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Abstract: The Kuramoto-Velarde equation describes the spatio-temporal evolution of step
morphology on crystal surfaces, as well as the dynamics of spinodal decomposition in phase-separating
systems subjected to an external field. In this paper, we prove the well-posedness of the solutions for
the initial-boundary value problem for this equation, under several possible boundary conditions.
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1. Introduction

In this paper, we investigate the well-posedness of the solutions for the equation:

∂tu + ∂x f (u) + q1∂xu3 + κ(∂xu)2 + ν∂2
xu + δ∂

3
xu + β

2∂4
xu + γu∂

2
xu = 0, (1.1)

with q, κ, ν, δ, β, γ ∈ R, such that

β , 0, γ =
κ

2
. (1.2)

We are interested in the initial-boundary value problem for this equation. More precisely, we
consider the following boundary conditions:u(t, 0) = g(t), t > 0,

∂xu(t, 0) = h(t), t > 0,
g, h ∈ W1,∞(0,∞), g(0) = u0(0), q1 = 0, (1.3)u(t, 0) = g(t), t > 0,

∂2
xu(t, 0) = 0, t > 0,

g ∈ W1,∞(0,∞), g(0) = u0(0), q1 = 0, (1.4)
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93∂2
xu(t, 0) = 0, t > 0,
∂3

xu(t, 0) = 0, t > 0.
q1 = −τ

2 , 0, (1.5)∂xu(t, 0) = 0, t > 0,
∂3

xu(t, 0) = 0, t > 0,
q1 = −τ

2 , 0, δ = 0, (1.6)u(t, 0) = 0, t > 0,
∂xu(t, 0) = 0, t > 0.

(1.7)

Moreover, we augment Eq (1.1) with the following initial datum:

u(0, x) = u0(x), x > 0, (1.8)

for which we assume:
u0 ∈ H2(0,∞). (1.9)

Equation (1.1) has been developed in order to model several physical phenomena like that:

• Spinodal decomposition of phase separating systems in an external field [1–3];
• Spatio-temporal evolution of the morphology of steps on crystal surfaces [4–6];
• Growth of thermodynamically unstable crystal surfaces with strongly anisotropic surface tension

where the function u represents is the surface slope, while the constants q and q1 are the growth
driving forces proportional to the difference between the bulk chemical potentials of the solid and
fluid phases, respectively [7–11].

The Kuramoto-Velarde equation

∂tu + q∂xu2 + κ(∂xu)2 + ν∂2
xu + δ∂

3
xu + β

2∂4
xu + γu∂

2
xu = 0, (1.10)

can be obtained from Eq (1.1) taking

f (u) = qu2, q ∈ R, q1 = 0. (1.11)

Equation (1.10) has been deduced in order to describe slow space-time variations of disturbances
at interfaces, diffusion-reaction fronts, and plasma instability fronts [12–14]. It was very useful in the
modelization of Benard–Marangoni cells, that occur when there is large surface tension on the
interface [15–17] in a microgravity environment. This situation arises in crystal growth experiments
aboard an orbiting space station, although the free interface is metastable with respect to small
perturbations. The nonlinearities γu∂2

xu and κ(∂xu)2 model pressure destabilization effects striving to
rupture the interface. Equation (1.10) is deduced in [18] to describe the long waves on a viscous fluid
owing down an inclined plane, and in [19] to model the drift waves in a plasma.

The mathematical results on Eq (1.10) can be resumed as follows: The exact solutions are studied
in [20, 21], the existence of the solitons in [12, 22], the existence of traveling wave solutions in [23],
the existence of periodic solutions in [24], and the well-posedness of the Cauchy problem in [25–27].

Taking κ = γ = 0 in Eq (1.10), we have

∂tu + q∂xu2 + ν∂2
xu + δ∂

3
xu + β

2∂4
xu = 0. (1.12)

Networks and Heterogeneous Media Volume 21, Issue 1, 92–146.



94

It was also independently deduced by Kuramoto [28–30] to describe the phase turbulence in
reaction–diffusion systems, and by Sivashinsky [31], to describe plane flame propagation, taking into
account the combined influence of diffusion and thermal conduction of the gas on the stability of a
plane flame front.

Equation (1.12) can be used to study incipient instabilities in several physical and chemical
systems [32–34]. Moreover, Eq (1.12), which is also known as the Benney–Lin equation [35, 36],
were derived by Kuramoto in the study of phase turbulence in Belousov–Zhabotinsky reactions [37].

The dynamical properties and the existence of exact solutions for Eq (1.12) have been investigated
in [5, 38–42]. Control problems for Eq (1.12) are studied in [43–47], the global exponential
stabilization in [48]. In [6], the existence of solitonic solutions for Eq (1.12) is proven. In [49–54]
and [55–57], the well–posedness of the Cauchy problem for Eq (1.12) is proven. Numerical results on
Eq (1.12) can be found in [58–63]. Finally, in [64], the convergence of the solution of Eq (1.12) to the
unique entropy one of the Burgers equation is proven.

Key results on boundary value problems for evolutive equations can be found in [65–69].
The main result of this paper is the following theorem.

Theorem 1.1. Fix T > 0 and assume Eqs (1.2) and (1.9). Eq (1.1) augmented with one the boundary
conditions (1.3)–(1.7) and the initial datum (1.8) admit a unique solution

u ∈ H1((0,T ) × (0,∞)) ∩ L∞(0,T ; H2(0,∞)) ∩ L4(0,T ; W2, 4(R+)),
∂4

xu ∈ L2((0,T ) × (0,∞)).
(1.13)

Moreover, if u1 and u2 are two solutions of the same initial-boundary value problem for Eq (1.1),
we have

∥u1(t, ·) − u2(t, ·)∥L2(0,∞) ≤ eC(T )t
∥∥∥u1,0 − u2,0

∥∥∥
L2(0,∞)

, 0 ≤ t ≤ T, (1.14)

for some suitable C(T ) > 0 depending only on T ,
∥∥∥u1,0

∥∥∥
H2(0,∞)

, and
∥∥∥u2,0

∥∥∥
H2(0,∞)

.

Hence, under Assumption (1.2), Theorem 1.1 gives the well-posedness of the initial-boundary
value problems (1.1), (1.3)–(1.7). The proof of Theorem 1.1 relies on deriving suitable a priori
estimates together with an application of the Cauchy-Kovalevskaya Theorem [70]. The regularity
assumption (1.9) on the initial datum is essential in order to derive our a priori estimates. We do not
think that the stability estimate (1.14) holds with a weaker assumption because the coefficient in the
exponent depends on the H2 norm of the initial data.

The paper is organized as follows. In Sections 2–6, we prove Theorem 1.1 for Eqs (1.1)-(1.3)-(1.8),
Eqs (1.1)-(1.4)-(1.8), Eqs (1.1)-(1.5)-(1.8), Eqs (1.1)-(1.6)-(1.8), Eqs (1.1)-(1.7)-(1.8), respectively. In
Section 7, we collected some long and technical proofs of some lemmas. We present the conclusions
of the paper in Section 8.

2. Proof of the Theorem 1.1 for Eqs (1.1)-(1.3)-(1.8)

In this section, we prove Theorem 1.1 for Eqs (1.1)-(1.3)-(1.8).
Let us prove some a priori estimates on u, denoting with C0 the constants, that depend only on the

data, and with C(T ), the constants that depend also on T .
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Following [71], we introduce the auxiliary variable:

v(t, x) = u(t, x) − g(t)e−x −
[
g(t) + h(t)

]
xe−x. (2.1)

Observe that

∂tv(t, x) =∂tu(t, x) − g′(t)e−x −
[
g′(t) + h′(t)

]
xe−x,

∂xv(t, x) =∂xu(t, x) − h(t)e−x +
[
g(t) + h(t)

]
xe−x, (2.2)

∂2
xv(t, x) =∂2

xu(t, x) + 2h(t)e−x + g(t)e−x −
[
g(t) + h(t)

]
xe−x,

∂3
xv(t, x) =∂3

xu(t, x) − 3h(t)e−x − 2g(t)e−x +
[
g(t) + h(t)

]
xe−x,

∂4
xv(t, x) =∂4

xu(t, x) + 4h(t)e−x + 3g(t)e−x −
[
g(t) + h(t)

]
xe−x.

In particular, thanks to Eqs (1.1), (1.3), (2.1), and (2.2),

v(t, 0) = u(t, 0) − g(t) = 0, ∂xv(t, 0) = ∂xu(t, 0) − h(t) = 0. (2.3)

Moreover, thanks to Eqs (1.3) and (2.2), we have that

∥v0∥
2
L2(0,∞) ≤ ∥u0∥

2
L2(0,∞) . (2.4)

Again, with Eqs (1.1), (1.3) and (1.8), we have the following equation for v.

∂tv + 2qv∂xv + κ(∂xv)2 + ν∂2
xu + δ∂

3
xv + β

2∂4
xv + γv∂

2
xv

= −g′(t)e−x −
[
g′(t) + h′(t)

]
xe−x − 2qh(t)e−xv − 2q(g(t) + h(t)xe−xv

− 2qg(t)∂xv − 2qh(t)g(t)e−2x − 2q[g(t) + h(t)]g(t)xe−2x (2.5)
+ 2q[g(t) + h(t)xe−x∂xv − 2q[g(t) − h(t)]h(t)xe−2x

+ 2q(g2(t) − h2(t))x2e−2x −
[
g′(t) + h′(t)

]
xe−x

− 2κh(t)e−x∂xv + 2κ
[
g(t) + h(t)

]
xe−x∂xv − κh2(t)e−2x

− κ
[
g(t) + h(t)

]2 x2e−2x + 2κg(t)
[
g(t) + h(t)

]
xe−2x

+ 2νh(t)e−x + νg(t)e−x − ν
[
g(t) + h(t)

]
xe−x

− 3δh(t)e−x − 2δg(t)e−x + δ
[
g(t) + h(t)

]
xe−x + 4β2h(t)e−x

+ 3β2g(t)e−x − β2 [
g(t) + h(t)

]
xe−x + 2γh(t)e−xv

+ γg(t)e−xv − 2γ
[
g(t) + h(t)

]
xe−xv − γg(t)e−x∂2

xv

+ 2γg(t)h(t)e−2x + γg2(t)e−x − γg(t)
[
g(t) + h(t)

]
xe−2x

− γ
[
g(t) + h(t)

]
xe−x∂2

xv + 2γh(t)
[
g(t) + h(t)

]
xe−2x

+ γ
[
g(t) + h(t)

]
xe−x − γ

[
g(t) + h(t)

]
x2e−2x.

Lemma 2.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥v(t, ·)∥2L2(0,∞) +
β2eC0t

2

∫ t

0
e−C0 s

∥∥∥∂2
xv(s, ·)

∥∥∥2

L2(0,∞)
ds ≤C(T ), (2.6)∫ t

0
∥∂xv(s, ·)∥2L2(0,∞) ds ≤C(T ), (2.7)

for every 0 ≤ t ≤ T.
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The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Arguing as in [52, Lemmas 2.2 and 2.3], we have the following result.

Lemma 2.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥u(t, ·)∥L2(0,∞) ≤C(T ), (2.8)∫ t

0
∥∂xu(s, ·)∥2L2(0,∞) ds ≤C(T ), (2.9)∫ t

0

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(0,∞)
ds ≤C(T ), (2.10)∫ t

0
∥u(s, ·)∂xu(s, ·)∥2L2(R+) ds ≤C(T ), (2.11)

for every 0 ≤ t ≤ T.

Following [72, Lemma 2.3], we prove the following result.

Lemma 2.3. Fix T > 0 and assume Eq (1.2). There exists a constant C0 > 0, such that

∥∂xu(t, ·)∥4L4(0,∞) ≤ C0

(
∥u∥2L∞((0,T )×(0,∞))

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ 1

)
, (2.12)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . We begin by observing that, thanks to Eq (1.3),

∥∂xu(t, ·)∥4L4(0,∞) =

∫ ∞

0
(∂xu)3∂xudx

= − u(t, 0)(∂xu(t, 0))3 − 3
∫ ∞

0
u(∂xu)2∂2

xudx

= − g(t)h3(t) − 3
∫ ∞

0
u(∂xu)2∂2

xudx.

(2.13)

Due to the Young inequality,

3
∫ ∞

0
|u|(∂xu)2|∂2

xu|dx ≤
1
2
∥∂xu(t, ·)∥4L4(0,∞) +

9
2

∫ ∞

0
u2(∂2

xu)2dx

≤
1
2
∥∂xu(t, ·)∥4L4(0,∞) +

9
2
∥u∥2L∞((0,∞)

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
.

It follows from Eqs (1.3) and (2.13) that

1
2
∥∂xu(t, ·)∥4L4(0,∞) ≤ C0 +

9
2
∥u∥2L∞((0,∞)

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
,

which gives Eq (2.12).
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Lemma 2.4. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥∂xu(t, ·)∥L2(0,∞) ≤ C(T )
√(

1 +
∥∥∥∂2

xu(t, ·)
∥∥∥

L2(0,∞)

)
, (2.14)

for every 0 ≤ t ≤ T. Moreover,

∥u(t, ·)∥L∞(0,∞) ≤ C(T )

√(
1 +

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(0,∞)

))
, (2.15)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . We begin by proving Eq (2.14). Thanks to Eqs (1.3), (2.8) and the Hölder
inequality,

∥∂xu(t, ·)∥2L2(0,∞) =

∫ ∞

0
∂xu∂xudx = −u(t, 0)∂xu(t, 0) −

∫ ∞

0
u∂2

xudx

= − g(t)h(t) −
∫ ∞

0
u∂2

xudx ≤ C0 +

∫ ∞

0
|u||∂2

xu|dx

≤C0 + ∥u(t, ·)∥L2(0,∞)

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(0,∞)

≤C(T )
(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(0,∞)

)
,

which gives Eq (2.14).
Finally, we prove Eq (2.15). Due to Eqs (1.3), (2.8) and the Hölder inequality,

u2(t, x) =2
∫ x

0
u∂xudx + 2g2(t) ≤ 2

∫ ∞

0
|u||∂xu|dx +C0

≤2 ∥u(t, ·)∥L2(0,∞) ∥∂xu(t, ·)∥L2(0,∞) +C0 ≤ C(T )
(
1 + ∥∂xu(t, ·)∥L2(0,∞)

)
.

Therefore, by Eq (2.14),

∥u(t, ·)∥2L2(0,∞) ≤ C(T )
(
1 +

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(0,∞)

))
,

which gives Eq (2.15).

Following [73, Lemma 2.2], we prove the following result.

Lemma 2.5. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that∥∥∥∂2
xu

∥∥∥
L∞(0,T ;L2(0,∞))

≤C(T ), (2.16)∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+
β2

42

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥
L2(0,∞)

ds ≤C(T ), (2.17)

∥∂xu(t, ·)∥L2(0,∞) ≤C(T ), (2.18)
∥u∥L∞((0,T )×(0,∞)) ≤C(T ), (2.19)∫ t

0

∥∥∥∂3
xu(s, ·)

∥∥∥2

L2(0,∞)
ds ≤C(T ), (2.20)
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98∫ t

0
(∂2

xu(s, 0))2dx ≤C(T ), (2.21)∫ t

0
(∂3

xu(s, 0))2dx ≤C(T ), (2.22)

∥∂xu∥L∞((0,T )×(0,∞)) ≤C(T ), (2.23)

for every 0 ≤ t ≤ T.

The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Lemma 2.6. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that∫ t

0

∥∥∥∂2
xu(s, ·)

∥∥∥4

L4(R+)
ds ≤ C(T ), (2.24)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T , we begin by observing that, thanks to Eq (1.3),∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(0,∞)
=

∫ ∞

0
∂2

xu(∂2
xu)3dx

= − ∂xu(t, 0)(∂2
xu(t, 0))3 − 3

∫ ∞

0
∂xu(∂2

xu)2∂3
xudx

= − h(t)(∂2
xu(t, 0))3 − 3

∫ ∞

0
∂xu(∂2

xu)2∂3
xudx.

(2.25)

Observe that
(∂2

xu(t, 0))3 = −3
∫ ∞

0
(∂2

xu)2∂3
xudx.

Therefore, by Eq (2.25), we have that∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(0,∞)
= 3h(t)

∫ ∞

0
(∂2

xu)2∂3
xudx − 3

∫ ∞

0
∂xu(∂2

xu)2∂3
xudx. (2.26)

Thanks to Eqs (1.3), (2.23), and the Young inequality,

3|h(t)|
∫ ∞

0
(∂2

xu)2|∂3
xu|dx ≤ C0

∫
R

(∂2
xu)2|∂3

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣ (∂2
xu)2

√
3

∣∣∣∣∣∣
∣∣∣∣∣∣∣
√

3C0∂
3
xu

2

∣∣∣∣∣∣∣ dx

≤
1
3

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
+C0

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
,

3
∫ ∞

0
|∂xu|(∂2

xu)2|∂3
xu|dx ≤ 3 ∥∂xu∥L∞((0,T )×(0,∞))

∫
R

(∂2
xu)2|∂3

xu|dx

≤ C(T )
∫ ∞

0
(∂2

xu)2|∂4
xu|dx ≤

1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
+C(T )

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
.

It follows from Eq (2.26) that

1
6

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(0,∞)
≤ C(T )

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
.

An integration on (0, t) and Eq (2.20) give Eq (2.24).
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Lemma 2.7. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that∫ t

0
∥∂tu(s, ·)∥2L2(0,∞) ds ≤ C(T ), (2.27)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . Multiplying Eqs (1.1)-(1.3)-(1.8) by 2∂tu, an integration on (0,∞) gives

2 ∥∂tu(t, ·)∥2L2(0,∞) = − 2κ
∫ ∞

0
(∂xu)2∂tudx − 2ν

∫ ∞

0
∂2

xu∂tudx

− 2δ
∫ ∞

0
∂3

xu∂tudx − 2β2
∫ ∞

0
∂4

xu∂tudx − 2γ
∫ ∞

0
u∂2

xu∂tu

− 4q
∫ ∞

0
u∂xu∂tudx.

(2.28)

Due to Eqs (2.17), (2.19), (2.20), (2.23) and the Young inequality,

2|κ|
∫ ∞

0
(∂xu)2|∂tu|dx ≤ 2|κ| ∥∂xu∥L∞((0,T )×(0,∞))

∫ ∞

0
|∂xu||∂tu|dx

≤ 2C(T )
∫ ∞

0
|∂xu||∂tu|dx = 2

∫ ∞

0

∣∣∣∣∣∣C(T )∂xu
√

D5

∣∣∣∣∣∣ ∣∣∣∣ √D5∂tu
∣∣∣∣ dx

≤
C(T )

D5
∥∂xu(t, ·)∥L2(0,∞) + D5 ∥∂tu(t, ·)∥2L2(0,∞)

≤
C(T )

D5
+ D5 ∥∂tu(t, ·)∥2L2(0,∞) ,

2|ν|
∫ ∞

0
|∂2

xu||∂tu|dx = 2
∫ ∞

0

∣∣∣∣∣∣ ν∂2
xu
√

D5

∣∣∣∣∣∣ ∣∣∣∣ √D5∂tu
∣∣∣∣ dx

≤
ν2

D5

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ D5 ∥∂tu(t, ·)∥2L2(0,∞)

≤
C(T )

D5
+ D5 ∥∂tu(t, ·)∥2L2(0,∞) ,

2|δ|
∫ ∞

0
|∂3

xu||∂tu|dx = 2
∫ ∞

0

∣∣∣∣∣∣ δ∂3
xu
√

D5

∣∣∣∣∣∣ ∣∣∣∣ √D5∂tu
∣∣∣∣ dx

≤
δ2

D5

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
+ D5 ∥∂tu(t, ·)∥2L2(0,∞) ,

2β2
∫ ∞

0
|∂4

xu||∂tu|dx = 2
∫ ∞

0

∣∣∣∣∣∣β2∂4
xu

√
D5

∣∣∣∣∣∣ ∣∣∣∣ √D5∂tu
∣∣∣∣ dx

≤
β4

D5

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
+ D5 ∥∂tu(t, ·)∥2L2(0,∞) ,

2|γ|
∫ ∞

0
|u||∂2

xu||∂tu|dx ≤ 2|γ| ∥u∥L∞((0,T )×(0,∞))

∫ ∞

0
|∂2

xu||∂tu|dx

≤ 2C(T )
∫ ∞

0
|∂2

xu||∂tu|dx = 2
∫ ∞

0

∣∣∣∣∣∣C(T )∂2
xu

√
D5

∣∣∣∣∣∣ ∣∣∣∣ √D5∂tu
∣∣∣∣ dx
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≤
C(T )

D5

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ D5 ∥∂tu(t, ·)∥2L2(0,∞)

≤
C(T )

D5
+ ∥∂tu(t, ·)∥2L2(0,∞) ,

4|q|
∫ ∞

0
|u||∂xu||∂tu|dx ≤ 4|q| ∥u∥L∞((0,T )×(0,∞))

∫ ∞

0
|∂xu||∂tu|dx

≤ 2C(T )
∫ ∞

0
|∂xu||∂tu|dx = 2

∫ ∞

0

∣∣∣∣∣∣C(T )∂xu
√

D5

∣∣∣∣∣∣ ∣∣∣∣ √D5∂tu
∣∣∣∣ dx

≤
C(T )

D5
∥∂xu(t, ·)∥2L2(R+) + D5 ∥∂tu(t, ·)∥2L2(R+)

≤
C(T )

D5
+ D5 ∥∂tu(t, ·)∥2L2(R+) ,

where D5 is a positive constant, which will be specified later. Consequently, by Eq (2.28),

2 (1 − 3D5) ∥∂tu(t, ·)∥2L2(0,∞) ≤
C(T )

D5
+
δ2

D5

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
+
β4

D5

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
.

Choosing D5 =
1
6 , we have that

∥∂tu(t, ·)∥2L2(0,∞) ≤C(T ) + 5δ2
∥∥∥∂3

xu(t, ·)
∥∥∥2

L2(0,∞)
+ 5β4

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
.

Integrating on (0, t), by Eqs (2.17) and (2.20), we get∫ t

0
∥∂tu(s, ·)∥2L2(0,∞) ds ≤C(T )t + 5δ2

∫ t

0

∥∥∥∂3
xu(s, ·)

∥∥∥2

L2(0,∞)
ds

+ 5β4
∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(0,∞)
ds ≤ C(T ),

which gives Eq (2.27).

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 2.2, 2.5–2.7 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is solution of Eqs (1.1)-(1.3)-(1.8) and (1.13) holds.

We prove Eq (1.14). Let u1 and u2 be two solutions of Eqs (1.1)-(1.3)-(1.8), which verify Eq (1.13),
that is 

∂tui + 2qui∂xui + κ(∂xui)2 + ν∂2
xui

+δ∂3
xui + β

2∂4
xui + γui∂

2
xui = 0, t > 0, x > 0,

ui(t, 0) = g(t), t > 0,
∂xui(t, 0) = h(t), t > 0,
ui(0, x) = ui, 0(x), x > 0,

i = 1, 2.

Then, the function
ω = u1 − u2 (2.29)
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solves the following initial-boundary value problem:

∂tω + 2q(u1∂xu1 − u2∂xu2) + κ
[
(∂xu1)2 − (∂xu2)2

)
+ ν∂2

xω

+δ∂3
xω + β

2∂4
xω + γ

(
u1∂

2
xu1 − u2∂

2
xu2

)
= 0, t > 0, x > 0,

ω(t, 0) = 0, t > 0,
∂xω(t, 0) = 0, t > 0,
ω(0, x) = u1, 0(x) − u2, 0(x), x > 0.

(2.30)

Observe that, thanks to Eq (2.29),

u1∂xu1 − u2∂xu2 = u1∂xu1 − u2∂xu1 + u2∂xu1 − u2∂xu2 = ∂xu1ω + u2∂xω,

(∂xu1)2 − (∂xu2)2 = (∂xu1 + ∂xu2) (∂xu1 − ∂xu2) = (∂xu1 + ∂xu2) ∂xω,

u1∂
2
xu1 − u2∂

2
xu2 = u1∂

2
xu1 − u1∂

2
xu2 + u1∂

2
xu2 − u2∂

2
xu2 = u1∂

2
xω + ∂

2
xu2ω.

Therefore, Eq (2.30) is equivalent to the following equation:

∂tω + 2q∂xu1ω + 2qu2∂xω + κ (∂xu1 + ∂xu2) ∂xω + ν∂
2
xω

+ δ∂3
xω + β

2∂4
xω + γu1∂

2
xω + γ∂

2
xu2ω = 0.

(2.31)

Moreover, since u1, u2 ∈ L∞(0,T ; H2(0,∞)), we have that

∥∂xu1∥L∞((0,T )×(0,∞)) , ∥∂xu2∥L∞((0,T )×(0,∞)) ≤ C(T ),
∥u1∥L∞((0,T )×(0,∞)) , ∥∂xu2(t, ·)∥L2(0,∞) ≤ C(T ).

(2.32)

Observe again that, thanks to Eq (2.30),

4q
∫ ∞

0
u2ω∂xωdx = − 2q

∫ ∞

0
∂xu2ω

2dx,

2δ
∫ ∞

0
ω∂3

xωdx = − 2δ
∫ ∞

0
∂xω∂

2
xωdx = 0,

2β2
∫ ∞

0
ω∂4

xωdx = − 2β2
∫ ∞

0
∂xω∂

3
xωdx = 2β2

∥∥∥∂2
xω(t, ·)

∥∥∥2

L2(0,∞)
.

(2.33)

Therefore, multiplying Eq (2.31) by 2ω, thanks to Eq (2.33), an integration on (0,∞) gives

d
dt
∥∂xω(t, ·)∥2L2(0,∞) + 2β2

∥∥∥∂2
xω(t, ·)

∥∥∥2

L2(0,∞)

= −2κ
∫ ∞

0
(∂xu1 + ∂xu2)ω∂xωdx − 2ν

∫ ∞

0
ω∂2

xωdx

− 2γ
∫ ∞

0
u1ω∂

2
xωdx − 2γ

∫ ∞

0
∂2

xu2ω
2dx

− 4q
∫ ∞

0
∂xu1ω

2dx + 2q
∫ ∞

0
∂xu2ω

2dx.

(2.34)

Due to Eq (2.32) and the Young inequality,

2|κ|
∫ ∞

0
|∂xu1 + ∂xu2|ω

2dx ≤ C(T ) ∥ω(t, ·)∥2L2(0,∞) ,
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2|ν|
∫ ∞

0
|ω||∂2

xω|dx =
∫ ∞

0

∣∣∣∣∣2νωβ
∣∣∣∣∣ ∣∣∣β∂2

xω
∣∣∣ dx

≤
2ν2

β2 ∥ω(t, ·)∥2L2(0,∞) +
β2

2

∥∥∥∂2
xω(t, ·)

∥∥∥2

L2(0,∞)
,

2|γ|
∫ ∞

0
|u1||ω||∂

2
xω|dx ≤C(T )

∫ ∞

0
|ω||∂2

xω|dx

=

∫ ∞

0

∣∣∣∣∣C(T )ω
β

∣∣∣∣∣ ∣∣∣β∂2
xω

∣∣∣ dx

≤C(T ) ∥ω(t, ·)∥2L2(0,∞) +
β2

2

∥∥∥∂2
xω(t, ·)

∥∥∥2

L2(0,∞)
,

2|γ|
∫ ∞

0
|∂2

xu2|ω
2dx ≤γ2

∫ ∞

0
(∂2

xu2)2ω2dx + ∥ω(t, ·)∥2L2(0,∞)

≤γ2 ∥ω(t, ·)∥2L∞(0,∞)

∥∥∥∂2
xu2(t, ·)

∥∥∥2

L2(0,∞)
+ ∥ω(t, ·)∥2L2(0,∞)

≤C(T ) ∥ω(t, ·)∥2L∞(0,∞) + ∥ω(t, ·)∥2L2(0,∞) ,

4|q|
∫ ∞

0
|∂xu1|ω

2dx ≤C(T ) ∥ω(t, ·)∥2L2(0,∞) ,

2|q|
∫ ∞

0
∂xu2ω

2dx ≤C(T ) ∥ω(t, ·)∥2L2(0,∞) .

Therefore, by Eq (2.34),

d
dt
∥ω(t, ·)∥2L2(0,∞) + β

2
∥∥∥∂2

xω(t, ·)
∥∥∥2

L2(0,∞)

≤C(T ) ∥ω(t, ·)∥2L2(0,∞) +C(T ) ∥ω(t, ·)∥2L∞(0,∞) .
(2.35)

Observe that, thanks to Eq (2.30) and the Hölder inequality,

ω2(t, x) =2
∫ x

0
ω∂xωdy ≤ 2

∫ ∞

0
|ω||∂xω|dx

≤2 ∥ω(t, ·)∥L2(0,∞) ∥∂xω(t, ·)∥L2(0,∞) .

Therefore, by the Young inequality,

∥ω(t, ·)∥2L∞(0,∞) ≤ ∥ω(t, ·)∥2L2(0,∞) + ∥∂xω(t, ·)∥2L2(0,∞) .

It follows from Eq (2.36) that

d
dt
∥ω(t, ·)∥2L2(0,∞) + β

2
∥∥∥∂2

xω(t, ·)
∥∥∥2

L2(0,∞)

≤C(T ) ∥ω(t, ·)∥2L2(0,∞) +C(T ) ∥∂xω(t, ·)∥2L2(0,∞) .
(2.36)

Observe that, thanks to Eq (2.30),

C(T ) ∥∂xω(t, ·)∥2L2(0,∞) = C(T )
∫ ∞

0
∂xω∂xωdx = −C(T )

∫ ∞

0
ω∂2

xωdx.
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Therefore, by the Young inequality,

C(T ) ∥∂xω(t, ·)∥2L2(0,∞) ≤

∫ ∞

0

∣∣∣∣∣C(T )ω
β

∣∣∣∣∣ ∣∣∣β∂2
xω

∣∣∣ dx

≤C(T ) ∥ω(t, ·)∥2L2(0,∞) +
β2

2

∥∥∥∂2
xω(t, ·)

∥∥∥2

L2(0,∞)
.

Consequently, by Eq (2.36),

d
dt
∥ω(t, ·)∥2L2(0,∞) +

β2

2

∥∥∥∂2
xω(t, ·)

∥∥∥2

L2(0,∞)
≤ C(T ) ∥ω(t, ·)∥2L2(0,∞) .

The Gronwall Lemma and Eq (2.30) gives

∥ω(t, ·)∥2L2(0,∞) +
β2eC(T )t

2

∫ t

0
e−C(T )s

∥∥∥∂2
xω(s, ·)

∥∥∥2

L2(0,∞)
ds

≤eC(T )t
∥∥∥u1,0 − u2,0

∥∥∥2

L2(0,∞)
.

(2.37)

Equation (1.14) follows from Eqs (2.29) and (2.37).

3. Proof of the Theorem 1.1 for Eqs (1.1)-(1.4)-(1.8)

In this section, we prove Theorem 1.1 for Eq (1.1)-(1.4)-(1.8).
Inspired by [52], we consider the following function:

v(t, x) = u(t, x) − g(t)e−x. (3.1)

Observe that

∂tv(t, x) =∂tu(t, x) − g′(t)e−x,

∂xv(t, x) =∂xu(t, x) + g(t)e−x, (3.2)
∂2

xv(t, x) =∂2
xu(t, x) − g(t)e−x,

∂3
xv(t, x) =∂3

xu(t, x) + g(t)e−x,

∂4
xv(t, x) =∂4

xu − g(t)e−x.

By Eqs (1.1)-(1.4)-(1.8) and (3.2),

v(t, 0) = u(t, 0) − g(t) = 0, ∂2
xv(t, 0) = −g(t), (3.3)

while, by Eqs (1.4) and (3.2), we have Eq (2.4).
Again by Eqs (1.1)-(1.4)-(1.8) and (3.2), we have the following equation for v.

∂tv + 2qv∂xv + k(∂xv)2 + ν∂2
xv + δ∂

3
xv + β

2∂4
xv + γv∂

2
xv

= −2qg(t)e−xv − 2qg(t)e−x∂xv + (2q − κ − γ)g2(t)e−2x (3.4)
+ 2κg(t)e−x∂xv − νg(t)e−x + δg(t)e−x − β2g(t)e−x − γg(t)e−xv

− γg(t)e−x∂2
xv + g′(t)e−x.

We prove the following result.
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Lemma 3.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥v(t, ·)∥2L2(0,∞) +
β2eC0t

6

∫ t

0
e−C0 s

∥∥∥∂2
xv(s, ·)

∥∥∥2

L2(0,∞)
ds ≤C(T ), (3.5)∫ t

0
(∂xv(s, 0))2ds ≤C(T ), (3.6)

and Eq (2.7) hold for every 0 ≤ t ≤ T.

The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Lemma 3.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that∫ t

0
(∂xu(t, 0))2ds ≤ C(T ), (3.7)

and Eqs (2.8)–(2.10) hold for every 0 ≤ t ≤ T.

Proof. Arguing as in [52, Lemma 3.2], the proof is concluded.

Lemma 3.3. Fix T > 0 and assume Eq (1.2). Then,

∥∂xu(t, ·)∥L4(R+) ≤ C0

(
1 + ∥u∥2L∞(0,T )×R+

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
, (3.8)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . We begin by observing that, thanks to Eq (1.4),

∥∂xu(t, ·)∥4L4(R+) =

∫ ∞

0
∂xu(∂xu)3dx

= − u(t, 0)(∂xu(t, 0))3 − 3
∫ ∞

0
u(∂xu)2∂2

xudx

= − g(t)(∂xu(t, 0))3 − 3
∫ ∞

0
u(∂xu)2∂2

xudx.

(3.9)

Observe that
(∂xu(t, 0))3 = −3

∫ ∞

0
(∂xu)2∂2

xudx.

Therefore, by Eq (3.9),

∥∂xu(t, ·)∥4L4(R+) = 3g(t)
∫ ∞

0
(∂xu)2∂2

xudx − 3
∫ ∞

0
u(∂xu)2∂2

xudx. (3.10)

Due to Eq (1.4) and the Young inequality,

3|g(t)|
∫ ∞

0
(∂xu)2|∂2

xu|dx ≤ C0

∫ ∞

0
(∂xu)2|∂2

xu|dx

≤
1
2
∥∂xu(t, ·)∥4L4(R+) +C0

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
,

Networks and Heterogeneous Media Volume 21, Issue 1, 92–146.



105

3
∫ ∞

0
|u|(∂xu)2|∂2

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣ (∂xu)2

3
√

3

∣∣∣∣∣∣
∣∣∣∣∣∣∣3
√

3u∂2
xu

2

∣∣∣∣∣∣∣ dx

≤
1
3
∥∂xu(t, ·)∥4L4(R+) +

27
4

∫ ∞

0
u2(∂2

xu)2dx

≤
1
3
∥∂xu(t, ·)∥4L4(R+) +

27
4
∥u∥2L∞(0,T )×R+

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

It follows from Eq (3.10) that

1
6
∥∂xu(t, ·)∥4L4(R+) ≤ C0

(
1 + ∥u∥2L∞(0,T )×R+

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
,

which gives Eq (3.8).

Lemma 3.4. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥∂xu(t, ·)∥2L2(R+) + 2β2
∫ t

0

∥∥∥∂3
xu(s, ·)

∥∥∥2

L2(R+)
ds ≤C(T ), (3.11)∫ t

0
∥∂xu(s, ·)∥4L4(R+) ds ≤C(T ), (3.12)

and Eq (2.19) hold for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . We begin by observing that, since u(t, 0) = g(t), we have that ∂tu(t, 0) = g′(t).
Therefore, by Eq (1.4)

−2
∫ ∞

0
∂2

xu∂tudx =2∂xu(t, 0)g′(t) +
d
dt
∥∂xu(t, ·)∥2L2(R+) ,

−2δ
∫ ∞

0
∂2

xu∂
3
xudx =0, (3.13)

−2β2
∫ ∞

0
∂2

xu∂
4
xudx =2β2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
.

Consequently, thanks to Eq (3.13), multiplying Eq (1.1) by −2∂2
xu, an integration on (0,∞) gives

d
dt
∥∂xu(t, ·)∥2L2(R+) + 2β2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)

= −2∂xu(t, 0)g′(t) + 4q
∫ ∞

0
u∂xu∂2

xu + 2κ
∫ ∞

0
(∂xu)2∂2

xudx (3.14)

+ 2ν
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
+ 2γ

∫ ∞

0
u(∂2

xu)2dx.

Thanks to Eqs (1.4), (3.8) and the Young inequality,

2|∂xu(t, 0)||g′(t)|dx ≤ 2C0|∂xu(t, 0)| ≤ C0 + (∂xu(t, 0))2,

4|q|
∫ ∞

0
|u∂xu||∂2

xu|dx ≤ q2 ∥u(t, ·)∂xu(t, ·)∥2L2(R+) +
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
,
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2|κ|
∫ ∞

0
(∂xu)2|∂2

xu|dx ≤ κ2 ∥∂xu(t, ·)∥4L4(R+) +
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞(0,T )×R+

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
,

2|γ|
∫ ∞

0
|u|(∂2

xu)2dx ≤ γ2
∫ ∞

0
u2(∂2

xu)2dx +
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)

≤ γ2 ∥u∥2L∞((0,∞)×R+)

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

It follows from Eq (3.14) that

d
dt
∥∂xu(t, ·)∥2L2(R+) + 2β2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞(0,T )×R+

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+C0

+C0 ∥u(t, ·)∂xu(t, ·)∥2L2(R+) + (∂xu(t, 0))2.

An integration on (0, t), Eqs (1.9), (2.10), (2.9) and (3.7) give

∥∂xu(t, ·)∥2L2(R+) + 2β2
∫ t

0

∥∥∥∂3
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤ C0 +C0

(
1 + ∥u∥2L∞(0,T )×R+

) ∫ t

0

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds +C0t (3.15)

+C0

∫ t

0
∥u(s, ·)∂xu(s, ·)∥2L2(R+) ds +

∫ t

0
(∂xu(s, 0))2ds

≤ C(T )
(
1 + ∥u∥2L∞(0,T )×R+

)
.

We prove Eq (2.19). Thanks to Eqs (1.4), (2.8), (3.15) and the Hölder inequality,

u2(t, x) =2
∫ ∞

0
u∂xudy + g2(t) ≤

∫ ∞

0
|u|∂xu|dx +C0

≤2 ∥u(t, ·)∥L2(R+) ∥∂xu(t, ·)∥L2(R+) +C0

≤C(T )
√(

1 + ∥u∥2L∞(0,T )×R+

)
.

Hence,
∥u∥4L∞(0,T )×R+ −C(T ) ∥u∥2L∞(0,T )×R+ −C(T ) ≤ 0,

which gives Eq (2.19).
Equation (3.11) follows from Eqs (2.19) and (3.15).
Finally, we prove Eq (3.12). Thanks to Eqs (2.19) and (3.8), we have that

∥∂xu(t, ·)∥4L4(R+) ≤ C(T )
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
.

An integration on (0, t) and Eq (2.10) gives Eq (3.12).

Lemma 3.5. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

2

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds ≤ C(T ), (3.16)

Eqs (2.22)–(2.24) hold for every 0 ≤ t ≤ T.
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The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

4. Proof of the Theorem 1.1 for Eqs (1.1)-(1.5)-(1.8)

In this section, we prove Theorem 1.1 for Eqs (1.1)-(1.5)-(1.8).
We begin by proving the following result

Lemma 4.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥u(t, ·)∥2L2(R+) +
β2eC0t

2

∫ t

0
e−C0 s

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds (4.1)

+
τ2eC0t

20

∫ t

0
e−C0 su4(t, 0)ds ≤ C(T ),∫ t

0
u2(s, 0)ds ≤ C(T ), (4.2)

Eqs (2.9), (3.7) and (2.10) hold for every 0 ≤ t ≤ T.

The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Lemma 4.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥∂xu(t, ·)∥L2(R+) ≤C(T )

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

)
, (4.3)

∥u(t, ·)∥L∞(0,∞) ≤C(T )

√√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

)
, (4.4)∫ t

0
∥∂xu(s, ·)∥4L4((0,∞) ds ≤C(T )

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L∞(0,T ;L2(R+))

)
, (4.5)

for every 0 ≤ t ≤ T.

The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Lemma 4.3. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds ≤ C(T ), (4.6)

Eqs (2.16), (2.18)–(2.20), (2.23) and (2.24) hold for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . Observe that, thanks to Eq (1.5),

2
∫ ∞

0
∂4

xu∂tudx =
d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
,

2δ
∫ ∞

0
∂3

xu∂
4
xudx =0.

(4.7)
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Therefore, thanks to Eq (4.7), multiplying Eq (1.1) by 2∂4
xu, an integration on (0, ∞) gives

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ 2β2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

= −4q
∫ ∞

0
u∂xu∂4

xudx + 6τ2
∫ ∞

0
u2∂xu∂4

xudx − 2κ
∫ ∞

0
(∂xu)2∂4

xudx (4.8)

− 2ν
∫ ∞

0
∂2

xu∂
4
xudx − 2γ

∫ ∞

0
u∂2

xu∂
4
xudx.

Thanks to the Young inequality,

4|q|
∫ ∞

0
|u∂xu||∂4

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣2qu∂xu
β
√

D9

∣∣∣∣∣∣ ∣∣∣∣β√D9∂
4
xu

∣∣∣∣ dx

≤
4q2

D9
∥u(t, ·)∂xu(t, ·)∥2L2(R+) + β

2D9

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
,

6τ2
∫ ∞

0
u2|∂xu||∂4

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣3τ2u2∂xu
β
√

D9

∣∣∣∣∣∣ ∣∣∣∣β√D9∂
4
xu

∣∣∣∣ dx

≤
9τ4

β2D9

∫ ∞

0
u4(∂xu)2dx + β2D9

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

≤
9τ4

β2D9
∥u∥2L∞((0,T )×R+) ∥u(t, ·)∂xu(t, ·)∥2L2(R+) + β

2D9

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

2|κ|
∫ ∞

0
(∂xu)2|∂4

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣κ(∂xu)2

β
√

D9

∣∣∣∣∣∣ ∣∣∣∣β√D9∂
4
xu

∣∣∣∣ dx

≤
κ2

β2D9
∥∂xu(t, ·)∥4L4(R+) + β

2D9

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

2|ν|
∫ ∞

0
|∂2

xu||∂
4
xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣ ν∂2
xu

β
√

D9

∣∣∣∣∣∣ ∣∣∣∣β√D9∂
4
xu

∣∣∣∣ dx

≤
ν2

β2D9

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2D9

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

2|γ|
∫ ∞

0
|u∂2

xu||∂
4
xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣γu∂2
xu

β
√

D9

∣∣∣∣∣∣ ∣∣∣∣β√D9∂
4
xu

∣∣∣∣ dx

≤
γ

β2D9

∫ ∞

0
u2(∂2

xu)2dx + β2D9

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤
γ

β2D9
∥u∥2L∞((0,T )×R+)

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2D9

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

where D9 is a positive constant, which will be specified later. It follows from Eq (4.8) that

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2(2 − 5D9)

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤
C0

D9

(
1 + ∥u∥2L∞((0,T )×R+)

)
∥u(t, ·)∂xu(t, ·)∥2L2(R+)

+
C0

D9

(
1 + ∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
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+
C0

D9
∥∂xu(t, ·)∥4L4(R+) .

Taking D9 = 1/5, we have that

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞((0,T )×R+)

)
∥u(t, ·)∂xu(t, ·)∥2L2(R+) (4.9)

+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

+C0 ∥∂xu(t, ·)∥4L4(R+) .

Integrating on (0, t), by Eqs (1.9), (2.9) and (4.1),∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤ C0 +C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∫ t

0
∥u(t, ·)∂xu(t, ·)∥2L2(R+)

+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∫ t

0

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds

+C0

∫ t

0
∥∂xu(s, ·)∥4L4(R+) ds

≤ C(T )
(
1 + ∥u∥2L∞((0,T )×R+)

)
+C0

∫ t

0
∥∂xu(s, ·)∥4L4(R+) ds.

Thanks to Eqs (4.5) and (7.42), we have that∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤C(T )

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L∞(0,T ;L2(R+))

)
.

(4.10)

Thanks to Eq (4.10), we get∥∥∥∂2
xu(t, ·)

∥∥∥4

L∞(0,T ;L2(R+))
−C(T )

∥∥∥∂2
xu(t, ·)

∥∥∥2

L∞(0,T ;L2(R+))
−C(T ) ≤ 0,

which gives Eq (2.16).
Equation (4.6) follows from Eqs (2.16) and (4.10), while Eqs (4.3), (4.4) and (4.6) give Eqs (2.18)

and (2.19), respectively.
We prove Eq (2.20). Observe that, thanks to Eq (1.5),∥∥∥∂3

xu(t, ·)
∥∥∥2

L2(R+)
=

∫ ∞

0
∂3

xu∂
3
xudx = −

∫ ∞

0
∂2

xu∂
4
xudx (4.11)

Due to Eq (4.6) and the Young inequality,∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
≤

∫ ∞

0
|∂2

xu||∂
4
xu|dx

Networks and Heterogeneous Media Volume 21, Issue 1, 92–146.



110

≤
1
2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

1
2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤C(T ) +
1
2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
.

An integration on (0, t) and Eq (4.6) give Eq (2.20).
We prove Eq (2.23). Thanks to Eqs (2.18), (4.6) and the Hölder inequality,

(∂xu(t, x))2 =2
∫ x

0
∂xu∂2

xudx + (∂xu(t, 0))2 ≤ 2
∫ ∞

0
|∂xu||∂2

xu|dx − 2
∫ ∞

0
∂xu∂2

xudx

≤4
∫ ∞

0
|∂xu||∂2

xu|dx ≤ 4 ∥∂xu(t, ·)∥L2(R+)

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(R+)

≤ C(T ).

Hence,
∥∂xu∥2L∞((0,T )×R+) ≤ C(T ),

which gives Eq (2.23).
Finally, we prove Eq (2.24). We begin by observing that, thanks to Eq (1.5),∥∥∥∂2

xu(t, ·)
∥∥∥4

L4(R+)
=

∫ ∞

0
∂2

xu(∂2
xu)3dx = −3

∫ ∞

0
∂xu(∂2

xu)2∂3
xudx. (4.12)

Arguing as in Lemma 2.6, we have Eq (2.24).

Lemma 4.4. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that Eq (2.27)
holds.

Proof. Let 0 ≤ t ≤ T . Arguing as in Lemma 2.7, we have

∥∂tu(t, ·)∥2L2(0,∞) ≤C(T ) + 5δ2
∥∥∥∂3

xu(t, ·)
∥∥∥2

L2(0,∞)

+ 5β4
∥∥∥∂4

xu(t, ·)
∥∥∥2

L2(0,∞)
+ 6τ2

∫ ∞

0
u2|∂xu||∂tu|dx.

(4.13)

Thanks to Eqs (2.18), (2.19) and the Young inequality,

6τ2
∫ ∞

0
u2|∂xu||∂tu|dx = 6τ2 ∥u∥2L∞((0,T )×R+)

∫ ∞

0
|∂xu||∂tu|dx

≤ C(T )
∫ ∞

0
|∂xu||∂tu|dx ≤ C(T ) ∥∂xu(t, ·)∥2L2(R+) +

1
2
∥∂tu(t, ·)∥2L2(R+)

≤ C(T ) +
1
2
∥∂tu(t, ·)∥2L2(R+) .

It follows from Eq (4.13) that

∥∂tu(t, ·)∥2L2(0,∞) ≤ C(T ) + 5δ2
∥∥∥∂3

xu(t, ·)
∥∥∥2

L2(0,∞)
+ 5β4

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
.

An integration on (0, t), Eqs (2.20) and (4.6) give Eq (2.27).

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 4.1, 4.3, 4.4 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is solution of Eqs (1.1)-(1.5)-(1.8) and (1.13) holds.

Arguing as in Section 2, we have Eq (1.14).
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5. Proof of the Theorem 1.1 for Eqs (1.1)-(1.6)-(1.8)

In this section, we prove Theorem 1.1 for Eqs (1.1)-(1.6)-(1.8).
We begin by proving the following result.

Lemma 5.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥u(t, ·)∥2L2(R+) + β
2eC0t

∫ t

0
e−C0 s

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds

+
2τ2eC0t

3

∫ t

0
e−C0 su4(t, 0)ds ≤ C(T ),

(5.1)

Eq (2.9) holds for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . We begin by observing that, thanks to Eq (1.6), we have

d
dt
∥u(t, ·)∥2L2(R+) =2

∫ ∞

0
u∂tudx,

−6τ2
∫ ∞

0
u3∂xudx =

3τ2

2
u4(t, 0), (5.2)

2β2
∫ ∞

0
u∂4

xudx =2β2
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
,

2γ
∫ ∞

0
u2∂2

xudx = −4γ
∫ ∞

0
u(∂xu)2dx.

Thanks to Eq (5.2), multiplying Eq (1.1) by 2u, an integration on (0, ∞) gives

d
dt
∥u(t, ·)∥2L2(R+) + 2β2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

3τ2

2
u4(t, 0)

= 2 (2γ − κ)
∫ ∞

0
u(∂xu)2dx − 2ν

∫ ∞

0
u∂2

xudx +
2q
3

u3(t, 0).

By Eq (1.2), we have that

d
dt
∥u(t, ·)∥2L2(R+) + 2β2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

3τ2

2
u4(t, 0)

= − 2ν
∫ ∞

0
u∂2

xudx +
2q
3

u3(t, 0).
(5.3)

Thanks to the Young inequality,

2|ν|
∫ ∞

0
|u||∂2

xu|dx = 2
∫ ∞

0

∣∣∣∣∣νuβ
∣∣∣∣∣ ∣∣∣β∂2

xu
∣∣∣ dx

≤
ν2

β2 ∥u(t, ·)∥2L2(R+) + β
2
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
,

2|q|
3
|u(t, 0)|3dx =

∣∣∣∣∣2qu(t, 0)
3τ

∣∣∣∣∣ |τ|u2(t, 0) ≤
2q2

9
u2(t, 0) +

τ2

2
u4(t, 0)
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= 2
q2
√

3
9|τ|

|τ|
√

3
u2(t, 0) +

τ2

2
u4(t, 0) ≤

q4

9τ2 +
5τ2

6
u4(t, 0).

It follows from Eq (5.3) that

d
dt
∥u(t, ·)∥2L2(R+) + β

2
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
+

2τ2

3
u4(t, 0)

≤C0 ∥u(t, ·)∥2L2(R+) +C0.

By the Gronwall Lemma and Eq (1.9), we get

∥u(t, ·)∥2L2(R+) + β
2eC0t

∫ t

0
e−C0 s

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds +

2τ2eC0t

3

∫ t

0
e−C0 su4(t, 0)ds

≤C0eC0t ≤ C(T ),

which gives Eq (5.1).
We prove Eq (2.9). We begin by observing that, thanks to Eq (1.6),

∥∂xu(t, ·)∥2L2(R+) =

∫ ∞

0
∂xu∂xudx = −

∫ ∞

0
u∂2

xudx.

Thanks to Eq (5.1) and the Hölder inequality,

∥∂xu(t, ·)∥2L2(R+) ≤

∫ ∞

0
|u||∂2

xu|dx

≤ ∥u(t, ·)∥L2(R+)

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(R+)

≤ C(T )
∥∥∥∂2

xu(t, ·)
∥∥∥

L2(R+)
.

(5.4)

Therefore, by the Young inequality

∥∂xu(t, ·)∥2L2(R+) ≤ C(T ) +
1
2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

An integration on (0, t) and Eq (5.1) give Eq (2.9).
Finally, arguing as in Lemma 4.1 we have Eq (2.9).

Lemma 5.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that Eqs (2.16),
(4.6), (2.18)–(2.21), (2.23) and (2.24) hold.

Proof. Let 0 ≤ t ≤ T . Observe that, thanks to Eq (1.6), ∂t∂xu(t, 0) = 0. Therefore, again by Eq (1.6),

2
∫ ∞

0
∂4

x∂tudx =
d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
. (5.5)

Therefore, thanks to Eq (5.5), multiplying Eq (1.1) by 2∂4
xu, an integration on (0, ∞) gives

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ 2β2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

= −4q
∫ ∞

0
u∂xu∂4

xudx + 6τ2
∫ ∞

0
u2∂xu∂4

xudx − 2κ
∫ ∞

0
(∂xu)2∂4

xudx (5.6)
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− 2ν
∫ ∞

0
∂2

xu∂
4
xudx − 2γ

∫ ∞

0
u∂2

xu∂
4
xudx.

Arguing as in Lemma 4.3, we have Eq (4.9). Observe that, thanks Eq (1.6),

∥∂xu(t, ·)∥4L∞(0,∞) =

∫ ∞

0
∂xu(∂xu)3dx = −3

∫ ∞

0
u(∂xu)2∂2

xudx. (5.7)

Due to the Young inequality,

3
∫ ∞

0
|u|(∂xu)2|∂2

xu|dx =
∫ ∞

0
(∂2

xu)2|3u∂2
xu|dx

≤
1
2
∥∂xu(t, ·)∥4L4(R+) +

9
2

∫ ∞

0
u2(∂2

xu)2dx

≤
1
2
∥∂xu(t, ·)∥4L4(R+) +

9
2
∥u∥2L∞((0,T )×R+

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

Therefore, by Eq (5.7),

∥∂xu(t, ·)∥4L∞(0,∞) ≤ 9 ∥u∥2L∞((0,T )×R+

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
. (5.8)

It follows from Eqs (4.9) and (5.8) that

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞((0,T )×R+)

)
∥u(t, ·)∂xu(t, ·)∥2L2(R+)

+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

Integrating on (0, t), by Eqs (1.9), (2.9) and (5.1), we have

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤ C0 +C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∫ t

0
∥u(s, ·)∂xu(s, ·)∥2L2(R+) ds (5.9)

+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∫ t

0

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤ C(T )
(
1 + ∥u∥2L∞((0,T )×R+)

)
.

Observe that, thanks to Eqs (5.1), (5.4) and the Hölder inequality,

u2(t, x) =2
∫ x

0
u∂xudx + 2u2(t, 0) ≤ 2

∫ ∞

0
|u||∂xu|dx − 2

∫ ∞

0
u∂xudx

≤4
∫ ∞

0
|u||∂xu|dx ≤ 4 ∥u(t, ·)∥L2(R+) ∥∂xu(t, ·)∥L2(R+)

≤C(T )
∥∥∥∂2

xu
∥∥∥

L∞(0,T ;L2(R+))
.

Networks and Heterogeneous Media Volume 21, Issue 1, 92–146.



114

Hence,
∥u∥2L∞((0,T )×R+) ≤ C(T )

∥∥∥∂2
xu

∥∥∥
L∞(0,T ;L2(R+))

. (5.10)

Therefore, by Eqs (5.9) and (5.10),∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤C(T )
(
1 +

∥∥∥∂2
xu

∥∥∥
L∞(0,T ;L2(R+))

)
.

(5.11)

Arguing as in Lemma 2.5, we have Eq (2.16).
Equation (4.6) follows from Eqs (2.16) and (5.11). Equation (2.18) gives Eq (4.6), while Eqs (2.16)

and (5.10) give Eq (2.19). Arguing as in Lemma 4.3, we have Eqs (2.20) and (2.23), while arguing as
in Lemma 2.5, we have Eq (2.21).

Finally, we prove Eq (2.24). Observe that, thanks to Eq (1.6), we have Eq (4.12). Therefore, arguing
as in Lemma 4.3, we have Eq (2.24).

Arguing as in Section 4, we have Lemma 4.4.
Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 4.4, 5.1, 5.2 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is a solution of Eqs (1.1)-(1.6)-(1.8) and (1.13) holds.

Arguing as in Section 2, we have Eq (1.14).

6. Proof of the Theorem 1.1 for Eqs (1.1)-(1.7)-(1.8)

In this section, we prove Theorem 1.1 for Eqs (1.1)-(1.7)-(1.8).
We begin by proving the following result.

Lemma 6.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that

∥u(t, ·)∥2L2(R+) + β
2eC0t

∫ t

0
e−C0 s

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds ≤ C(T ), (6.1)

Eqs (2.9) and (5.4) hold for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . Observe that, thanks to Eq (1.7),

d
dt
∥u(t, ·)∥2L2(R+) =2

∫ ∞

0
u∂tudx,

4q
∫ ∞

0
u2∂xudx =0, (6.2)

6q1

∫ ∞

0
u3∂xu =0,

2δ
∫ ∞

0
u∂3

xudx = − 2
∫ ∞

0
∂xu∂2

xudx = 0,

2β2
∫ ∞

0
u∂2

xudx =2β2
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
,
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2γ
∫ ∞

0
u2∂2

xudx = − 4γ
∫ ∞

0
u(∂xu)2dx.

Therefore, thanks to Eq (6.2), multiplying Eq (1.1) by 2u, thanks to Eq (6.2), an integration on (0, t)
gives

d
dt
∥u(t, ·)∥2L2(R+) + 2β2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

= 2(2γ − κ)
∫ ∞

0
u(∂xu)2dx − 2ν

∫ ∞

0
u∂2

xudx.

Thanks to Eq (1.2), we have

d
dt
∥u(t, ·)∥2L2(R+) + 2β2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
= −2ν

∫ ∞

0
u∂2

xudx.

Arguing as in Lemma 5.1, we have Eq (6.1). Finally, arguing as in Lemma 5.1, we have Eqs (2.9)
and (5.4).

Lemma 6.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T ) > 0, such that Eqs (2.16)–
(2.24) hold.

Proof. Let 0 ≤ t ≤ T . Observe that, by Eq (1.7), ∂tu(t, 0) = ∂t∂xu(t, 0) = 0. Consequentially,

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
= 2

∫ ∞

0
∂4

xu∂tudx. (6.3)

Therefore, thanks to Eq (6.3) and arguing as in Lemma 4.3, we have

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞((0,T )×R+)

)
∥u(t, ·)∂xu(t, ·)∥2L2(R+) (6.4)

+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

+C0 ∥∂xu(t, ·)∥4L4(R+) + 2|δ|
∫ ∞

0
|∂3

xu||∂
4
xu|dx.

Thanks to the Young inequality,

2|δ|
∫ ∞

0
|∂3

xu||∂
4
xu|dx =

∫ ∞

0

∣∣∣∣∣∣2δ∂3
xu
β

∣∣∣∣∣∣ β∂4
xu|dx

≤
2δ2

β2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
.

It follows from Eq (6.4) that

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞((0,T )×R+)

)
∥u(t, ·)∂xu(t, ·)∥2L2(R+) (6.5)
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+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

+C0 ∥∂xu(t, ·)∥4L4(R+) +C0

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
.

Arguing as in Lemma 2.5, we have that∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
≤

(
3

D11
+

3
2D10

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

+

(
3D11 +

9D2
10

2

) ∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
,

(6.6)

where D10, D11 are two positive constant, which will be specified later. Therefore, by Eq (6.5),

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

(
β2

2
−C0D11 −

C0D2
10

2

) ∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞((0,T )×R+)

)
∥u(t, ·)∂xu(t, ·)∥2L2(R+)

+C0

(
1 +

1
D11
+

1
D10
+ ∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

+C0 ∥∂xu(t, ·)∥4L4(R+) .

Taking

D11 =
β2

3C0
, D10 =

√
2|β|
√

7C0

,

we have that

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

42

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞((0,T )×R+)

)
∥u(t, ·)∂xu(t, ·)∥2L2(R+) (6.7)

+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

+C0 ∥∂xu(t, ·)∥4L4(R+) .

Thanks to Eq (1.7), we have Eq (5.7). Hence, by Eqs (5.8) and (6.7),

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

42

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C0

(
1 + ∥u∥2L∞((0,T )×R+)

)
∥u(t, ·)∂xu(t, ·)∥2L2(R+)

+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

Integrating on (0, t), by Eqs (1.9), (2.9) and (6.1), we get∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

42

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤ C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∫ t

0
∥u(s, ·)∂xu(s, ·)∥2L2(R+) ds (6.8)
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+C0

(
1 + ∥u∥2L∞((0,T )×R+)

) ∫ t

0

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤ C(T )
(
1 + ∥u∥2L∞((0,T )×R+)

)
.

Arguing as in Lemma 5.2, we have Eq (5.10). Therefore, by Eqs (5.10) and (6.8), we get

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

42

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤C(T )
(
1 +

∥∥∥∂2
xu

∥∥∥
L∞(0,T ;L2(R+))

)
.

(6.9)

Arguing as in Lemma 2.5, we have Eqs (2.16) and (2.17). Equation (2.18) follows from Eqs (2.17)
and (5.4), while Eqs (2.16) and (5.10) give Eq (2.19). Arguing as in Lemma 2.5, we have Eqs (2.20)–
(2.23).

Finally, we prove Eq (2.24). Observe that, by Eqs (1.7) and (2.25),∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
= −3

∫ ∞

0
∂xu(∂2

xu)2∂3
xudx. (6.10)

Thanks to Eq (2.23) and the Young inequality,

3
∫ ∞

0
|∂xu|(∂2

xu)2|∂3
xu|dx ≤

1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
+

9
2

∫ ∞

0
(∂xu)2(∂3

xu)2dx

≤
1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
+ ∥∂xu∥2L∞((0,T )×R+)

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)

≤
1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
+C(T )

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
.

Hence, by Eq (6.10),
1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
≤ C(T )

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
.

An integration on (0, t) and Eq (2.20) give Eq (2.24).

Arguing as in Section 4, we have Lemma 4.4.
Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 4.4, 6.1, 6.2 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is a solution of Eqs (1.1)-(1.7)-(1.8) and (1.13) holds.

Arguing as in Section 2, we have Eq (1.14).

7. Technical section

In this section, we collect the proof of Lemmas 2.1, 2.5, 3.1, 3.5, 4.1, and 4.2.

Proof of Lemma 2.1. Let 0 ≤ t ≤ T . We begin by observing that, thanks to Eq (2.3),

2
∫ ∞

0
v∂tvdx =

d
dt
∥v(t, ·)∥2L2(0,∞) ,
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4q
∫ ∞

0
v∂xvdx =0,

2δ
∫ ∞

0
v∂3

xvdx = − 2δ
∫ ∞

0
∂xv∂2

xvdx = 0,

2β
∫ ∞

0
v∂4

xvdx = − 2β2
∫ ∞

0
∂xv∂3

xvdx = 2β2
∥∥∥∂2

xv(t, ·)
∥∥∥2

L2(0,∞)
, (7.1)

2γ
∫ ∞

0
v2∂2

xvdx = − 4γ
∫ ∞

0
v(∂xv)2dx.

Therefore, by Eq (7.1), multiplying Eq (2.5) by 2v, an integration on (0,∞) gives

d
dt
∥v(t, ·)∥2L2(0,∞) + 2β2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)

= 2 (2γ − κ)
∫ ∞

0
v(∂xv)2dx − 2ν

∫ ∞

0
v∂2

xvdx − 2g′(t)
∫ ∞

0
e−xvdx

− 2
[
g′(t) + h′(t)

] ∫ ∞

0
xe−xvdx − 4κh(t)

∫ ∞

0
e−xv∂xvdx

− 2κh2(t)
∫ ∞

0
e−2xvdx − 2κ

[
g(t) + h(t)

]2
∫ ∞

0
x2e−2xvdx

+ 4κg(t)
[
g(t) + h(t)

] ∫ ∞

0
xe−2xvdx + 4νh(t)

∫ ∞

0
e−xvdx

+ 2νg(t)
∫ ∞

0
e−xvdx − 2ν

[
g(t) + h(t)

] ∫ ∞

0
xe−xvdx

− 6δh(t)
∫ ∞

0
e−xvdx − 4δg(t)

∫ ∞

0
e−xvdx

+ 2δ
[
g(t) + h(t)

] ∫ ∞

0
xe−xvdx + 8β2h(t)

∫ ∞

0
e−xvdx

+ 6β2g(t)
∫ ∞

0
e−xvdx − 2β2

∫ ∞

0

[
g(t) + h(t)

]
xe−xvdx

+ 4γh(t)
∫ ∞

0
e−xv2dx + 2γg(t)

∫ ∞

0
e−xv2dx

− 4γ
[
g(t) + h(t)

] ∫ ∞

0
xe−xv2dx − 2γg(t)

∫ ∞

0
e−xv∂2

xvdx

+ 4γg(t)h(t)
∫ ∞

0
e−2xvdx + 2γg2(t)

∫ ∞

0
e−xvdx

− 2γg(t)
[
g(t) + h(t)

] ∫ ∞

0
xe−2xvdx − 2γ

[
g(t) + h(t)

] ∫ ∞

0
xe−xv∂2

xvdx

+ 4γh(t)
[
g(t) + h(t)

] ∫ ∞

0
xe−2xvdx + 2γ

[
g(t) + h(t)

] ∫ ∞

0
xe−xvdx

− 2γ
[
g(t) + h(t)

] ∫ ∞

0
x2e−2xvdx − 2qh(t)

∫ ∞

0
e−xv2dx − 2q(g(t) + h(t)

∫ ∞

0
xe−xv2dx

+ 4q[g(t) + h(t)
∫ ∞

0
xe−xv∂xvdx − 4q[g(t) − h(t)]h(t)

∫ ∞

0
xe−2xv.
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Thanks to Eq (1.2), we have that

d
dt
∥v(t, ·)∥2L2(0,∞) + 2β2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)

= −2ν
∫ ∞

0
v∂2

xvdx − 2g′(t)
∫ ∞

0
e−xvdx (7.2)

− 2
[
g′(t) + h′(t)

] ∫ ∞

0
xe−xvdx − 4κh(t)

∫ ∞

0
e−xv∂xvdx

− 2κh2(t)
∫ ∞

0
e−2xvdx − 2κ

[
g(t) + h(t)

]2
∫ ∞

0
x2e−2xvdx

+ 4κg(t)
[
g(t) + h(t)

] ∫ ∞

0
xe−2xvdx + 4νh(t)

∫ ∞

0
e−xvdx

+ 2νg(t)
∫ ∞

0
e−xvdx − 2ν

[
g(t) + h(t)

] ∫ ∞

0
xe−xvdx

− 6δh(t)
∫ ∞

0
e−xvdx − 4δg(t)

∫ ∞

0
e−xvdx

+ 2δ
[
g(t) + h(t)

] ∫ ∞

0
xe−xvdx + 8β2h(t)

∫ ∞

0
e−xvdx

+ 6β2g(t)
∫ ∞

0
e−xvdx − 2β2 [

g(t) + h(t)
] ∫ ∞

0
xe−xvdx

+ 4γh(t)
∫ ∞

0
e−xv2dx + 2γg(t)

∫ ∞

0
e−xv2dx

− 4γ
[
g(t) + h(t)

] ∫ ∞

0
xe−xv2dx − 2γg(t)

∫ ∞

0
e−xv∂2

xvdx

+ 4γg(t)h(t)
∫ ∞

0
e−2xvdx + 2γg2(t)

∫ ∞

0
e−xvdx

− 2γg(t)
[
g(t) + h(t)

] ∫ ∞

0
xe−2xvdx − 2γ

[
g(t) + h(t)

] ∫ ∞

0
xe−xv∂2

xvdx

+ 4γh(t)
[
g(t) + h(t)

] ∫ ∞

0
xe−2xvdx + 2γ

[
g(t) + h(t)

] ∫ ∞

0
xe−xvdx

− 2γ
[
g(t) + h(t)

] ∫ ∞

0
x2e−2xvdx − 2qh(t)

∫ ∞

0
e−xv2dx

− 2q(g(t) + h(t))
∫ ∞

0
xe−xv2dx + 4q(g(t) + h(t))

∫ ∞

0
xe−xv∂xvdx

− 4q(g(t) − h(t))h(t)
∫ ∞

0
xe−2xvdx.

Observe that, for each x ∈ (0,∞),

e−x ≤1, xe−x ≤ e,
∫ ∞

0
e−2xdx =

1
2∫ ∞

0
x2e−4xdx =

1
32
,

∫ ∞

0
x2e−2xdx =

1
4
,

∫ ∞

0
x4e−4xdx =

3
128
.

(7.3)
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Due Eqs (1.3), (7.3) and the Young inequality,

2|ν|
∫ ∞

0
|v||∂2

xv|dx = 2
∫ ∞

0

∣∣∣∣∣∣ νvβ√D1

∣∣∣∣∣∣ ∣∣∣∣β√D1∂
2
xv

∣∣∣∣ dx

≤
ν2

β2D1
∥v(t, ·)∥2L2(0,∞) + β

2D1

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)
,

2|g′(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2 |g′(t) + h′(t)|
∫ ∞

0
xe−x|v|dx ≤ 2C0

∫ ∞

0
xe−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

4|κ||h(t)|
∫ ∞

0
e−x|v||∂xv|dx ≤ 2C0

∫ ∞

0
|v||∂xv|dx

≤ C0 ∥v(t, ·)∥2L2(0,∞) +C0 ∥∂xv(t, ·)∥2L2(0,∞) ,

2|κ|h2(t)
∫ ∞

0
e−2x|v|dx ≤ 2C0

∫ ∞

0
e−2x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|κ|
[
g(t) + h(t)

]2
∫ ∞

0
x2e−2x|v|dx ≤ 2C0

∫ ∞

0
x2e−2x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

4|κ||g(t)| |g(t) + h(t)|
∫ ∞

0
xe−2x|v|dx ≤ 2C0

∫ ∞

0
e−2x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

4|ν||h(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|ν||g(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|ν| |g(t) + h(t)|
∫ ∞

0
xe−x|v|dx ≤ 2C0

∫ ∞

0
xe−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

6|δ||h(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

4|δ||g(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,
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2|δ| |g(t) + h(t)|
∫ ∞

0
xe−x|v|dx ≤ 2C0

∫ ∞

0
xe−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

8β2|h(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

6β2|g(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2β2 |g(t) + h(t)|
∫ ∞

0
xe−x|v|dx ≤ 2C0

∫ ∞

0
xe−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

4|γ||h(t)|
∫ ∞

0
e−xv2dx ≤ C0 ∥v(t, ·)∥2L2(0,∞) ,

2|γ||g(t)|
∫ ∞

0
e−xv2dx ≤ C0 ∥v(t, ·)∥2L2(0,∞) ,

4|γ| |g(t) + h(t)|
∫ ∞

0
xe−xv2dx ≤ C0 ∥v(t, ·)∥2L2(0,∞) ,

2|γ||g(t)|
∫ ∞

0
e−x|v||∂2

xv|dx ≤ 2C0

∫ ∞

0
|v||∂2

xv|dx

= 2
∫ ∞

0

∣∣∣∣∣∣ C0v
β
√

D1

∣∣∣∣∣∣ ∣∣∣∣β√D1∂
2
xv

∣∣∣∣ dx

≤
C0

D1
∥v(t, ·)∥2L2(0,∞) + β

2D1

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)
,

4|γ||g(t)h(t)|
∫ ∞

0
e−2x|v|dx ≤ 2C0

∫ ∞

0
e−2x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|γ|g2(t)
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|γ||g(t)| |g(t) + h(t)|
∫ ∞

0
xe−2x|v|dx ≤ 2C0

∫ ∞

0
xe−2x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|γ| |g(t) + h(t)|
∫ ∞

0
xe−x|v||∂2

xv|dx ≤ 2C0

∫ ∞

0
|v||∂2

xv|dx

= 2
∫ ∞

0

∣∣∣∣∣∣ C0v
β
√

D1

∣∣∣∣∣∣ ∣∣∣∣β√D1∂
2
xv

∣∣∣∣ dx

≤
C0

D1
∥v(t, ·)∥2L2(0,∞) + β

2D1

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)
,
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4|γ||h(t)| |g(t) + h(t)|
∫ ∞

0
xe−2x|v|dx ≤ 2C0

∫ ∞

0
xe−2x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|γ| |g(t) + h(t)|
∫ ∞

0
xe−x|v|dx ≤ 2C0

∫ ∞

0
xe−x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|γ| |g(t) + h(t)|
∫ ∞

0
x2e−2x|v|dx ≤ 2C0

∫ ∞

0
x2e−2x|v|dx

≤ C0 +C0 ∥v(t, ·)∥2L2(0,∞) ,

2|q||h(t)|
∫ ∞

0
e−xv2dx ≤ C0 ∥v(t, ·)∥2L2(R+) ,

2|q||(g(t) + h(t)|
∫ ∞

0
xe−xv2dx ≤ C0 ∥v(t, ·)∥2L2(R+) ,

4|q||(g(t) + h(t)|
∫ ∞

0
xe−x|v||∂xv|dx ≤ C0

∫ ∞

0
|v||∂xv|dx

≤ C0 ∥v(t, ·)∥2L2(R+) +C0 ∥∂xv(t, ·)∥2L2(R+) ,

4|q||g(t) − h(t)||h(t)|
∫ ∞

0
xe−2x|v|dx ≤ C0

∫ ∞

0
xe−2x|v|dx

≤ C0

∫ ∞

0
x2e−4xdx + ∥v(t, ·)∥2L2(R+)

≤ C0 + ∥v(t, ·)∥2L2(R+) ,

where D1 is a positive constant, which will be specified later. It follows from Eq (7.2) that

d
dt
∥v(t, ·)∥2L2(0,∞) + β

2 (2 − 3D1)
∥∥∥∂2

xv(t, ·)
∥∥∥2

L2(0,∞)

≤C0

(
1 +

1
D1

)
∥v(t, ·)∥2L2(0,∞) +C0 ∥∂xv(t, ·)∥2L2(0,∞) +C0.

Taking D1 =
1
3 , we have that

d
dt
∥v(t, ·)∥2L2(0,∞) + β

2
∥∥∥∂2

xv(t, ·)
∥∥∥2

L2(0,∞)

≤C0 ∥v(t, ·)∥2L2(0,∞) +C0 ∥∂xv(t, ·)∥2L2(0,∞) +C0.
(7.4)

Thanks to Eq (2.3),

C0 ∥∂xv(t, ·)∥2L2(0,∞) = C0

∫ ∞

0
∂xv∂xvdx = −C0

∫ ∞

0
v∂2

xvdx.

Therefore, by the Young inequality,

C0 ∥∂xv(t, ·)∥2L2(0,∞) ≤

∫ ∞

0

∣∣∣∣∣C0v
β

∣∣∣∣∣ ∣∣∣β∂2
xv

∣∣∣ dx
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≤C0 ∥v(t, ·)∥2L2(0,∞) +
β2

2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)
.

Consequently, by Eq (7.4),

d
dt
∥v(t, ·)∥2L2(0,∞) +

β2

2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)
≤ C0 ∥v(t, ·)∥2L2(0,∞) +C0.

By the Gronwall Lemma and Eq (2.4), we have

∥v(t, ·)∥2L2(0,∞) +
β2eC0t

2

∫ t

0
e−C0 s

∥∥∥∂2
xv(s, ·)

∥∥∥2

L2(0,∞)
ds

≤C0eC0t +C0eC0t
∫ t

0
e−C0 sds ≤ C(T ),

which gives Eq (2.6).
Finally, we prove Eq (2.7). By Eq (2.3),

∥∂xv(t, ·)∥2L2(0,∞) =

∫ ∞

0
∂xv∂xvdx = −

∫ ∞

0
v∂2

xvdx.

Due to Eq (2.6) and the Young inequality,

∥∂xv(t, ·)∥2L2(0,∞) ≤

∫ ∞

0
|v||∂2

xv|dx

≤
1
2
∥v(t, ·)∥2L2(R+) +

1
2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)

≤C(T ) +
∥∥∥∂2

xv(t, ·)
∥∥∥2

L2(0,∞)
.

Integrating on (0, t), by Eq (2.6), we have Eq (2.7).

Proof of Lemma 2.5. Let 0 ≤ t ≤ T . We begin by observing that, since from Eq (1.3) ∂tu(t, 0) = g′(t)
and ∂t∂xu(t, 0) = h′(t). Therefore,

2
∫ ∞

0
∂4

xu∂tudx = − 2∂3
xu(t, 0)∂tu(t, 0) − 2

∫ ∞

0
∂3

xu∂t∂xudx

= − 2∂3
xu(t, 0)∂tu(t, 0) + 2∂2

xu(t, 0)∂t∂xu(t, 0)

+
d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

= − 2g′(t)∂3
xu(t, 0) + 2h′(t)∂2

xu(t, 0)

+
d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
.

(7.5)

Consequently, thanks to Eq (7.5), multiplying Eq (1.1) by 2∂4
xu, an integration on (0,∞) gives

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ 2β2

∥∥∥∂4
xu(t, ·)

∥∥∥
L2(0,∞)

= 2g′(t)∂3
xu(t, 0) − 2h′(t)∂2

xu(t, 0) − 2κ
∫ ∞

0
(∂xu)2∂4

xudx (7.6)
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− 2ν
∫ ∞

0
∂2

xu∂
4
xudx − 2δ

∫ ∞

0
∂3

xu∂
4
xudx − 2γ

∫ ∞

0
u∂2

xu∂
4
xudx

− 4q
∫
R

u∂xu∂4
xudx.

Due to Eqs (1.3), (2.12) and the Young inequality,

2|g′(t)||∂3
xu(t, 0)| ≤ 2C0|∂

3
xu(t, 0)| ≤ C0 + (∂3

xu(t, 0))2,

2|h′(t)||∂2
xu(t, 0)| ≤ 2C0|∂

2
xu(t, 0)| ≤ C0 + (∂2

xu(t, 0))2,

2|κ|
∫ ∞

0
(∂xu)2|∂4

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣κ(∂xu)2

β
√

D2

∣∣∣∣∣∣ ∣∣∣∣β√D2∂
4
xu

∣∣∣∣ dx

≤
κ2

β2D2
∥∂xu(t, ·)∥4L4(0,∞) + β

2D2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)

≤
C0

D2
∥u∥2L∞((0,T )×(0,∞))

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ β2D2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
+

C0

D2
,

2|ν|
∫ ∞

0
|∂2

xu||∂
4
xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣ ν∂2
xu

β
√

D2

∣∣∣∣∣∣ ∣∣∣∣β√D2∂
4
xu

∣∣∣∣ dx

≤
ν2

β2D2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ β2D2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
,

2|δ|
∫ ∞

0
|∂3

xu||∂
4
xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣ δ∂3
xu

β
√

D2

∣∣∣∣∣∣ ∣∣∣∣β√D2∂
4
xu

∣∣∣∣ dx

≤
δ2

β2D2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
+ β2D2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
,

2|γ|
∫ ∞

0
|u∂2

xu||∂
4
xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣γu∂2
xu

β
√

D2

∣∣∣∣∣∣ ∣∣∣∣β√D2∂
4
xu

∣∣∣∣ dx

≤
γ2

β2D2

∫ ∞

0
u2∂2

xu
2dx + β2D2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)

≤
γ2

β2D2
∥u∥2L∞((0,T )×(0,∞))

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ β2D2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
,

4|q|
∫
R

|u∂xu||∂4
xu|dx = 2

∫
R

∣∣∣∣∣∣2qu∂xu
β
√

D2

∣∣∣∣∣∣ ∣∣∣∣β√D2∂
4
xu

∣∣∣∣ dx

≤
2q2

β2D2
∥u(t, ·)∂xu(t, ·)∥2L2(R+) + β

2D2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R)
,

where, D2 is a positive constants, which will be specified later. Therefore, by Eq (7.6),

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ β2 (2 − 5D2)

∥∥∥∂4
xu(t, ·)

∥∥∥
L2(0,∞)

≤ C0

(
1 +

1
D2

)
+ (∂3

xu(t, 0))2 + (∂2
xu(t, 0))2 +

C0

D2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)

+
C0

D2

(
1 + ∥u∥2L∞((0,T )×(0,∞))

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+

C0

D2
∥u(t, ·)∂xu(t, ·)∥2L2(R+) .
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Taking D2 =
1
5 , we have that

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+ β2

∥∥∥∂4
xu(t, ·)

∥∥∥
L2(0,∞)

≤ C0 + (∂3
xu(t, 0))2 + (∂2

xu(t, 0))2 +C0

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
(7.7)

+C0

(
1 + ∥u∥2L∞((0,T )×(0,∞))

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

+C0 ∥u(t, ·)∂xu(t, ·)∥2L2(R+) .

Observe that, by the Young inequality,

(∂3
xu(t, 0))2 = − 2

∫ ∞

0
∂3

xu∂
4
xudx ≤ 2

∫ ∞

0
|∂3

xu||∂
4
xu|dx

=

∫ ∞

0

∣∣∣∣∣∣2∂3
xu
β

∣∣∣∣∣∣ ∣∣∣β∂4
xu

∣∣∣ dx ≤
2
β2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
+
β2

2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
, (7.8)

(∂2
xu(t, 0))2 = − 2

∫ ∞

0
∂2

xu∂
3
xudx ≤ 2

∫ ∞

0
|∂2

xu||∂
3
xu|dx

≤
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(0,∞)
+

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
.

Consequently, by Eq (7.7),

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+
β2

2

∥∥∥∂4
xu(t, ·)

∥∥∥
L2(0,∞)

≤ C0 +C0

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
(7.9)

+C0

(
1 + ∥u∥2L∞((0,T )×(0,∞))

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

+C0 ∥u(t, ·)∂xu(t, ·)∥2L2(R+) .

Observe that∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
=

∫ ∞

0
∂3

xu∂
3
xudx = −∂2

xu(t, 0)∂3
xu(t, 0) −

∫ ∞

0
∂2

xu∂
4
xudx.

Therefore, by the Young inequality,∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
≤|∂2

xu(t, 0)||∂3
xu(t, 0)| +

∫ ∞

0
|∂2

xu||∂
4
xu|dx

≤
1

2D3
(∂2

xu(t, 0))2 +
D3

2
(∂3

xu(t, 0))2 +

∫ ∞

0

∣∣∣∣∣∣ ∂2
xu
√

D4

∣∣∣∣∣∣ ∣∣∣∣ √D4∂
4
xu

∣∣∣∣ dx (7.10)

≤
1

2D3
(∂2

xu(t, 0))2 +
D3

2
(∂3

xu(t, 0))2

+
1

2D4

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+

D4

2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
,

where D3, D4 are two positive constants, which will be specified later. Thanks to the Young inequality,

1
2D3

(∂2
xu(t, 0))2 =

1
D3

∫ ∞

0
∂2

xu∂
3
xudx = 2

∫ ∞

0

∣∣∣∣∣∣ ∂2
xu

2D3

∣∣∣∣∣∣ ∣∣∣∂3
xu

∣∣∣ dx
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≤
1

4D3

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+

1
2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
,

D3

2
(∂3

xu(t, 0))2 =D3

∫ ∞

0
∂3

xu∂
4
xudx = 2

∫ ∞

0

∣∣∣∣∣∣∂3
xu
√

3

∣∣∣∣∣∣
∣∣∣∣∣∣∣
√

3D3∂
4
xu

2

∣∣∣∣∣∣∣ dx

≤
1
3

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
+

3D2
3

4

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
.

It follows from Eq (7.10) that

1
6

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
≤

(
1

2D4
+

1
4D3

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

+

(
D4

2
+

3D2
3

4

) ∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
,

that is ∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(0,∞)
≤

(
3

D4
+

3
2D3

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

+

(
3D4 +

9D2
3

2

) ∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)
.

(7.11)

Therefore, by Eq (7.9),

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+

(
β2

2
−C0D4 −C0D2

3

) ∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)

≤ C0 +C0

(
1 +

1
D4
+

1
D3
+ ∥u∥2L∞((0,T )×(0,∞))

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

+C0 ∥u(t, ·)∂xu(t, ·)∥2L2(R+) .

Taking

D4 =
β2

3C0
, D3 =

|β|
√

7C0
, (7.12)

we have that

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+
β2

42

∥∥∥∂4
xu(t, ·)

∥∥∥
L2(0,∞)

≤ C0 +C0

(
1 + ∥u∥2L∞((0,T )×(0,∞))

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

+C0 ∥u(t, ·)∂xu(t, ·)∥2L2(R+) .

Integrating on (0, t), by Eqs (1.9), (2.10), (2.9) and (2.15),∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+
β2

42

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥
L2(0,∞)

ds

≤ C0 +C0t +C0

(
1 + ∥u∥2L∞((0,T )×(0,∞))

) ∫ t

0

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(0,∞)
ds (7.13)
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+C0

∫ t

0
∥u(s, ·)∂xu(s, ·)∥2L2(R+) ds

≤ C(T )
(
1 + ∥u∥2L∞((0,T )×(0,∞))

)
≤ C(T )

(
1 +

√(
1 +

∥∥∥∂2
xu

∥∥∥
L∞(0,T ;L2(0,∞))

))
.

We prove Eq (2.16). Thanks to Eq (7.13), we have that∥∥∥∂2
xu

∥∥∥2

L∞(0,T ;L2(0,∞))
≤ C(T )

(
1 +

√(
1 +

∥∥∥∂2
xu

∥∥∥
L∞(0,T ;L2(0,∞))

))
.

Hence, ∥∥∥∂2
xu

∥∥∥4

L∞(0,T ;L2(0,∞))
−C(T )

∥∥∥∂2
xu

∥∥∥
L∞(0,T ;L2(0,∞))

−C(T ) ≤ 0.

Arguing as in [74, Lemma 2.4], we have Eq (2.16).
Equation (2.17) follows from Eqs (2.16) and (7.13). Moreover, Eqs (2.14) and (2.16) give Eq (2.18),

while Eq (2.19) follows from Eqs (2.15) and (2.16).
We prove Eq (2.20). Thanks to Eqs (7.11) and (7.12), we have that∥∥∥∂3

xu(t, ·)
∥∥∥2

L2(0,∞)
≤ C0

(∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
+

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(0,∞)

)
.

Integrating on (0,∞), by Eqs (2.10) and (2.17), we have Eq (2.20).
Equations (2.21) and (2.22) follow from Eqs (2.10), (2.17), (2.20), (7.8) and an integration on (0, t).
Finally, we prove Eq (2.23). Thanks to Eqs (1.3), (2.17), (2.18) and the Hölder inequality,

(∂xu(t, x))2 =2
∫ x

0
∂xu∂2

xudy + h2(t) ≤ 2
∫ ∞

0
|∂xu||∂2

xu|dx +C0

≤2 ∥∂xu(t, ·)∥L2(0,∞)

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(0,∞)

+C0 ≤ C(T ).

Hence,
∥∂xu∥2L∞((0,T )×(0,∞)) ≤ C(T ),

which gives Eq (2.23).

Proof of Lemma 3.1. Let 0 ≤ t ≤ T . We begin by observing that, thanks to Eq (3.3),

2
∫ ∞

0
v∂tvdx =

d
dt
∥v(t, ·)∥2L2(0,∞) ,

4q
∫ ∞

0
v2∂xvdx =0,

2δ
∫ ∞

0
v∂3

xvdx = − 2δ
∫ ∞

0
∂xv∂2

xvdx (7.14)

2β2
∫ ∞

0
v∂4

xvdx = − 2β2
∫ ∞

0
∂xv∂3

xvdx

=2β2∂xv(t, 0)∂2
xv(t, 0) + 2β2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(R+)

= − 2β2∂xv(t, 0)g(t) + 2β2
∥∥∥∂2

xv(t, ·)
∥∥∥2

L2(R+)
,
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2γ
∫ ∞

0
v2∂2

xvdx = − 4γ
∫ ∞

0
v(∂xv)2dx.

Consequently, multiplying Eq (3.4) by 2v, thanks to Eq (7.14), an integration on (0,∞) gives

d
dt
∥v(t, ·)∥2L2(0,∞) + 2β2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)
+ 2 (κ − 2γ)

∫ ∞

0
v(∂xu)2dx

= −4qg(t)
∫ ∞

0
e−xv2dx − 4qg(t)

∫ ∞

0
e−xv∂xvdx + 2(2q − κ − γ)g2(t)

∫ ∞

0
e−2xvdx

+ 4κg(t)
∫ ∞

0
e−xv∂xvdx − 2νg(t)

∫ ∞

0
e−xvdx + 2δg(t)

∫ ∞

0
e−xvdx

− 2β2g(t)
∫ ∞

0
e−xvdx − 2γg(t)

∫ ∞

0
e−xv2ds − 2γg(t)

∫ ∞

0
e−xv∂2

xvdx

+ 2g′(t)
∫ ∞

0
e−xvdx − 2δ

∫ ∞

0
∂xv∂2

xvdx − 2β2∂xv(t, 0)g(t).

Thanks to Eq (1.2), we have that

d
dt
∥v(t, ·)∥2L2(0,∞) + 2β2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)

= −4qg(t)
∫ ∞

0
e−xv2dx − 4qg(t)

∫ ∞

0
e−xv∂xvdx (7.15)

+ 2(2q − κ − γ)g2(t)
∫ ∞

0
e−2xvdx + 4κg(t)

∫ ∞

0
e−xv∂xvdx

− 2νg(t)
∫ ∞

0
e−xvdx + 2δg(t)

∫ ∞

0
e−xvdx

− 2β2g(t)
∫ ∞

0
e−xvdx − 2γg(t)

∫ ∞

0
e−xv2ds

− 2γg(t)
∫ ∞

0
e−xv∂2

xvdx + 2g′(t)
∫ ∞

0
e−xvdx

− 2δ
∫ ∞

0
∂xv∂2

xvdx − 2β2∂xv(t, 0)g(t).

Since ∫ ∞

0
e−4xdx =

1
4
, (7.16)

thanks to Eqs (1.4), (7.3), (7.16) and the Young inequality,

4|q||g(t)|
∫ ∞

0
e−xv2dx ≤ C0 ∥v(t, ·)∥2L2(0,∞) ,

4|q||g(t)|
∫ ∞

0
e−x|v||∂xv|dx ≤ 2C0

∫ ∞

0
|v||∂xv|dx

≤ C0 ∥v(t, ·)∥2L2(0,∞) +C0 ∥∂xv(t, ·)∥2L2(0,∞) ,

2|2q − κ − γ|g2(t)
∫ ∞

0
e−2x|v|dx ≤ 2C0

∫ ∞

0
e−2x|v|dx

Networks and Heterogeneous Media Volume 21, Issue 1, 92–146.



129

≤ C0

∫ ∞

0
e−4xdx +C0 ∥v(t, ·)∥2L2(R+)

≤ C0 +C0 ∥v(t, ·)∥2L2(R+) ,

4|κ||g(t)|
∫ ∞

0
e−x|v||∂xv|dx ≤ 2C0

∫ ∞

0
|v||∂xv|dx

≤ C0 ∥v(t, ·)∥2L2(R+) +C0 ∥∂xv(t, ·)∥2L2(R+) ,

2|ν||g(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0

∫ ∞

0
e−2xdx +C0 ∥v(t, ·)∥2L2(R+)

≤ C0 + +C0 ∥v(t, ·)∥2L2(R+) ,

2|δ||g(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0

∫ ∞

0
e−2xdx +C0 ∥v(t, ·)∥2L2(R+)

≤ C0 +C0 ∥v(t, ·)∥2L2(R+) ,

2β2|g(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0

∫ ∞

0
e−2xdx +C0 ∥v(t, ·)∥2L2(R+)

≤ C0 + ∥v(t, ·)∥2L2(R+) ,

2|γ||g(t)|
∫ ∞

0
e−xv2dx ≤ C0 ∥v(t, ·)∥2L2(R+) ,

2|γ||g(t)|
∫ ∞

0
e−x|v||∂2

xv|dx ≤ C0

∫ ∞

0
|v||∂2

xv|dx

=

∫ ∞

0

∣∣∣∣∣C0v
β

∣∣∣∣∣ ∣∣∣β∂2
xv

∣∣∣ dx

≤ C0 ∥v(t, ·)∥2L2(0,∞) +
β2

2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(R+)
,

2|g′(t)|
∫ ∞

0
e−x|v|dx ≤ 2C0

∫ ∞

0
e−x|v|dx

≤ C0

∫ ∞

0
e−2xdx +C0 ∥v(t, ·)∥2L2(R+)

≤ C0 +C0 ∥v(t, ·)∥2L2(R+) ,

2|δ|
∫ ∞

0
|∂xv||∂2

xv|dx =
∫ ∞

0

∣∣∣∣∣2δ∂xv
β

∣∣∣∣∣ ∣∣∣β∂2
xv

∣∣∣ dx

≤
2δ2

β2 ∥∂xv(t, ·)∥2L2(R+) +
β2

2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)
,

2β2|∂xv(t, 0)||g(t)|dx ≤ 2C0|∂xv(t, 0)| ≤ C0 + (∂xv(t, 0))2.
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It follows from Eq (7.15) that

d
dt
∥v(t, ·)∥2L2(0,∞) + β

2
∥∥∥∂2

xv(t, ·)
∥∥∥2

L2(0,∞)

≤ C0 ∥v(t, ·)∥2L2(R+) +C0 ∥∂xv(t, ·)∥2L2(R+) + (∂xv(t, 0))2 +C0.
(7.17)

Observe that
(∂xv(t, 0))2 = −2

∫ ∞

0
∂xv∂2

xvdx ≤ 2
∫ ∞

0
|∂xv||∂2

xv|dx.

Therefore, by the Young inequality,

(∂xv(t, 0))2 ≤

∫ ∞

0

∣∣∣∣∣2∂xv
β

∣∣∣∣∣ ∣∣∣β∂2
xv

∣∣∣ dx

≤
2
β2 ∥∂xv(t, ·)∥2L2(0,∞) +

β2

2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(R+)
.

(7.18)

Consequently, by Eq (7.17),

d
dt
∥v(t, ·)∥2L2(0,∞) +

β2

2

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)

≤ C0 ∥v(t, ·)∥2L2(R+) +C0 ∥∂xv(t, ·)∥2L2(R+) +C0.

(7.19)

Observe that, thanks to Eq (3.3), we have that

C0 ∥∂xv(t, ·)∥2L2(R+) = C0

∫ ∞

0
∂xv∂xvdx = −C0

∫ ∞

0
v∂2

xvdx.

Thanks to the Young inequality,

C0 ∥∂xv(t, ·)∥2L2(R+) =2
∫ ∞

0

∣∣∣∣∣∣
√

3C0v
2β

∣∣∣∣∣∣
∣∣∣∣∣∣β∂2

xv
√

3

∣∣∣∣∣∣ dx

≤C0 ∥v(t, ·)∥2L2(R+) +
β2

3

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)
.

If follows from Eq (7.19)

d
dt
∥v(t, ·)∥2L2(0,∞) +

β2

6

∥∥∥∂2
xv(t, ·)

∥∥∥2

L2(0,∞)

≤ C0 ∥v(t, ·)∥2L2(R+) +C0.

By the Gronwall Lemma and Eq (2.4), we have

∥v(t, ·)∥2L2(0,∞) +
β2eC0t

3

∫ t

0
e−C0 s

∥∥∥∂2
xv(s, ·)

∥∥∥2

L2(0,∞)
ds

≤C0eC0t +C0eC0t
∫ t

0
e−C0 sds ≤ C(T ),

which gives Eq (3.5).
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Arguing as in Lemma 2.1, we have Eq (2.7).
Finally, we prove Eq (3.6). Integrating Eq (7.18) on (0, t), we have that∫ ∞

0
(∂xv(s, 0))2ds ≤ C0

∫ t

0
∥v(s, ·)∥2L2(R+) ds +

β2

3

∫ t

0

∥∥∥∂2
xv(s, ·)

∥∥∥2

L2(0,∞)
ds.

Equation (3.6) follows from Eqs (2.7) and (3.5).

Proof of Lemma 3.5. Let 0 ≤ t ≤ T . We begin by observing that, thanks Eq (1.4), ∂tu(t, 0) = g′(t).
Consequentially, by Eq (1.4), we have that

2
∫ ∞

0
∂4

xu∂tudx = − 2∂3
xu(t, 0)∂tu(t, 0) − 2

∫ ∞

0
∂3

xu∂t∂xudx

= − 2∂3
xu(t, 0)∂tu(t, 0) +

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

= − 2∂3
xu(t, 0)g′(t) +

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

(7.20)

Therefore, thanks to Eq (7.20), an integration of Eq (1.1) on (0, ∞) gives

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ 2β2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

= −4q
∫ ∞

0
u∂xu∂4

xudx − 2κ
∫ ∞

0
(∂xu)2∂4

xudx − 2ν
∫ ∞

0
∂2

xu∂
4
xudx (7.21)

− 2δ
∫ ∞

0
∂3

xu∂
4
xudx − 2γ

∫ ∞

0
u∂2

xu∂
4
xudx + 2∂3

xu(t, 0)g′(t).

Due to Eqs (1.4), (2.19), (3.11) and the Young inequality,

4|q|
∫ ∞

0
|u||∂xu||∂4

xu|dx ≤ 4|q| ∥u∥L∞((0,T )×R+)

∫ ∞

0
|∂xu||∂4

xu|dx

≤ 2C(T )
∫ ∞

0
|∂xu||∂4

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣C(T )∂xu
β
√

D6

∣∣∣∣∣∣ ∣∣∣∣β√D6∂
4
xu

∣∣∣∣ dx

≤
C(T )

D6
∥∂xu(t, ·)∥2L2((0,∞)) + β

2D6

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤
C(T )

D6
+ β2D6

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

2|κ|
∫ ∞

0
(∂xu)2|∂4

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣κ(∂xu)2

β
√

D6

∣∣∣∣∣∣ ∣∣∣∣β√D6∂
4
xu

∣∣∣∣ dx

≤
κ2

β2D6
∥∂xu(t, ·)∥4L4(R+) + β

2D6

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

2|ν|
∫ ∞

0
|∂2

xu||∂
4
xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣ ν∂2
xu

β
√

D6

∣∣∣∣∣∣ ∣∣∣∣β√D6∂
4
xu

∣∣∣∣ dx

≤
ν2

β2D6

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2D6

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

Networks and Heterogeneous Media Volume 21, Issue 1, 92–146.



132

2|δ|
∫ ∞

0
|∂3

xu||∂
4
xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣ δ∂3
xu

β
√

D6

∣∣∣∣∣∣ ∣∣∣∣β√D6∂
4
xu

∣∣∣∣ dx

≤
δ2

β2D6

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
+ β2D6

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

2|γ|
∫ ∞

0
|u|||∂2

xu||∂
4
xu|dx ≤ 2|γ| ∥u∥L∞((0,T )×R+)

∫ ∞

0
|∂2

xu||∂
4
xu|dx

≤ 2C(T )
∫ ∞

0
|∂2

xu||∂
4
xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣C(T )∂2
xu

β
√

D6

∣∣∣∣∣∣ ∣∣∣∣β√D6∂
4
xu

∣∣∣∣ dx

≤
C(T )

D6

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2D6

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
,

2|∂3
xu(t, 0)||g′(t)| ≤ 2C0|∂

3
xu(t, 0)|| ≤ C0 + (∂3

xu(t, 0))2,

where D6 is a positive constant, which will be specified later. It follows from Eq (7.21) that

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2 (2 − 5D6)

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤
C(T )

D6
+
κ2

β2D6
∥∂xu(t, ·)∥4L4(R+) +

C(T )
D6

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

+
δ2

β2D6

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
+C0 + (∂3

xu(t, 0))2.

Taking D6 = 1/5, we have

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ β2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C(T ) +
5κ2

β2 ∥∂xu(t, ·)∥4L4(R+) +C(T )
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
(7.22)

+
5δ2

β2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
+C0 + (∂3

xu(t, 0))2.

Observe that
(∂3

xu(t, 0))2 = −2
∫ ∞

0
∂3

xu∂
4
xudx ≤ 2

∫ ∞

0
|∂3

xu||∂
4
xu|dx.

Therefore, by the Young inequality,

(∂3
xu(t, 0))2 ≤

∫ ∞

0

∣∣∣∣∣∣2∂3
xu
β

∣∣∣∣∣∣ ∣∣∣β∂4
xu

∣∣∣ dx

≤
2
β2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)
.

(7.23)

Consequentially, by Eq (7.22), we have

d
dt

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

2

∥∥∥∂4
xu(t, ·)

∥∥∥2

L2(R+)

≤ C(T ) +
5κ2

β2 ∥∂xu(t, ·)∥4L4(R+) +C(T )
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
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+
5δ2 + 2
β2

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
+C0.

Integrating on (0, t), by Eqs (1.9), (2.10), (3.11) and (3.12), we get∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
β2

2

∫ t

0

∥∥∥∂4
xu(s, ·)

∥∥∥2

L2(R+)
ds

≤ C0 +C(T )t +
5κ2

β2

∫ t

0
∥∂xu(s, ·)∥4L4(R+) ds +C(T )

∫ t

0

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds

+
5δ2 + 2
β2

∫ t

0

∥∥∥∂3
xu(s, ·)

∥∥∥2

L2(R+)
ds +C0t ≤ C(T ),

which gives Eq (3.16).
Equation (2.22), follows from Eqs (3.11), (3.16), (7.23) and an integration on (0, t).
We prove Eq (2.23). Thanks to Eqs (3.11), (3.16) and the Hölder inequality,

(∂xu(t, x))2 =2
∫ x

0
∂xu∂2

xudy + 2
∫ ∞

0
∂xu∂2

xudx ≤ 4
∫ ∞

0
|∂xu||∂2

xu|dx

≤4 ∥∂xu(t, ·)∥L2(R+)

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(R+)

≤ C(T ).

Hence,
∥∂xu∥2L∞((0,T )×R+) ≤ C(T ),

which gives Eq (2.23).
Finally, we prove Eq (2.24). We begin by observing that, thanks to∥∥∥∂2

xu(t, ·)
∥∥∥4

L4(R+)
=

∫ ∞

0
∂2

xu(∂2
xu)3dx = −3

∫ ∞

0
∂xu(∂2

xu)2∂3
xudx. (7.24)

Thanks to Eq (2.23) and the Young inequality,

3
∫ ∞

0
|∂xu|(∂2

xu)2|∂3
xu|dx =

∫ ∞

0

∣∣∣3∂xu∂3
xu

∣∣∣ (∂2
xu)2dx

≤
9
2

∫ ∞

0
(∂xu)2(∂3

xu)2dx +
1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)

≤
9
2
∥∂xu∥2L∞((0,T )×R+)

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
+

1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(0∞)

≤ C(T )
∥∥∥∂3

xu(t, ·)
∥∥∥2

L2(R+)
+

1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
.

It follows from Eq (7.24) that

1
2

∥∥∥∂2
xu(t, ·)

∥∥∥4

L4(R+)
≤ C(T )

∥∥∥∂3
xu(t, ·)

∥∥∥2

L2(R+)
.

An integration on (0, t) and Eq (3.11) give Eq (2.24).

Arguing as in Section 2, we have Lemma 2.7.
Now, we prove Theorem 1.1.
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Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 2.7, 3.2, 3.4, 3.5 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is solution of Eqs (1.1)-(1.4)-(1.8) and (1.13) holds.

Arguing as in Section 2, we have Eq (1.14).

Proof of Lemma 4.1. Let 0 ≤ t ≤ T . Multiplying Eq (1.1) by 2u, thanks to Eqs (1.2) and (1.5), an
integration on (0, ∞) gives

d
dt
∥u(t, ·)∥2L2(R+) =2

∫ ∞

0
u∂tudx

= − 4q
∫ ∞

0
u2∂xudx + 6τ2

∫ t

0
u3∂xudx − 2κ

∫ ∞

0
u(∂xu)2dx

− 2ν
∫ ∞

0
u∂2

xudx − 2δ
∫ ∞

0
u∂3

xudx − 2β2
∫ ∞

0
u∂4

xudx

− 2γ
∫ ∞

0
u2∂2

xudx

=
4q
3

u3(t, 0) −
3τ2

2
u4(t, 0) + 2(2γ − κ)

∫ ∞

0
u(∂xu)2dx

− 2ν
∫ ∞

0
u∂2

xudx + 2δ
∫ ∞

0
∂xu∂2

xudx + 2β2
∫ ∞

0
∂xu∂3

xudx

+ 2γu2(t, 0)∂xu(t, 0)

=
4q
3

u3(t, 0) −
3τ2

2
u4(t, 0) − 2ν

∫ ∞

0
u∂2

xudx

+ 2δ
∫ ∞

0
∂xu∂2

xudx − 2β2
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
+ 2γu2(t, 0)∂xu(t, 0).

Therefore, we have that

d
dt
∥u(t, ·)∥2L2(R+) + 2β2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

3τ2

2
u4(t, 0)

=
4q
3

u3(t, 0) − 2ν
∫ ∞

0
u∂2

xudx + 2δ
∫ ∞

0
∂xu∂2

xudx (7.25)

+ 2γu2(t, 0)∂xu(t, 0).

Due to the Young inequality,∣∣∣∣∣4q
3

∣∣∣∣∣ |u(t, 0)|3 = 2

∣∣∣∣∣∣2qu(t, 0)
τ
√

D7

∣∣∣∣∣∣ ∣∣∣∣τ√D3u2(t, 0)
∣∣∣∣ dx

≤
4q2

τ2D7
u2(t, 0) + τ2D7u4(t, 0) = 2

q2

τ2|τ|D7
√

D7
|τ|

√
D7u2(t, 0) + τ2D7u4(t, 0)

≤
q4

τ6D3
7

+ 2τ2D7u4(t, 0),

2ν
∫ ∞

0
|u||∂2

xu|dx =
∫ ∞

0

∣∣∣∣∣2νuβ
∣∣∣∣∣ ∣∣∣β∂2

xu
∣∣∣ dx
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≤
2ν2

β2 ∥u(t, ·)∥2L2(R+) +
β2

2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
,

2|δ|
∫ ∞

0
|∂xu||∂2

xu|dx =
∫ ∞

0

∣∣∣∣∣2δ∂xu
β

∣∣∣∣∣ ∣∣∣β∂2
xu

∣∣∣ dx

≤
2δ2

β2 ∥∂xu(t, ·)∥2L2(R+) +
β2

2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
,

2|γ|u2(t, 0)|∂xu(t, 0)| = 2|τ
√

D7u2(t, 0)
|γ∂xu(t, 0)
|τ|
√

D7

≤ τ2D7u4(t, 0) +
γ2

τ2D7
(∂xu(t, 0))2,

where D7 is a positive constant, which will be specified later. It follows from Eq (7.25) that

d
dt
∥u(t, ·)∥2L2(R+) + β

2
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
+ 3τ2

(
1
4
− D7

)
u4(t, 0)

≤ C0 ∥u(t, ·)∥2L2(R+) +C0 ∥∂xu(t, ·)∥2L2(R+) +
C0

D3
7

+
C0

D7
(∂xu(t, 0))2.

Taking D7 = 1/20, we have that

d
dt
∥u(t, ·)∥2L2(R+) + β

2
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
+

3τ2

20
u4(t, 0)

≤ C0 ∥u(t, ·)∥2L2(R+) +C0 ∥∂xu(t, ·)∥2L2(R+) +C0(∂xu(t, 0))2 +C0

≤ C0 ∥u(t, ·)∥2L2(R+) + 2C0 ∥∂xu(t, ·)∥2L2(R+) +C0(∂xu(t, 0))2 +C0.

(7.26)

Observe that

C0 ∥∂xu(t, ·)∥2L2(R+) +C0(∂xu(t, 0))2 = C0

∫ ∞

0
∂xu∂xudx − 2C0

∫ ∞

0
∂xu∂2

xudx

= −C0u(t, 0)∂xu(t, 0) −C0

∫ ∞

0
u∂2

xudx − 2C0

∫ ∞

0
∂xu∂2

xudx.
(7.27)

Due to the Young inequality,

2C0

∫ ∞

0
|∂xu||∂2

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣ ∂xu
√

D8

∣∣∣∣∣∣ ∣∣∣∣C0

√
D8∂

2
xu

∣∣∣∣ dx

≤
1

D8
∥∂xu(t, ·)∥2L2(R+) +C0D8

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)

= −
1

D8
u(t, 0)∂xu(t, 0) −

1
D8

∫ ∞

0
u∂2

xudx + D8C0

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
,

where D8 is a positive constant, which will be specified later. It follows from Eq (7.27) that

C0 ∥∂xu(t, ·)∥2L2(R+) +C0(∂xu(t, 0))2

≤ −

(
C0 +

1
D8

)
u(t, 0)∂xu(t, 0) −

(
C0 +

1
D8

) ∫ ∞

0
u∂2

xudx (7.28)
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+ D8C0

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

Due to the Young inequality,(
C0 +

1
D8

)
|u(t, 0)||∂xu(t, 0)| =

(
C0 +

1
D8

)
C0

|u(t, 0)|C0|∂xu(t, 0)|

≤


(
C0 +

1
D8

)
C0


2

u2(t, 0) +
C0

2
(∂xu(t, 0))2,

(
C0 +

1
D8

) ∫ ∞

0
|u||∂2

xu|dx = 2
∫ ∞

0

∣∣∣∣∣∣∣∣
(
C0 +

1
D8

)
u

2
√

D8

∣∣∣∣∣∣∣∣
∣∣∣∣ √D8∂

4
xu

∣∣∣∣ dx

(
C0 +

1
D8

)2

4D8
∥u(t, ·)∥2L2(R+) + D8

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(0,∞)
.

Therefore, by Eq (7.28), we have that

C0 ∥∂xu(t, ·)∥2L2(R+) +
C0

2
(∂xu(t, 0))2

≤


(
C0 +

1
D8

)
C0


2

u2(t, 0) +

(
C0 +

1
D8

)2

4D8
∥u(t, ·)∥2L2(R+)

+ D8(C0 + 1)
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
,

which gives

2C0 ∥∂xu(t, ·)∥2L2(R+) +C0(∂xu(t, 0))2

≤

2
(
C0 +

1
D8

)
C0


2

u2(t, 0) +
2
(
C0 +

1
D8

)2

4D8
∥u(t, ·)∥2L2(R+) (7.29)

+ 2D8(C0 + 1)
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
.

It follows from Eqs (7.26) and (7.29) that

d
dt
∥u(t, ·)∥2L2(R+) +

(
β2 − 2D8(1 +C0)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

3τ2

20
u4(t, 0)

≤

C0 +
2
(
C0 +

1
D8

)2

4D8

 ∥u(t, ·)∥2L2(R+) +

2
(
C0 +

1
D8

)
C0


2

u2(t, 0) +C0.

Taking

D8 =
β2

4(1 +C0)
, (7.30)

we have that

d
dt
∥u(t, ·)∥2L2(R+) +

β2

2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+

3τ2

20
u4(t, 0)

≤ C0 ∥u(t, ·)∥2L2(R+) +C0u2(t, 0) +C0.
(7.31)
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Thanks to the Young inequality

C0u2(t, 0) = 2
C0
√

20

2
√

2|τ|

√
2|τ|u2(t, 0)

20
≤ C0 +

2τ2

20
u4(t, 0). (7.32)

It follows from Eq (7.31) that

d
dt
∥u(t, ·)∥2L2(R+) +

β2

2

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+
τ2

20
u4(t, 0)

≤ C0 ∥u(t, ·)∥2L2(R+) +C0.

By the Gronwall Lemma and Eq (1.9), we get

∥u(t, ·)∥2L2(R+) +
β2eC0t

2

∫ t

0
e−C0 s

∥∥∥∂2
xu(s, ·)

∥∥∥2

L2(R+)
ds +

τ2eC0t

20

∫ t

0
e−C0 su4(t, 0)ds

≤C0eC0t ≤ C(T ),

which gives Eq (4.1).
Equation (4.2) follows Eqs (4.1), (7.32) and an integration on (0, t), while, Eqs (4.1) (4.2), (7.29),

(7.30) and an integration on (0, t) give Eqs (2.9) and (3.7).
Finally, we prove Eq (2.9). We begin by proving∫ t

0
∥∂xu(s, ·)∥2L∞(0,∞) ds ≤ C(T ). (7.33)

By the Young inequality,

(∂xu(t, x))2 =2
∫ x

0
∂xu∂2

xudy + 2(∂xu(t, 0))2 ≤ 2
∫ ∞

0
∂xu∂2

xudx + 2(∂xu(t, 0))2

≤2
∫ ∞

0
|∂xu||∂2

xu|dx + 2(∂xu(t, 0))2

≤ ∥∂xu(t, ·)∥2L2(R+) +
∥∥∥∂2

xu(t, ·)
∥∥∥2

L2(R+)
+ 2(∂xu(t, 0))2.

Hence,
∥∂xu(t, ·)∥2L∞(0,∞) ≤ ∥∂xu(t, ·)∥2L2(R+) +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+ 2(∂xu(t, 0))2.

Equation (7.33) follows from Eqs (2.9), (3.7), (4.1) and an integration on (0, t). We prove∫ t

0
∥u(s, ·)∂xu(s, ·)∥2L2(R+) ds ≤ C(T ). (7.34)

Observe that, by Eq (4.1),∫ ∞

0
u2(∂xu)2dx ≤ ∥u(t, ·)∥2L2(R+) ∥∂xu(t, ·)∥2L∞(0,∞) ≤ C(T ) ∥∂xu(t, ·)∥2L∞(0,∞) .

An integration on (0, t) gives Eq (7.34).
Therefore, the proof is concluded.
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Proof of Lemma 4.2. Let 0 ≤ t ≤ T . We begin by proving Eq (4.3). Observe that

∥∂xu(t, ·)∥2L2(R+) =

∫ ∞

0
∂xu∂xu = −u(t, 0)∂xu(t, 0) −

∫ ∞

0
u∂2

xudx. (7.35)

Thanks to Eq (4.1) and the Hölder and the Young inequalities,

|u(t, 0)||∂xu(t, 0)| ≤
1
2

u2(t, 0) +
1
2

(∂xu(t, 0))2 ≤ u2(t, 0) + (∂xu(t, 0))2∫ ∞

0
|u||∂2

xu| ≤ ∥u(t, ·)∥L2(R+)

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(R+)

≤ C(T )
∥∥∥∂2

xu(t, ·)
∥∥∥

L2(R+)
.

Therefore, by Eq (7.35), we have that

∥∂xu(t, ·)∥2L2(R+) ≤ u2(t, 0) + (∂xu(t, 0))2 +C(T )
∥∥∥∂2

xu(t, ·)
∥∥∥

L2(R+)
. (7.36)

Observe that
u2(t, 0) + (∂xu(t, 0))2 = −2

∫ ∞

0
u∂xudx − 2

∫ ∞

0
∂xu∂2

xudx. (7.37)

Due to Eq (4.1) and the Hölder and the Young inequalities,

2
∫ ∞

0
|u||∂xu|dx = 2

∫ ∞

0

∣∣∣∣∣∣ u
√

D8

∣∣∣∣∣∣ ∣∣∣∣ √D8∂xu
∣∣∣∣ dx

≤
1

D8
∥u(t, ·)∥2L2(R+) + D8 ∥∂xu(t, ·)∥2L2(R+)

≤
C(T )

D8
+ D8 ∥∂xu(t, ·)∥2L2(R+) ,

2
∫ ∞

0
|∂xu||∂2

xu|dx = 2
∫ ∞

0

∣∣∣∣ √D8∂xu
∣∣∣∣ ∣∣∣∣∣∣ ∂2

xu
√

D8

∣∣∣∣∣∣ dx

≤ D8 ∥∂xu(t, ·)∥2L2(R+) +
1

D8

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
,

where D8 is a positive constant, which will be specified later. It follows from Eq (7.36) that

u2(t, 0) + (∂xu(t, 0))2

≤
C(T )

D8
+ 2D8 ∥∂xu(t, ·)∥2L2(R+) +

1
D8

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

(7.38)

Therefore, by Eqs (7.36) and (7.38)

(1 − 2D8) ∥∂xu(t, ·)∥2L2(R+) ≤
C(T )

D8
+

1
D8

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+C(T )

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(R+)

.

Taking D8 = 1/4, thanks to the Young inequality, we have that

1
2
∥∂xu(t, ·)∥2L2(R+) ≤C(T ) + 4

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
+C(T )

∥∥∥∂2
xu(t, ·)

∥∥∥
L2(R+)

≤C(T )
(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

)
,
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which gives Eq (4.3).
We prove Eq (4.4). Thanks to Eqs (4.1), (4.3) and the Hölder inequality,

u2(t, x) =2
∫ x

0
u∂xudy + u2(t, 0) ≤ 2

∫ ∞

0
u∂xudx − 2

∫ ∞

0
u∂xudx ≤ 4

∫ ∞

0
|u|∂xu|dx

≤4 ∥u(t, ·)∥L2(R+) ∥∂xu(t, ·)∥L2(R+) ≤ C(T )

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

)
.

Hence,

∥u(t, ·)∥2L∞(0,∞) ≤ C(T )

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

)
,

which gives Eq (4.4).
Finally, we prove Eq (4.5). We begin by proving that

∥u(·, 0)∥2L∞(0,T ) ≤ C(T )

√(
1 +

∥∥∥∂2
xu

∥∥∥2

L∞(0,T ;L2(R+))

)
. (7.39)

Observe that, thanks Eqs (4.1), (4.3) and the Hölder inequality,

u2(t, 0) = − 2
∫ ∞

0
u∂xudx ≤ 2

∫ ∞

0
|u||∂xu|dx

≤2 ∥u(t, ·)∥L2(R) ∥∂xu(t, ·)∥L2(R) ≤ C(T )

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)

)
.

Hence,

∥u(·, 0)∥2L∞(0,T ) ≤ C(T )

√(
1 +

∥∥∥∂2
xu

∥∥∥2

L∞(0,T ;L2(R+))

)
,

which gives Eq (7.39).
Observe that

∥∂xu(t, ·)∥4L4(R+) =

∫ ∞

0
∂xu(∂2

xu)3dx

= − u(t, 0)(∂xu(t, 0))3 − 3
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0
u(∂xu)2∂2
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=3u(t, 0)
∫ ∞

0
(∂xu)2∂2

xudx − 3
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0
u(∂xu)2∂2

xudx.

(7.40)

Due to the Young inequality,

3|u(t, 0)|
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0
(∂xu)2|∂2

xu|dx =
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0
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1
2
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9
2
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≤
1
2
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9
2
∥u(·, 0)∥2L∞(0,T )
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xu(t, ·)

∥∥∥2

L2(R+)
,
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3
∫ ∞

0
|u|(∂xu)2|∂2

xu|dx = 2
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1
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27
4
∥u∥2L∞((0,T )×R+)
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xu(t, ·)

∥∥∥2

L2(R+)
.

It follows from Eq (7.40) that

1
6
∥∂xu(t, ·)∥4L4(R+)

≤
9
2

(
∥u(·, 0)∥2L∞(0,T ) +

3
2
∥u∥2L∞((0,T )×R+)

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

(7.41)

By Eq (4.4), we have that

∥u∥2L∞((0,T )×R+) ≤ C(T )

√(
1 +

∥∥∥∂2
xu(t, ·)

∥∥∥2

L∞(0,T ;L2(R+))

)
. (7.42)

Therefore, by Eqs (7.39), (7.41) and (7.42),

∥∂xu(t, ·)∥4L4(R+) ≤ C(T )

√(
1 +

∥∥∥∂2
xu

∥∥∥2

L∞(0,T ;L2(R+))

) ∥∥∥∂2
xu(t, ·)

∥∥∥2

L2(R+)
.

An integration on (0, t) and Eq (4.1) give Eq (4.5)

8. Conclusions

In this paper, we have investigated the initial-boundary value problem associated with the
Kuramoto-Velarde equation on the half-line. Under suitable structural assumptions on the coefficients
and assuming initial data in H2(0,∞), we established the well-posedness of the problem for a wide
class of boundary conditions, including Dirichlet, mixed, and higher-order boundary constraints. The
main result guarantees existence, uniqueness, and continuous dependence on the initial data of
solutions in appropriate Sobolev spaces with precise stability estimates. The analysis relies on the
derivation of delicate a priori estimates, which are obtained through energy methods tailored to the
high-order and strongly nonlinear structure of the equation. A crucial role is played by the
compatibility condition between the nonlinear terms and the fourth-order dissipation, which allows us
to control the nonlinear effects and close the estimates. The use of suitable auxiliary functions further
enables the treatment of nonhomogeneous boundary conditions. From a mathematical perspective,
these results extend the theory for the Kuramoto-Velarde and related equations, which has so far been
mainly focused on the Cauchy problem, by providing a comprehensive well-posedness theory in the
presence of boundaries. From a physical viewpoint, the analysis supports the mathematical
consistency of models arising in crystal growth, spinodal decomposition, and interface dynamics
when boundary effects are taken into account. However, several questions remain open. Possible
directions for future research include the study of global-in-time behavior, the existence and stability
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of stationary or traveling wave solutions under boundary constraints, and the extension of the present
analysis to weaker initial regularity or to multidimensional settings. Another interesting perspective
concerns the investigation of control and stabilization problems for the Kuramoto-Velarde equation in
bounded or semi-bounded domains.
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