p(θ2)oθ

[θ]p,q!
(1.2)

and

Ep,q(o) =
∞∑
θ=0

q(θ2)oθ

[θ]p,q!
. (1.3)

From Eqs (1.1)–(1.3), it can be inferred that

Dp,qep,q(o) = ep,q(po) and Dp,qEp,q(o) = Ep,q(qo). (1.4)

Considering a function f , the value for the (p, q)-definite integral is established through
the following: ∫ a

0
f (o) dp,qo = (p − q) a

∞∑
θ=0

pθ

qθ+1 f
(

pθ

qθ+1 a
)
. (1.5)

Duran et al. [4] created and categorized what are known as (p, q)-Hermite polynomials Hθ,p,q(o)
using a specific generating relation:
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ep,q
(
[2]p,qoζ

)
ep,q(−ζ2) =

∞∑
θ=0

Hθ,p,q(o)
ζθ

[θ]p,q!
. (1.6)

Sadjang [7] offered a generating formula that generates (p, q)-Appell polynomials class
{Aθ,p,q(o)}∞θ=0:

ep,q(oζ)Ap,q(ζ) =
∞∑
θ=0

Aθ,p,q(o)ζθ

[θ]p,q!
, Ap,q(ζ) , 0, A0,p,q = 1, (1.7)

whereAθ,p,q := Aθ,p,q(0) signifies the (p, q)-Appell-numbers as well as

Ap,q(ζ) =
∞∑
θ=0

Aθ,p,q
ζθ

[θ]p,q!
, A0,p,q , 0. (1.8)

According to reference [7], the series formula for the (p, q)APAθ,p,q(o) was provided as follows [7]:

Aθ,p,q(o) =
θ∑
υ=0

p(θ−υ2 )oθ−υAυ,p,q

[
θ

υ

]
p,q

, A0,p,q , 0.

Table 1 summarizes the components of the (p, q)-Appell polynomial classes.

Table 1. A few known components ofAθ,p,q(o).

S.No. Ap,q(ζ) Generating function Polynomials

I Ap,q(ζ) =
ζ

ep,q(ζ) − 1
ζ

ep,q(ζ) − 1
ep,q(oζ) =

∞∑
θ=0

Bθ,p,q(o)
ζθ

[θ]p,q!
(p, q)-Bernoulli polynomials [5, 7]

II Ap,q(ζ) =
[2]p,q

ep,q(ζ) + 1
[2]p,q

ep,q(ζ) + 1
ep,q(oζ) =

∞∑
θ=0

Eθ,p,q(o)
ζθ

[θ]p,q!
(p, q)-Euler polynomials [5]

III Ap,q(ζ) =
[2]p,q ζ

ep,q(ζ) + 1
[2]p,q ζ

ep,q(ζ) + 1
ep,q(oζ) =

∞∑
θ=0

Gθ,p,q(o)
ζθ

[θ]p,q!
(p, q)-Genocchi polynomials [5]

The generating function for the two-dimensional (p, q)AP Aθ,p,q(o, µ) is provided by
the following [8]:

ep,q(oζ) Ep,q(µζ)Ap,q(ζ) =
∞∑
θ=0

Aθ,p,q(o, µ)ζθ

[θ]p,q!
, Aθ,p,q = Aθ,p,q(0, 0). (1.9)

Some components of the two-dimensional (p, q)AP Aθ,p,q(o, µ) are listed under their conditions in
Table 2.

Table 2. Some categories ofAθ,p,q(o, µ).

S.No. Ap,q(ζ) Generating function Polynomials

I Ap,q(ζ) =
ζ

ep,q(ζ) − 1
ζ

ep,q(ζ) − 1
ep,q(oζ) Ep,q(µζ) =

∞∑
θ=0

Bθ,p,q(o, µ)
ζθ

[θ]p,q!
Two-dimensional (p, q)-Bernoulli polynomials [8]

II Ap,q(ζ) =
[2]p,q

ep,q(ζ) + 1
[2]p,q

ep,q(ζ) + 1
ep,q(oζ) Ep,q(µζ) =

∞∑
θ=0

Eθ,p,q(o, µ)
ζθ

[θ]p,q!
Two-dimensional (p, q)-Euler polynomials [8]

III Ap,q(ζ) =
[2]p,q ζ

ep,q(ζ) + 1
[2]p,q ζ

ep,q(ζ) + 1
ep,q(oζ) Ep,q(µζ) =

∞∑
θ=0

Gθ,p,q(o, µ)
ζθ

[θ]p,q!
Two-dimensional (p, q)-Genocchi polynomials [8]
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This paper is motivated by the work of Duran et al. [4] on (p, q)-Hermite polynomials and the
discovery that both ordinary Hermite polynomials and (p, q)-Hermite polynomials have applications
in various branches of mathematics and science, such as quantum harmonic oscillators and quantum
physics, signal processing, and combinatorics. Additional motivation comes from (p, q)-calculus’s
versatility in many mathematical and scientific domains. Furthermore, this work is motivated by the
usefulness of determinant approaches for some special polynomials and their generalization as a
linear interpolation problem [16]. The work in this paper is organized in the following manner: in
Section 2, the generating function that generates (p, q)-Hermite-Appell polynomials HAθ,p,q(o) and
some of their certain properties are presented and explored; in Section 3, some determinant
approaches for (p, q)HAP HAθ,p,q(o) are provided; within Section 4, certain components that generate
(p, q)-Hermite-Appell polynomials, including (p, q)HBP HBθ,p,q(o), (p, q)HEP HEθ,p,q(o), and
(p, q)HGP HGθ,p,q(o) are investigated and their generating function, series definition and determinant
approaches are discussed; the generating function and series definition for the categories of
two-dimensional (p, q)-Hermite-Appell polynomials are discussed and examined in Section 5; and
within Section 6, a few graphical diagrams for some classes of (p, q)-Hermite-Appell polynomials are
shown for adequately indexed quantities.

2. (p, q)-Hermite-Appell polynomials

Section 2 discusses and analyzes the generating function and series definition for the categories of
two-dimensional (p, q)-Hermite-Appell polynomials HAθ,p,q(o).

We observe from the left part of Eq (1.7) that by expanding the primary exponential function
ep,q(oζ) and then replacing the power of o, (i.e., o0, o1, po2, . . . , p(θ2)oθ) by substituting the associated
polynomials H0,p,q(o),H1,p,q(o),H2,p,q(o), . . . ,Hθ,p,q(o) at the left part and H1,p,q(o) in the right part
within the final formula, we receive the following:

Ap,q(ζ)
(
1 + H1,p,q(o)

ζ

[1]p,q!
+ H2,p,q(o)

ζ2

[2]p,q!
+ · · · + Hθ,p,q(o)

ζθ

[θ]p,q!

)
=

∞∑
θ=0

Aθ,p,q

(
H1,p,q(o)

) ζθ
[θ]p,q!

.

Furthermore, we sum up the expansion in the left part, then employ formula (1.6) within the
resultant formula to generate

ep,q
(
[2]p,qoζ

)
ep,q(−ζ2)Ap,q(ζ) =

∞∑
θ=0

Aθ,p,q

(
H1,p,q(o)

) ζθ
[θ]p,q!

.

Lastly, we write the outcome of (p, q)HAP on the right part of the previous equation as follows:

Aθ,p,q

(
H1,p,q(o)

)
= HAθ,p,q(o),

which provides the following definition.

Definition 1. We generate the function that produces the (p, q)HAP HAθ,p,q(o) as follows:

ep,q
(
[2]p,qoζ

)
ep,q(−ζ2)Ap,q(ζ) =

∞∑
θ=0

HAθ,p,q(o)ζθ

[θ]p,q!
, (2.1)
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whereby Hθ,p,q(o) andAp,q(ζ) are provided through Eqs (1.6) and (1.8), respectively.

Now, we examine several properties of HAθ,p,q (o) by the following consecutive theorems with
their proofs.

Theorem 1. The subsequent series definition for the (p, q)HAP HAθ,p,q(o) can be expanded as:

HAθ,p,q(o) =
θ∑
υ=0

Aυ,p,q

[
θ

υ

]
p,q

Hθ−υ,p,q(o), A0,p,q , 0. (2.2)

Proof. Applying Eqs (1.6) and (1.8) to the left portion for expression (2.1) yields the following:

∞∑
θ=0

Hθ,p,q(o)
ζθ

[θ]p,q!

∞∑
υ=0

Aυ,p,q
ζυ

[υ]p,q!
=

∞∑
θ=0

HAθ,p,q(o)
ζθ

[θ]p,q!
.

Through the application of the Cauchy product formulation, we can achieve the following:

∞∑
θ=0

HAθ,p,q(o)
ζθ

[θ]p,q!
=

∞∑
θ=0

θ∑
υ=0

[
θ

υ

]
p,q

Aυ,p,q Hθ−υ,p,q(o)
ζθ

[θ]p,q!
.

Statement (2.2) is generated by corresponding coefficients of similar powers of ζ at every part of
the previously provided equation.

Theorem 2. The subsequent standard summation expression for (p, q)HAP HAθ,p,q(o) can be given by
the following:

HAθ,p,q (o) =
⌊ θ2⌋∑
υ=0

(−1)υ [θ]p,q!Aθ−2υ,p,q (o)
[υ]p,q! [θ − 2υ]p,q!

, (2.3)

where ⌊·⌋ marks the highest integer function.

Proof. Using (cf. [4])
∞∑
θ=0

∞∑
υ=0

A (υ, θ) =
∞∑
θ=0

⌊ θ2⌋∑
υ=0

A (υ, θ − 2υ) , (2.4)

it can be acquired by Eqs (1.7) and (2.1) that

∞∑
θ=0

HAθ,p,q (o)
ζθ

[θ]p,q!
= Ap,q (ζ) ep,q

(
[2]p,q oζ

)
ep,q

(
−ζ2

)
=

 ∞∑
θ=0

(−1)θ
ζ2θ

[θ]p,q!

  ∞∑
θ=0

Aθ,p,q (o)
ζθ

[θ]p,q!


=

∞∑
θ=0

[θ]p,q!
⌊ θ2⌋∑
υ=0

(−1)υAθ−2υ,p,q (o)
[θ − 2υ]p,q! [υ]p,q!

 ζθ

[θ]p,q!
;

by comparing the coefficients ζθ of the two portions above, we yield the stated formula (2.3).
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Theorem 3. An addition formula for HAθ,p,q (o) is given below:

HAθ,p,q

(
o1 ⊕p,q o2

)
=

θ∑
υ=0

p(υ2) HAθ−υ,p,q (o1)
(
[2]p,q o2

)υ [θ
υ

]
p,q

, (2.5)

where (cf. [17]) (
o1 ⊕p,q o2

)θ
=

θ∑
υ=0

ok
1on−k

2 pυ(υ−θ)
[
θ

υ

]
p,q

.

Proof. It is readily seen from Eq (2.1) that

∞∑
θ=0

HAθ,p,q

(
o1 ⊕p,q o2

) ζθ

[θ]p,q!
= Ap,q (ζ) ep,q

(
[2]p,q (o1 + o2) ζ

)
ep,q

(
−ζ2

)
= Ap,q (ζ) ep,q

(
[2]p,q o1ζ

)
ep,q

(
−ζ2

)
ep,q

(
[2]p,q o2ζ

)
=

∞∑
θ=0

p(θ2)
(
[2]p,q o2

)θ ζθ
[θ]p,q!

∞∑
θ=0

HAθ,p,q (o1)
ζθ

[θ]p,q!

=

∞∑
θ=0

θ∑
υ=0

HAθ−υ,p,q (o1) p(υ2)
[
θ

υ

]
p,q

(
[2]p,q o2

)υ ζθ

[θ]p,q!
,

which gives the alleged result Eq (2.5).

Two special cases of Theorem 3 are given as follows.

Corollary 1. The (p, q)HAP HAθ,p,q(o) satisfies the subsequent summation formulas:

HAθ,p,q

(
o ⊕p,q 1

)
=

θ∑
υ=0

[2]υp,q HAθ−υ,p,q (o)
[
θ

υ

]
p,q

p(υ2)

and

HAθ,p,q (o) =
θ∑
υ=0

HAθ−υ,p,q p(υ2)
[
θ

υ

]
p,q

(
[2]p,q o

)υ
.

We research the (p, q)-derivative and (p, q)-integral expressions of HAθ,p,q (o) as follows.

Theorem 4. (p, q)-derivative property of HAθ,p,q (o)

Dp,q;o

[
HAθ,p,q (o)

]
= [θ]p,q [2]p,q HAθ−1,p,q (po) (2.6)

as well as the (p, q)-integral representation for HAθ,p,q (o)

∫ b

a
HAθ,p,q (o) dp,qo =

HAθ+1,p,q

(
b
p

)
− HAθ+1,p,q

(
a
p

)
[2]p,q [θ + 1]p,q

hold for θ being a positive integer.
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Proof. Applying the derivative operator Dp,q;o Eq (1.1) on every side of Eq (2.1) along with regard to
ζ and employing Eq (1.4), we receive the following:

∞∑
θ=0

Dp,q;o

[
HAθ,p,q (o)

] ζθ

[θ]p,q!
= Dp,q;o

[
Ap,q (ζ) ep,q

(
[2]p,q oζ

)
ep,q

(
−ζ2

)]
= Dp,q;o

[
ep,q

(
[2]p,q oζ

)]
Ap,q (ζ) ep,q

(
−ζ2

)
= [2]p,q ζAp,q (ζ) ep,q

(
[2]p,q poζ

)
ep,q

(
−ζ2

)
= [2]p,q

∞∑
θ=0

HAθ,p,q (po)
ζθ+1

[θ]p,q!
;

additionally using Eq (1.5), we obtain the following:∫ b

a
HAθ,p,q (o) dp,qo =

1
[2]p,q [θ + 1]p,q

∫ b

a
Dp,q;o

[
HAθ,p,q (o)

]
dp,qo

=
HAθ+1,p,q

(
b
p

)
− HAθ+1,p,q

(
a
p

)
[2]p,q [θ + 1]p,q

,

which completes the proofs.

The immediate result of Eq (2.6) is given for υ < θ as follows:

D(υ)
p,q;η

[
HAθ,p,q (o)

]
=

[2]υp,q [θ]p,q!p(υ2)

[θ − υ]p,q! HAθ−υ,p,q (pυo) , (2.7)

where D(υ)
p,q;o denotes the (p, q)-derivative operator of order υ in regard to o as D(υ)

p,q;o = D(υ−1)
p,q;o Dp,q;o.

We consider the (p, q)-differential operator for υ ∈ N0 as follows:(
oDp,q;o

)(υ)
=

(
oDp,q;o

)(υ−1) (
oDp,q;o

)
. (2.8)

We observe from Eq (2.8) that for 1 ≤ θ,(
oDp,q;o

)(υ)
oθ =

(
oDp,q;o

) (
oDp,q;o

)
. . .

(
oDp,q;o

)
oθ = [θ]υp,q p(υ2)(pυo)θ. (2.9)

Hence, we obtain from Eq (2.9) that(
oDp,q;o

)(υ)
fp,q (o) =

∞∑
θ=0

aθ
(
oDp,q;o

)(υ)
oθ =

∞∑
θ=0

aθ [θ]υp,q p(υ2)(pυo)θ,

in which fp,q(o) =
∑∞
θ=0 aθoθ is a formal power series.

Theorem 5. The subsequent (p, q)-operator formula of the (p, q)HAP HAθ,p,q(o) holds true:

(
o2Dp,q;o2

)(υ)
HAθ,p,q

(
o1 ⊕p,q o2

)
=

θ∑
l=0H

Aθ−l,p,q (o1) [2]l
p,q (pυo2)l p( l

2)+(υ2) [l]υp,q

[
θ

υ

]
p,q

, (2.10)

which holds for θ ∈ N and υ ∈ N0.
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Proof. It is readily seen from Eq (2.1) that

(
o2Dp,q;o2

)(υ)
HAθ,p,q

(
o1 ⊕p,q o2

)
=

θ∑
l=0

[
θ

υ

]
p,q

HAθ−l,p,q (o1) p( l
2) [2]l

p,q

(
o2Dp,q;o2

)(υ)
ol

2

=

θ∑
l=0

[
θ

υ

]
p,q

HAθ−l,p,q (o1) p( l
2) [2]l

p,q [l]υp,q p(υ2)(pυo2)l,

which means the desired consequence Eq (2.10).

A special case of Theorem 5 is given as follows.

Corollary 2. (p, q)HAP HAθ,p,q(o) satisfies the subsequent (p, q)-operator formula:

(
oDp,q;o

)(υ)
HAθ,p,q (o) =

θ∑
l=0

[2]l
p,q [l]υp,q HAθ−l,p,q p( l

2)
[
θ

υ

]
p,q

p(υ2)(pυo)l.

3. Determinant approach for (p, q)HAP HAθ,p,q(o)

The determinant approximations of the special polynomials are important for numerical
computations, as well as for solving linear interpolation difficulties. The determinant approach of
Bernoulli, Appell, Sheffer and Bessel polynomial sequences were studied by Costabile et al.
in [18, 19]. The hunt for versions of known special polynomials and numbers yielded many useful
identities and characteristics in mathematics. The determinant form of special polynomials can be
used to address many problems in mathematics. A growing number of determinant forms of special
polynomials and their various variations have been studied in recent years, according to their
importance and wide range of applications. Plenty of researchers are investigating the q and
(p, q)-determinant expressions for multiple classically, and composite special polynomials
(see [6, 8, 20]). Principally motivated by these studies, this section introduces the determinant forms
of (p, q)HAP HAθ,p,q(o). By selecting proper choices for a known formula Aθ,p,q(ζ), the components
that contain the class for (p, q)HAP HAθ,p,q(o) are found.

Here, the determinant approach for (p, q)HAP HAθ,p,q(o) is constructed.

Theorem 6. The (p, q)HAP HAθ,p,q(o) that have degree o holds the subsequent determinant approach:

HA0,p,q(o) =
1
B0,p,q

, (3.1)
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HAθ,p,q(o) =
(−1)θ(
B0,p,q

)θ+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,p,q(o) H2,p,q(o) · · · Hθ−1,p,q(o) Hθ,p,q(o)

B0,p,q B1,p,q B2,p,q · · · Bθ−1,p,q Bθ,p,q

0 B0,p,q

[
2
1

]
p,q

B1,p,q · · ·

[
θ − 1

1

]
p,q

Bθ−2,p,q

[
θ

1

]
p,q

Bθ−1,p,q

0 0 B0,p,q · · ·

[
θ − 1

2

]
p,q

Bθ−3,p,q

[
θ

2

]
p,q

Bθ−2,p,q

...
...

...
. . .

...
...

0 0 0 · · · B0,p,q

[
θ

θ − 1

]
p,q

B1,p,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(3.2)

where

Bθ,p,q = −
1
Aθ,p,q

( θ∑
υ=0

[
θ

υ

]
p,q

Aυ,p,q Bθ−υ,p,q

)
, θ = 1, 2, 3, . . . ,

with B0,p,q , 0, B0,p,q,B1,p,q, . . .Bθ,p,q ∈ R, and B0,p,q =
1
A0,p,q

. Additionally, here Hθ,p,q(υ) are the
(p, q)-Hermite polynomials that have degree θ.

Proof. Assume that HAθ,p,q(o) is the sequence that includes (p, q)HAP HAθ,p,q(o) stated in Eq (2.1),
whereasAθ,p,q,Bθ,p,q represent the sequences that are numerically available in such a way that:

Ap,q(ζ) = A0,p,q +A1,p,q
ζ

[1]p,q!
+A2,p,q

ζ2

[2]p,q!
+ · · · + Aθ,p,q

ζθ

[θ]p,q!
+ . . . , A0,p,q , 0, (3.3)

Âp,q(ζ) = B0,p,q +B1,p,q
ζ

[1]p,q!
+B2,p,q

ζ2

[2]p,q!
+ · · · +Bθ,p,q

ζθ

[θ]p,q!
+ . . . , B0,p,q , 0, (3.4)

which fulfills
Âp,q(ζ)Ap,q(ζ) = 1. (3.5)

Hence, implementing the Cauchy product method on the previous expression leads to the following:

Âp,q(ζ)Ap,q(ζ) =
∞∑
υ=0

Bυ,p,q
ζυ

[υ]p,q!

∞∑
θ=0

Aθ,p,q
ζθ

[θ]p,q!
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=

∞∑
θ=0

θ∑
υ=0

Aυ,p,q Bθ−υ,p,q

[
θ

υ

]
p,q

ζθ

[θ]p,q!
; (3.6)

accordingly,
θ∑
υ=0

Aυ,p,q Bθ−υ,p,q

[
θ

υ

]
p,q

=

1, i f θ = 0,
0, i f θ > 0.

(3.7)

Particularly, 
B0,p,q =

1
A0,p,q
,

Bθ,p,q = −
1
A0,p,q

(∑θ
υ=0Aυ,p,q Bθ−υ,p,q

θ
υ


p,q

)
, θ = 1, 2, . . .

(3.8)

By multiplying each side of formula (2.1) by Âp,q(ζ), we receive the following:

ep,q
(
[2]p,qoζ

)
ep,q(−ζ2)Ap,q(ζ)Âp,q(ζ) = Âp,q(ζ)

∞∑
θ=0

HAθ,p,q(o)
ζθ

[θ]p,q!
. (3.9)

Considering formulas (2.1), (3.4), and (3.7), the previously mentioned formula generates
the following:

∞∑
θ=0

Hθ,p,q(o)
ζθ

[θ]p,q!
=

∞∑
θ=0

Bθ,p,q
ζθ

[θ]p,q!

∞∑
θ=0

HAθ,p,q(o)
ζθ

[θ]p,q!
. (3.10)

Employing the Cauchy composition method over the two series on the right side with Eq (3.10)
generates a corresponding infinite structure with the unidentified HAθ,p,q(o):



HA0,p,q(o)B0,p,q = 1,

HA0,p,q(o)B1,p,q + HA1,p,q(o)B0,p,q = H1,p,q(o) ,

HA0,p,q(o)B2,p,q +

21


p,q

HA1,p,q(o)B1,p,q +B0,p,q HA2,p,q(o) = H2,p,q(o),

...

HA0,p,q(o)Bθ−1,p,q +

θ − 1
1


p,q

HA1,p,q(o)Bθ−2,p,q + · · · + HAθ,p,q(o)B0,p,q = Hθ−1,p,q(o),

HA0,p,q(o)Bθ,p,q +

θ1


p,q

HA1,p,q(o)Bθ−1,p,q + · · · + HA1,p,q(o)B0,p,q = Hθ,p,q(o),

...
(3.11)
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It is evident that the very first statement (3.1) can be determined through the first formula within
the system (3.11).

Employing the Cramer technique on the primary θ + 1 formula (3.11) makes it possible to extract
the unidentified HAθ,p,q(o) from the bottom triangular value matrix inside structure (3.1). Thus, we
can draw a conclusion.

HAθ,p,q(o) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,p,q 0 0 · · · 0 1

B1,p,q B0,p,q 0 · · · 0 H1,p,q(o)

B2,p,q

[
2
1

]
p,q

B1,p,q B0,p,q · · · 0 H2,p,q(o)

...
...

...
. . .

...
...

Bθ−1,p,q

[
θ − 1

1

]
p,q

Bθ−2,p,q

[
θ − 1

2

]
p,q

Bθ−3,p,q · · · B0,p,q Hθ−1,p,q(o)

Bθ,p,q

[
θ

1

]
p,q

Bθ−1,p,q

[
θ

2

]
p,q

Bθ−2,p,q · · ·

[
θ

θ − 1

]
p,q

B1,p,q Hθ,p,q(o)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,p,q 0 0 · · · 0 1

B1,p,q B0,p,q 0 · · · 0 0

B2,p,q

[
2
1

]
p,q

B1,p,q B0,p,q · · · 0 0

...
...

...
. . .

...
...

Bθ−1,p,q

[
θ − 1

1

]
p,q

Bθ−2,p,q

[
θ − 1

2

]
p,q

Bθ−3,p,q · · · B0,p,q 0

Bθ,p,q

[
θ

1

]
p,q

Bθ−1,p,q

[
θ

2

]
p,q

Bθ−2,p,q · · ·

[
θ

θ − 1

]
p,q

B1,p,q B0,p,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

whenever θ = 1, 2, 3 . . . .

Stretching the determinant and employing the transposition associated with the determinant within
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the numerator, produces the following:

HAθ,p,q(o) =
1(

B0,p,q
)θ+1 ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,p,q B1,p,q B2,p,q · · · Bθ−1,p,q Bθ,p,q

0 B0,p,q

[
2
1

]
p,q

B1,p,q · · ·

[
θ − 1

1

]
p,q

Bθ−2,p,q

[
θ

1

]
p,q

Bθ−1,p,q

0 0 B0,p,q · · ·

[
θ − 1

2

]
p,q

Bθ−3,p,q

[
θ

2

]
p,q

Bθ−2,p,q

...
...

...
. . .

...
...

0 0 0 · · · B0,p,q

[
θ

θ − 1

]
p,q

B1,p,q

1 H1,p,q(o) H2,p,q(o) · · · Hθ−1,p,q(o) Hθ,p,q(o)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.12)

After changing the υth row to the (υ + 1)th location for υ = 1, 2, 3, . . . , θ − 1, the assertion (3.2)
is reached.

Theorem 7. This identity is valid for (p, q)HAP HAθ,p,q(o):

HAθ,p,q(o) =
1
B0,p,q

(
Hθ,p,q(o) −

θ−1∑
υ=0

[
θ

υ

]
p,q

Bθ−υ,p,q HAθ,p,q(o)
)
, θ = 1, 2, 3, . . . . (3.13)

Proof. To achieve our needed findings, we expand the value of determinant (3.2) relative to the (υ+1)th

row by employing the same procedure outlined in reference [20].

4. Certain components for the (p, q)-Hermite-Appell polynomials

Throughout this part, we introduce multiple components of the (p, q)-Hermite-Appell classes by
picking suitable values over the functionAθ,p,q(o).

4.1. The (p, q)-Hermite-Bernoulli polynomials

WithAp,q(ζ)= ζ

ep,q(ζ)−1 , (p, q)ApAθ,p,q(o) simplify into (p, q)P Bθ,p,q(o) (Table 1(I)). For the selected
Bp,q(ζ), (p, q) HAP HAθ,p,q(o) simplify to (p, q) HBP HBθ,p,q(o), which are determined by the
subsequent generating function:

ζep,q([2]p,qoζ) ep,q(−ζ2)
ep,q(ζ) − 1

=

∞∑
θ=0

HAθ,p,q(o)
ζθ

[θ]p,q!
. (4.1)
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(p, q)HBP HBθ,p,q(o) of degree θ are determined by the following series:

HBθ,p,q(o) =
θ∑
υ=0

Bυ,p,q

[
θ

υ

]
p,q

Hθ−υ,p,q(o), B0,p,q , 0. (4.2)

(p, q)HBP HBθ,p,q(o) has a particular identity:

HBθ,p,q(o) =
Hθ,p,q(o)
B0,p,q

−
1
B0,p,q

θ−1∑
υ=0

Bθ−υ,p,q

[
θ

υ

]
p,q

HBθ,p,q(o), θ = 1, 2, 3, . . . . (4.3)

Employing B0,p,q = 1 and Bθ,p,q = 1
[θ+1]p,q

, θ=1,2,3. . . , allows us to produce the determinant formula
of (p, q)HBP HBθ,p,q(o) in Eqs (3.1) and (3.2).

Definition 2. (p, q)HBP HBθ,p,q(o) with class θ can be identified by the following:

HBθ,p,q(o) = (−1)θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,p,q(o) H2,p,q(o) · · · Hθ−1,p,q(o) Hθ,p,q(o)
1 1

[2]p,q

1
[3]p,q

· · · 1
[θ]p,q

1
[θ+1]p,q

0 1

21


p,q

[2]p,q
· · ·

θ − 1
1


p,q

[θ−1]p,q

θ1


p,q

[θ]p,q

0 0 1 · · ·

θ − 1
2


p,q

[θ−2]p,q

θ2


p,q

[θ−1]p,q
...

...
...

. . .
...

...

0 0 0 . . . 1

 θθ − 1


p,q

[2]p,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

with

HB0,p,q(o) = 1, (4.4)

where Hθ,p,q(o) are the θth (p, q)-Hermite polynomials (θ = 0, 1, 2, . . . ).

4.2. The (p, q)-Hermite-Euler polynomials

With Ap,q(ζ)= [2]p,q

ep,q(ζ)+1 , (p, q)Ap Aθ,p,q(o) simplify into (p, q)EP Eθ,p,q(o) (Table 1 (II)). By selecting
Ap,q(ζ), (p, q)HAP HAθ,p,q(o) simplify to (p, q)HEP HEθ,p,q(o), which are determined by the subsequent
generating function:

[2]p,qep,q([2]p,qoζ) ep,q(−ζ2)
1 + ep,q(ζ)

=

∞∑
θ=0

HEθ,p,q(o)
ζθ

[θ]p,q!
. (4.5)

(p, q)HEP HEθ,p,q(o) of degree θ are received by the following series:

HEθ,p,q(o) =
θ∑
υ=0

Eθ,p,q

[
θ

υ

]
p,q

Hθ−υ,p,q(o), E0,p,q , 0. (4.6)
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The next formula to (p, q)HEP HEθ,p,q(o) holds true:

HEθ,p,q(o) =
Hθ,p,q(o)
E0,p,q

−
1
E0,p,q

θ−1∑
υ=0

Bθ−υ,p,q

[
θ

υ

]
p,q

HEθ,p,q(o), θ = 1, 2, 3, . . . . (4.7)

By selecting E0,p,q = 1 and Eθ,p,q = 1
[2]p,q

, θ = 1, 2, 3. . . , at Eqs (3.1) and (3.2), we receive the
determinant formula that corresponds to (p, q)HEP HEθ,p,q(o).

Definition 3. (p, q)HEP HEθ,p,q(o) of degree θ is supplied as follows:

HE0,p,q(o) = 1 (4.8)

HEθ,p,q(o) = (−1)θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,p,q(o) H2,p,q(o) · · · Hθ−1,p,q(o) Hθ,p,q(o)
1 1

[2]p,q

1
[2]p,q

· · · 1
[2]p,q

1
[2]p,q

0 1

21


p,q

[2]p,q
· · ·

θ − 1
1


p,q

[2]p,q

θ1


p,q

[2]p,q

0 0 1 · · ·

θ − 1
2


p,q

[2]p,q

θ2


p,q

[2]p,q
...

...
...

. . .
...

...

0 0 0 . . . 1

 θθ − 1


p,q

[2]p,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where Hθ,p,q(o) are the θth (p, q)-Hermite polynomials (θ = 0, 1, 2, . . . ).

4.3. The (p, q)-Hermite-Genocchi polynomials

With Ap,q(ζ)= [2]p,qζ

ep,q(ζ)+1 , (p, q)Ap Aθ,p,q(o) simplify to (p, q)GP Gθ,p,q(o) (Table 1 (III)). By selecting
Ap,q(ζ), (p, q)HAP HAθ,p,q(o) reduces to (p, q)HGP HGθ,p,q(o), which are determined by the subsequent
generating function:

[2]p,qζep,q(oζ) ep,q(−ζ2)
1 + ep,q(ζ)

=

∞∑
θ=0

HGθ,p,q(o)
ζθ

[θ]p,q!
. (4.9)

(p, q)HGP HGθ,p,q(o) of degree θ are provided by the following series:

HGθ,p,q(o) =
θ∑
υ=0

Gυ,p,q

[
θ

υ

]
p,q

Hθ−υ,p,q(o), G0,p,q , 0. (4.10)

The next identity of (p, q)HGP HGθ,p,q(o) holds true:

HGθ,p,q(o) =
Hθ,p,q(o)
G0,p,q

−
1
G0,p,q

[
θ

υ

]
p,q

HGθ,p,q(o), θ = 1, 2, 3, . . . . (4.11)
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5. Two-dimensional (p, q)-Hermite-Appell polynomials

The introduction for two-dimensional (p, q)-Appell polynomials, which correspond to the
2-variable extension related to (p, q)-Appell polynomials designated as two-dimensional (p, q)-Appell
polynomials Aθ,p,q(o, µ), are provided. The strategy employed in the preceding section is utilized to
provide the two-dimensional (p, q)-Hermite-Appell polynomials 2D(p, q)HAP HAθ,p,q(o, µ),
alongside emphasizing on deriving their generating functions and series expressions.

The next findings are demonstrated for the purpose of determining the generating function for
2D(p, q)HAP HAθ,p,q(o, µ).

Theorem 8. The 2D(p, q)HAP HAθ,p,q(o, µ) maintain their generating function for the following:

ep,q([2]p,qoζ) ep,q(−ζ2)Ep,q(µζ)Ap,q(ζ) =
∞∑
θ=0

HAθ,p,q(o, µ)
ζθ

[θ]p,q!
. (5.1)

Proof. We can see that in the left part of Eq (1.9), we expanded the primary exponential function
ep,q(oζ) and then replaced the power of o, (i.e., o0, o1, po2, . . . , p(θ2)oθ) with the corresponding
polynomials H0,p,q(o),H1,p,q(o),H2,p,q(o), . . . ,Hθ,p,q(o) at the left part and o with H1,p,q(o) into the right
part of the resultant formula, we receive

Ap,q(ζ)
(
1+H1,p,q(o)

ζ

[1]p,q!
+H2,p,q(o)

ζ2

[2]p,q!
+· · ·+Hθ,p,q(o)

ζθ

[θ]p,q!

)
Ep,q(µζ) =

∞∑
θ=0

Aθ,p,q
(
H1,p,q(o), µ

) ζθ
[θ]p,q!

.

(5.2)
Further, we sum up the expansion in the left part, then employ the Eq (1.6) within the resultant

formula to generate

Ap,q(ζ) ep,q
(
[2]p,qoζ

)
ep,q(−ζ2)Ep,q(µζ) =

∞∑
θ=0

Aθ,p,q
(
H1,p,q(o), µ

) ζθ
[θ]p,q!

. (5.3)

Finally, we write the outcome of 2D(p, q)HAP HAθ,p,q(o, µ) on the right part of the previous
equation as

Aθ,p,q

(
H1,p,q(o, µ)

)
= HAθ,p,q(o, µ).

Thus, the assertion Eq (5.1) is proved.

We can acquire the series description for 2D(p, q)HAP HAθ,p,q(o, µ) through proving the
subsequent statement.

Theorem 9. The 2D(p, q)HAP HAθ,p,q(o, µ) exhibit through the series description shown below:

HAθ,p,q(o, µ) =
θ∑
υ=0

HAθ−υ,p,q(o) q(υ2)
[
θ

υ

]
p,q

µυ. (5.4)

Networks and Heterogeneous Media Volume 21, Issue 1, 70–91.



85

Proof. Expanding the left part of formula (5.1) using formulas (1.3) and (2.1) , we gain
∞∑
θ=0

HAθ,p,q(o)
ζθ

[θ]p,q!

∞∑
υ=0

q(υ2) µυ
ζυ

[υ]p,q!
=

∞∑
θ=0

HAθ,p,q(o, µ)
ζθ

[θ]p,q!
.

Consequently, the application of the Cauchy product rule yields
∞∑
υ=0

∞∑
θ=0

[
θ

υ

]
p,q

q(υ2) µυHAθ−υ,p,q(o)
ζθ

[θ]p,q!
=

∞∑
θ=0

HAθ,p,q(o, µ)
ζθ

[θ]p,q!
.

The assertion Eq (5.4) can be obtained by comparing the coefficients of similar powers of ζ within
each side of the formula.

Table 3 enumerates several components of the two-dimensional (p, q)-Appell class. Each
component of the two-dimensional (p, q)-Appell class is associated with the corresponding special
polynomials that exist within the two-dimensional (p, q)-Hermite-Appell class. By selecting
appropriate values for the function Ap,q in Eqs (5.1) and (5.4), the generating functions and series
expressions for the associated components of the two-dimensional (p, q)-Hermite Appell class can be
derived. The next table lists the resulting components of the two-dimensional (p, q)-Hermite Appell
class together with their generating functions and series expressions.

Table 3. Some known two-dimensional (p, q)-Hermite-type Apostol polynomials
HAθ,p,q(o, µ).

S.No. Ap,q(ζ) Generating function and relation Polynomials

I Ap,q(ζ) =
ζ

ep,q(ζ) − 1
ζ

ep,q(ζ) − 1
ep,q(oζ) ep,q(−ζ2) Ep,q(µζ) =

∞∑
θ=0

HBθ,p,q(o, µ)
ζθ

[θ]p,q!

HBθ,p,q(o, µ) =
θ∑
υ=0

θυ


p,q

q(υ2) µυ HBθ−υ,p,q(o) Two-dimensional (p, q)-Hermite–Bernoulli polynomials

II Ap,q(ζ) =
[2]p,q

ep,q(ζ) + 1
[2]p,q

ep,q(ζ) + 1
ep,q(oζ) Ep,q(µζ) =

∞∑
θ=0

HEθ,p,q(o, µ)
ζθ

[θ]p,q!

HEθ,p,q(o, µ) =
θ∑
υ=0

θυ


p,q

q(υ2) µυ HEθ−υ,p,q(o) Two-dimensional (p, q)-Hermite–Euler polynomials

III Ap,q(ζ) =
[2]p,q ζ

ep,q(ζ) + 1
[2]p,q ζ

ep,q(ζ) + 1
ep,q(oζ) ep,q(−ζ2) Ep,q(µζ) =

∞∑
θ=0

HGθ,p,q(o, µ)
ζθ

[θ]p,q!
Two-dimensional (p, q)-Hermite–Genocchi polynomials

Remark 1. For p = 1, the series formula (5.4) of (p, q)HAP HAθ,p,q(o, µ), provides the series definition
of (qHAP) HAθ,q(o, µ) as follows:

HAθ,q(ζ, µ) =
θ∑
υ=0

HAθ−υ,q(o) q(υ2)
[
θ

υ

]
q

µυ. (5.5)

This is the two-dimensional q-Hermite Appell polynomials’ series definition.

6. Graphical diagrams

This section includes graphical diagrams of the novel class of (p, q)-Hermite-Appell polynomials
and 2D (p, q)-Hermite-Appell polynomials. Numerical research confirms theoretical findings in the
complex plane, thus providing insight into their analytical structure.
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We used the Mathematica software to create graphs of (p, q)HBP HBθ,p,q(o), (p, q)HEP HEθ,p,q(o),
2D(p, q)HBP HBθ,p,q(o, µ), and 2D(p, q)HEP HEθ,p,q(o, µ). To draw the graphs of these polynomials,
by taking p = 1

2 , q = 1
3 into the determinant formulations (4.4) and (4.8), we obtain the outcomes

displayed in Table 4 for θ = 1 and 2.

Table 4. The expressions of HBθ, 12 ,
1
3
(o) and HEθ, 12 ,

1
3
(o) for θ = 1, 2.

Polynomial θ = 1 θ = 2

HBθ, 12 ,
1
3
(o) −

6
5
+

5
6

o
5
6

o2 −
5
6

o −
871
570

HEθ, 12 ,
1
3
(o) −

6
5
+

5
6

o
5
6

o2 −
5
6

o −
5
6

Now, with the help of Mathematica software and using Eqs (4.4) and (4.8) and the expressions of
HBθ, 12 ,

1
3
(o) and HEθ, 12 ,

1
3
(o) from Table 5, we get the graphs in diagrams 1 and 2 which demonstrate the

continued existence and structure of (p, q)-polynomial familial relationships.

1 2 3 4
o

-2

2

4

6

8

�

HB1,1/2,1/3(o)

HB2,1/2,1/3(o)

Figure 1. Graphs of HB1,1/2,1/3(o), HB2,1/2,1/3(o).

Figure 1 depicts these polynomials over set p = 1/2 and q = 1/3, thus emphasizing their behavior
for θ = 1, 2.
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0.5 1.0 1.5 2.0 2.5 3.0
o

-1

1

2

3

4

�

HE1,1/2,1/3(o)

HE2,1/2,1/3(o)

Figure 2. Graphs of HE1,1/2,1/3(o), HE2,1/2,1/3(o).

In a comparable manner, Figure 2 portrays their behavior for θ = 1, 2 and varied values of p = 1/2
and q = 1/3, thus offering an extensive description of their dependence on the parameters involved.

To draw the graphs of 2D polynomials, we take p = 1
2 , q = 1

3 into the determinant expressions (4.4)
and (4.8); then, we obtain the outcomes indicated in Table 5 for θ = 2.

Table 5. The expressions of HB2, 12 ,
1
3
(o, µ) and HE2, 12 ,

1
3
(o, µ).

Polynomial Expression for θ = 2

HB2, 12 ,
1
3
(o, µ)

5
6

o2 +
1
3
µ2 −

5
6

o − µ +
25
36

oµ −
871
570

HE2, 12 ,
1
3
(o, µ)

5
6

o2 +
1
3
µ2 −

5
6

o − µ +
25
36

oµ −
5
6

Now, with the help of the Mathematica software and using Eqs (4.4) and (4.8) and the expressions
of 2D(1/2, 1/3)HBP HB2, 12 ,

1
3
(o, µ) and 2D(1/2, 1/3)HEP HE2, 12 ,

1
3
(o, µ) via Table 5, we obtain the graphs

of Figures 3 and 4.
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HB2,1/2,1/3(o, )

Figure 3. Surface plot for HB2,1/2,1/3(o, µ).

HE2,1/2,1/3(o, )

Figure 4. Surface plot for HB1,1/2,1/3(o, µ).
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The surface plots depict how a dependent response variable (Z-axis) changes in 3D across two
independent variables (X and Y axes), thereby revealing patterns such as peaks (maxima), valleys
(minima), curvature, and interactions. It aids in the discovery of optimal settings for processes such as
maximizing the performance or minimizing defects by revealing complex relationships beyond simple
linear models.

7. Conclusions

In this article, we created a new class of (p, q)-Hermite-Appell polynomials by combining
(p, q)-Hermite and (p, q)-Appell polynomials. We provided this class’s qualities, including the
generating function, series definition, derivative properties, integral representation, summation
formulas, and determinant representation. We analyzed a few components of (p, q)-Hermite-Appell
polynomials, such as (p, q)-Hermite-Bernoulli polynomials, (p, q)-Hermite-Euler polynomials, and
(p, q)-Hermite-Genocchi polynomials; then, we inferred some of their features. Moreover, we
acquired a (p, q)-differential operator formula for (p, q)-Hermite-Appell polynomials and we used the
Wolfram Mathematica software to plot the graphical diagrams of select components of
(p, q)-Hermite-Appell along with two-dimensional (p, q)-Hermite-Appell polynomials. The
(p, q)-Hermite-Appell polynomials and their generalizations will be used in a variety of real-world
applications, thus serving as a strong mathematical basis to tackle intricate problems in physics,
engineering, and economics. Our research advances our comprehension of (p, q)-series and
(p, q)-special functions, which may find applications in a variety of disciplines, including
mathematical physics, number theory, combinatorics, financial mathematics, quantum mechanics,
probability theory, image processing, engineering, and complex systems.
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Appendix: Graphic’s codes

Code Figure 1:

Plot[−6/5 + 5/6o, 5/6o22 − 5/6o − 871/570, {o, 0, 4},
PlotStyle→ {{AbsoluteThickness[2.5], DotDashed,Red},
AbsoluteThickness[2.5],DotDashed,Blue}}, PlotLegends → {”HB1,1/2,1/3(o)”, ”HB2,1/2,1/3(o)”},

AxesLabel→ {o, µ}]}

Code Figure 2:

Plot[−6/5 + 5/6o, 5/6o2 − 5/6o − 5/6, {o, 0, 3},
PlotStyle→{{AbsoluteThickness[2.5],DotDashed,Blue}, AbsoluteThickness[2.5], DotDashed,Red}},
PlotLegends→ {”HE1,1/2,1/3(o)”, ”HE2,1/2,1/3(o)”}, AxesLabel→ {o, µ}]

Code Figure 3:

Plot3D[5/6o2 + 1/3µ2 − 5/6o − µ + 25/36o ∗ µ − 871/370, {o,−100, 800}, {µ,−10, 70}, PlotLegends
→ {”HB2,1/2,1/3(o, µ)”}, FillingStyle → White, Mesh → None, PlotStyle → Directive[Blue,
Specularity[White, 50], Opacity[3]], ExclusionsStyle→ {Green,GreenFunction}]

Code Figure 4:

Plot3D[5/6o2 + 1/3µ2 − 5/6o − µ + 25/36o ∗ µ − 5/6, {o,−50, 400}, {µ,−10, 70},
PlotLegends→ {”HE2,1/2,1/3(o, µ)”}, FillingStyle→White, Mesh→ None, PlotStyle→
Directive[Green,Specularity[Yellow,20], ExclusionsStyle→ {Yellow, YellowFunction}]
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