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Abstract: The Kuramoto-Velarde equation describes the spatio-temporal evolution of step
morphology on crystal surfaces, as well as the dynamics of spinodal decomposition in phase-separating
systems subjected to an external field. In this paper, we prove the well-posedness of the solutions for
the initial-boundary value problem for this equation, under several possible boundary conditions.
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1. Introduction

In this paper, we investigate the well-posedness of the solutions for the equation:

ou+ 0. f(u) + qlaxus + k(d,u)* + v@iu + 58iu +ﬁ28iu + yuaiu =0, (1.1)
with g, k, v, 9, B, v € R, such that
B0, )/:g. (1.2)

We are interested in the initial-boundary value problem for this equation. More precisely, we
consider the following boundary conditions:

0 =g@, 150,

{Z(;(t)o) e EhEWSO. O =m0, @=0 (1
’0 = b 0’

{thu(t)o) i(g ;zo g€ W'(0,0), £(0) = up(0), ¢1=0, (1.4)
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Pu(t,0)=0, >0, 5
g =-17#0, (1.5

Fu(t,0)=0, >0.
ou(t,0)=0, t>0,

u(t, ) g g1 =-12%0, 5=0, (1.6)
Fu(t,0)=0, >0,
u(t,0) =0, t>0, (1.7)
O.u(r,0)=0, 7>0. '

Moreover, we augment Eq (1.1) with the following initial datum:
u(0, x) = up(x), x>0, (1.8)

for which we assume:
uy € H*(0, 00). (1.9)

Equation (1.1) has been developed in order to model several physical phenomena like that:

e Spinodal decomposition of phase separating systems in an external field [1-3];

e Spatio-temporal evolution of the morphology of steps on crystal surfaces [4-6];

e Growth of thermodynamically unstable crystal surfaces with strongly anisotropic surface tension
where the function u represents is the surface slope, while the constants ¢ and ¢g; are the growth
driving forces proportional to the difference between the bulk chemical potentials of the solid and
fluid phases, respectively [7-11].

The Kuramoto-Velarde equation
O + qOu* + k(O.u)* + vO*u + 60°u + B20%u + yud*u = 0, (1.10)
can be obtained from Eq (1.1) taking

fu)y=qu*, qgeR, ¢ =0. (1.11)

Equation (1.10) has been deduced in order to describe slow space-time variations of disturbances
at interfaces, diffusion-reaction fronts, and plasma instability fronts [12—14]. It was very useful in the
modelization of Benard—Marangoni cells, that occur when there is large surface tension on the
interface [15—17] in a microgravity environment. This situation arises in crystal growth experiments
aboard an orbiting space station, although the free interface is metastable with respect to small
perturbations. The nonlinearities yud*u and «(8,u)> model pressure destabilization effects striving to
rupture the interface. Equation (1.10) is deduced in [18] to describe the long waves on a viscous fluid
owing down an inclined plane, and in [19] to model the drift waves in a plasma.

The mathematical results on Eq (1.10) can be resumed as follows: The exact solutions are studied
in [20, 21], the existence of the solitons in [12,22], the existence of traveling wave solutions in [23],
the existence of periodic solutions in [24], and the well-posedness of the Cauchy problem in [25-27].

Taking k =y = 0 in Eq (1.10), we have

O + qo.* +voru + 50°u + 2ot = 0. (1.12)
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It was also independently deduced by Kuramoto [28-30] to describe the phase turbulence in
reaction—diffusion systems, and by Sivashinsky [31], to describe plane flame propagation, taking into
account the combined influence of diffusion and thermal conduction of the gas on the stability of a
plane flame front.

Equation (1.12) can be used to study incipient instabilities in several physical and chemical
systems [32-34]. Moreover, Eq (1.12), which is also known as the Benney-Lin equation [35, 36],
were derived by Kuramoto in the study of phase turbulence in Belousov—Zhabotinsky reactions [37].

The dynamical properties and the existence of exact solutions for Eq (1.12) have been investigated
in [5, 38-42]. Control problems for Eq (1.12) are studied in [43—47], the global exponential
stabilization in [48]. In [6], the existence of solitonic solutions for Eq (1.12) is proven. In [49-54]
and [55-57], the well-posedness of the Cauchy problem for Eq (1.12) is proven. Numerical results on
Eq (1.12) can be found in [58—63]. Finally, in [64], the convergence of the solution of Eq (1.12) to the
unique entropy one of the Burgers equation is proven.

Key results on boundary value problems for evolutive equations can be found in [65-69].

The main result of this paper is the following theorem.

Theorem 1.1. Fix T > 0 and assume Egs (1.2) and (1.9). Eq (1.1) augmented with one the boundary
conditions (1.3)—(1.7) and the initial datum (1.8) admit a unique solution

ue H'((0,T) % (0,00)) N L0, T; H*(0, c0)) N L*(0, T; W**(R,)),

dtu € L*((0,T) x (0, ). (1.13)

Moreover, if uy and u, are two solutions of the same initial-boundary value problem for Eq (1.1),
we have

c(T
ler (2, ) = w(t, M2y < €T iro = w20 2y s O<1<T, (1.14)

for some suitable C(T) > 0 depending only on T, and ||u2,0||

U0 | |H2(0,oo)’ H2(0,00)"

Hence, under Assumption (1.2), Theorem 1.1 gives the well-posedness of the initial-boundary
value problems (1.1), (1.3)—(1.7). The proof of Theorem 1.1 relies on deriving suitable a priori
estimates together with an application of the Cauchy-Kovalevskaya Theorem [70]. The regularity
assumption (1.9) on the initial datum is essential in order to derive our a priori estimates. We do not
think that the stability estimate (1.14) holds with a weaker assumption because the coefficient in the
exponent depends on the H? norm of the initial data.

The paper is organized as follows. In Sections 2—6, we prove Theorem 1.1 for Eqs (1.1)-(1.3)-(1.8),
Eqgs (1.1)-(1.4)-(1.8), Eqgs (1.1)-(1.5)-(1.8), Eqs (1.1)-(1.6)-(1.8), Eqs (1.1)-(1.7)-(1.8), respectively. In
Section 7, we collected some long and technical proofs of some lemmas. We present the conclusions
of the paper in Section 8.

2. Proof of the Theorem 1.1 for Eqs (1.1)-(1.3)-(1.8)
In this section, we prove Theorem 1.1 for Egs (1.1)-(1.3)-(1.8).
Let us prove some a priori estimates on u, denoting with Cy the constants, that depend only on the

data, and with C(T'), the constants that depend also on 7.
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Following [71], we introduce the auxiliary variable:

v(t, x) = u(t, x) — g(H)e™ — [g(t) + h(t)] xe™™.

Observe that

Av(t, x) =0,u(t, x) — g'(e™ — [¢'(t) + W (D] xe™,

dv(t, x) =0, u(t, x) — h(t)e ™ + [g(t) + h(t)] xe™*,

*v(t, x) =0%u(t, x) + 2h(t)e ™ + g(He™ — [g(t) + h(t)] xe™™,

Fv(t, x) =0°u(t, x) — 3h(t)e™ — 2g(t)e™™ + [g(t) + h(t)] xe™,

Otv(t, x) =0u(t, x) + 4h(H)e™ + 3g(t)e™ — [g(t) + h(t)] xe™ .
In particular, thanks to Egs (1.1), (1.3), (2.1), and (2.2),

v(t,0) = u(t,0) — g(r) =0, 0,v(¢,0) = 0,u(t,0) — h(t) = 0.
Moreover, thanks to Egs (1.3) and (2.2), we have that

”vO”iz(O,oo) < ||M0||22(0’00) .
Again, with Egs (1.1), (1.3) and (1.8), we have the following equation for v.

Oy + 2qv0.v + k(0v)* + vO:u + 602y + 20t + yvoPy
=—g'(He™ = [g'(t) + W (t)] xe™™ = 2qh(t)e™ v — 2q(g() + h(t)xe v

— 2qg(1)0.v — 2qh()g(te™ " — 2q[g(1) + h(t)]g(1)xe >
+ 2q[g(t) + h(t)xe *0,v — 2q[g(t) — h(t)1h(t)xe >
+2¢(8%(1) = R*(0)*e™ = [¢'(1) + B (1)] xe™
— 2kh(H)e 0, + 2k [g(t) + h(D)] xe ™ 0,v — kh*(t)e™
— k[g(t) + h(OT’ X + 2«g(1) [g(0) + h(D)] xe ™
+ 2vh(t)e™ + vg(H)e™ — v [g(®) + h(t)] xe™
— 36h(t)e™ — 26g(H)e™ + 8 [g(t) + h(t)] xe™ + 4B*h(t)e™
+3B%g(H)e™ — B [g(D) + h(t)] xe ™ + 2yh(t)e™v
+yg(e™v — 2y [g(1) + h()] xe™v — yg(H)e ™32y
+ 2yg(Dh(t)e™™ + yg (e ™ — yg(1) [g(t) + h(1)] xe ™
—y [g() + h(1)] xe™ 3y + 2yh(1) [g(1) + h(1)] xe™>*
+ v [g(0) + h(D)] xe™ =y [8(1) + h()] ¥e*.

Lemma 2.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

2 ,Cot !
X 2 ﬁ 4 —Cos
Iy + fo e

!
ﬁ ||8XV(S, ')HiZ(O’m) ds SC(T)’

2
L2(0,00)

(s, || 2y d5 <C(T),

forevery0 <t <T.
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The proof of this lemma is quite long and technical. Therefore, in order to improve the readability

of the paper, we postponed it in Section 7.
Arguing as in [52, Lemmas 2.2 and 2.3], we have the following result.

Lemma 2.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

ez, 200,000 SC(T),

!
f 18,us, NP2 g ) ds <C(T),
0

i

!
L‘ ”M(S, ')axu(s» ')lliZ(R+) ds SC(T)»

2
L2(0,00)

(s, || 2y ooy A5 <C(D),

forevery) <t <T.

Following [72, Lemma 2.3], we prove the following result.

Lemma 2.3. Fix T > 0 and assume Eq (1.2). There exists a constant Cy > 0, such that

4 2 2 2
10.14(2, [} 4000y < Co (||u||mo,m(o,w» [0t )| 2000, + 1),

forevery) <t <T.

Proof. Let 0 <t < T. We begin by observing that, thanks to Eq (1.3),

10,0, W, = [ (@Dt
0
= — u(t,0)(Ou(t,0))* - 3 f u(0u)*0*udx
0
=—gO* 1) -3 f u(0,u)*0’ud-x.
0

Due to the Young inequality,

3 f |utl(D10)2|0%uld x <5 9., Mis 00 + 3 f U (0*u)*dx
0 ' 0

1 4 9 ) 2
<5 10 Mgy + 5 M 0.0 [ 2008 20

It follows from Eqgs (1.3) and (2.13) that

1 4 9 ) 2
5 192t My S Co+ 5 Nl 1870008 2

which gives Eq (2.12).

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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Lemma 2.4. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

1951t Mz < CAY (14 02008, 1)

forevery 0 <t <T. Moreover,

[lu(t, )l 20,00y < C(T) \/(1 + \/(1 + [[uc, ')”LZ(o,oo)))’

forevery) <t <T.

(2.14)

(2.15)

Proof. Let 0 <t < T. We begin by proving Eq (2.14). Thanks to Eqgs (1.3), (2.8) and the Holder

inequality,
[|0,u(t, ')”22(0,00) :f Ol udx = —u(t,0)0,u(t,0) — f uc?iudx
0 0

= — g(H)h(t) - f ud?udx < Co + f |ua]|0uldx
0 0
<Co + lut, Mz 00 |07, )| 12,

<C(T) (1 + ||a;2c”(f’ ')||L2(o,oo)) ’

which gives Eq (2.14).
Finally, we prove Eq (2.15). Due to Egs (1.3), (2.8) and the Holder inequality,

ul(t, x) =2 f ududx + 2g%(t) < 2 f |ul|0uldx + C
0 0
<2t 20,00 105262, Nlp20.00) + Co < CCT) (1 + 1052t 120,009 -

Therefore, by Eq (2.14),

It Mgy < C 1+ (1 4+ 0200, 1.))-

which gives Eq (2.15).
Following [73, Lemma 2.2], we prove the following result.
Lemma 2.5. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that
|62 C(T),

L2(0,T5L2(0,00)) <
2 2 132 ' 4
Fout, | 200y + o) fo 1835, |2 .00y 45 SCT),

10u(2, 120,00y <C(T),
lleal] Lo (0. 7y%(0.00y) SC(T),

!
fo |82, |22 0., d5 SCCT),

(2.16)

(2.17)

(2.18)
(2.19)

(2.20)
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f (0u(s, 0))*dx <C(T), (2.21)

0

f (@u(s, 0))*dx <C(T), (2.22)
0

10l Lo (0, 7yx(0,000) SC(T), (2.23)

forevery0 <t <T.

The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Lemma 2.6. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

!
4
f [@uts, | ae., ds < CD), (2.24)
0
forevery) <t <T.
Proof. Let0 <t < T, we begin by observing that, thanks to Eq (1.3),

[ERTEn] . f " Pu@u)dx
’ 0

= — .u(t,0)(0u(t,0))* - 3 f 0,u(02u)* 0> udx (2.25)
0

= — h(1)(Au(t,0))’ - 3 f 0,u(0*u)*udx.
0

Observe that .
(u(1,0))° = -3 f (*u)*Oudx.
0
Therefore, by Eq (2.25), we have that

|[02u(t, ~)||i4(0m) = 3h(t) f (0*u)’udx - 3 f O u(*u)* 8> udx. (2.26)
’ 0 0
Thanks to Eqgs (1.3), (2.23), and the Young inequality,
® 1 (Pu)?|| V3Cd
31h(0)| f (PullPuldx < C f (@u1Puldx = 2 f @y || V3Codhu|
0 R 0 \/§ 2

4
LARY)

2
LRy’

1 2
< 3 [[0%uc, |

+ Co ||03uc, ||

3 f 10,02 10uldx < 31100l =0.77x000) f (PuFuldx
0 R

4 2

w 1
< C(T) fo @uyuddx < 5 [0t ) e, + OO B0t ) -

It follows from Eq (2.26) that

2
L2(0,00) *

I
¢ llouc, Moy < CT)

An integration on (0, ¢) and Eq (2.20) give Eq (2.24).

aiu(t» )”
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Lemma 2.7. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

1
‘fo‘ ”8[”(5" .)”iz(o,oo) dS S C(T)’ (227)

forevery0 <t <T.

Proof. Let(0 <t < T. Multiplying Egs (1.1)-(1.3)-(1.8) by 20;u, an integration on (0, co) gives
2 ||10,u(t, ')”22(0,00) =—2k ‘ﬁw(ﬁxu)zatudx -2y fow 8§u8,udx
-26 jo“” Fududx — 28° fow Otududx — 2y j:o ud*ud,u (2.28)
—4q fo ) ud ududx.
Due to Egs (2.17), (2.19), (2.20), (2.23) and the Young inequality,

2|K|f (axu)2|5zu|d7€§2|K|||5xu||L°°((o,T)><(0,oo))f |0,ullduldx
0 0

~ R lemdu
< 20(T) fo 10,ulld,uldx = 2 fo o | VDsd,u|dx
_c)

2
= D5 ”axu(t’ ')”LZ(O,OO) + D5 ”(9;1/!([, .)”LZ(O,OO)

Cc(T1) 2
< D5 + D5 ”6,”(1, .)”Lz((),oo) )
) |fw|a2 16,uld sz Vo | VDso
4 u ulax = u
0 X t 0 \/D_S 5U¢
2
Y a2 2 2
< o 0% )2 gy + Ds 100G, Mo
C(T)

5

216 f 02 ull0,uldx = 2 f
0 0

u
< B 2 Ds |16 2
= 35 || xu(t’ .)||L2(0,00) + s ” tu(ta ')”LZ(O,oo) )
0o 00 ﬁ284u
2 f |0%ul|0,uldx = 2 f || VDsou
£, e [P

< oo 1020 gy + DS 10 M

dx

<

2
+ D5 ||8,M(l, ')”LZ(O,oo) >

dx

dx

2yl f JulldulB,uuldx < 2Ly | el 0,7 yxc0.000 f |07l 0,uldx
0 0

< 20(T) f 02ulld,uldx = 2 f | VDsdu
0 0

Networks and Heterogeneous Media Volume 21, Issue 1, 92—-146.
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C
( ) ”(92 @, )”Lz(ooo) + Ds |0,ult, )||Lz(000)

C(T)
<ot 18 ,14(t, Y7200 00 -

4gl f l0ullBuddx < Hal lllioo rrecoeen f OByl x
0 0

(o) (o] T
< 20(T) f 10,ulld,uldx = 2 C( VO ‘\/D_ﬁtu‘dx
0 0
< S 10,1, e, + Ds Wt >||L2(R)
car)

< D—5 +D5 ”6 M(l )”LZ(R )

where Ds is a positive constant, which will be specified later. Consequently, by Eq (2.28),

C(T
21 = 3D u(t, Mgy < )+—||a3 05 - B - ottt
Choosing Ds = ¢, we have that
18,142, N}2(.00) SC(T) + 567 || Bt )||L2(Om)+5ﬁ |63, )||L2(Om)

Integrating on (0, ), by Eqgs (2.17) and (2.20), we get

!
2
[ 0 Mgy 5 458 [ outs g s
0 ,

!
+5 fo [@tuts. 20y ds < €T,

which gives Eq (2.27).
Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 2.2, 2.5-2.7 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is solution of Eqs (1.1)-(1.3)-(1.8) and (1.13) holds.

We prove Eq (1.14). Let u; and u, be two solutions of Eqs (1.1)-(1.3)-(1.8), which verify Eq (1.13),
that is

Oyt + 2qui0 i + k(O cu;)* + v@iui
+60%u; + B0 + yu;dau; = 0, t>0, x>0,

u;(t,0) = g(1), t>0, i=1,2.
axui(t’ 0) = h(t), r> 09
u;(0, x) = u; o(x), x>0,

Then, the function
w=u —up (2.29)

Networks and Heterogeneous Media Volume 21, Issue 1, 92—-146.
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solves the following initial-boundary value problem:

0,w + 2q(u10uy — uy0uy) + K [(6xu1)2 - (8xu2)2) + vaia)

+66)3Ca) +ﬁ201a) + 7(u16§u1 - uzaiuz) =0, t>0, x>0,
w(t,0) =0, t>0,
d.w(1,0) =0, t>0,
w(0, x) = uy o(x) — uz,o(x), x> 0.

Observe that, thanks to Eq (2.29),

U0 U1 — UrO Uy = U 10U — UrO U1 + U0y lt] — UrO Uy = O U W + U0 W,
(axul)2 - (axu2)2 = (axul + 8}6“2) (axul - ax”Z) = (axul + 0xu2) axw’

ul(')iul - uzﬁiuz = ulc')iul - ulaiuz + ulaiuz - uZaiuz = ulaiw + ﬁiuzw.
Therefore, Eq (2.30) is equivalent to the following equation:

0w + 2q0,.u w + 2qur0,w + k (0xuy + 0up) 0w + vﬁiw
+ 0w + 20w + yu, 02w + Y urw = 0.

Moreover, since u;, u, € L0, T; H*(0, o)), we have that

101111 L 0.7)x(0.00)) » 10xt2ll 10 7yx0.00y) < C(T),
et 1l (0, 7)x(0,00)) » 1052 (2, I 120.00) < C(T).

Observe again that, thanks to Eq (2.30),
4q f uwo,wdx = —2q f 0. urwdx,
0 0
26 f wdlwdx = — 26 f 0w wdx = 0,
0 0
28° f wdiwdx = - Zﬂzf 0w wdx = 25 ||(9)2Ca)(t, ')”;(0 )
0 0 ’
Therefore, multiplying Eq (2.31) by 2w, thanks to Eq (2.33), an integration on (0, co) gives
£ 0,0t Mg + 28 |20t
dt X ’ L2(0,00) X ’ L2(0,00)

= —ZKf (O uy + Ocitn) WO wdx — 2vf w@iwdx
0 0

—2yf ulwaiwdx—%/f Purwdx
0

0
—4q f O w*dx + 2q f O, rwdx.
0 0

Due to Eq (2.32) and the Young inequality,

2|K|f 10,101 + B,t] W?dx < C(T) ||t ')Iliz(o,oo),
0

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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I,B(?iw| dx

2| f lwl|0>wldx = f
0 0

2v? 2 B\ 2
< ot Mz + 7 10000 Mz

2vw
B

2| f i llwllwldx <C(T) f wllPPwldx
0 0

- f C(T)‘“'Lgaiw dx
o | B
2 ﬁ2 2 2
SO Nt M0y + 5 0206012

2yl f 0Rusle’dx <y? f (B2u2) @’ dx + ot M7,
0 0

2 2 2 2 2
<Y Nt Mo 0.0 078028 [ 2,00, + 10 N0y

2 2
<SC(T) Nl 0,00y + NNt 20 o) »

4lql f Bl dx <C(T) ot P
0

2|q|f 6xu2a)2dx <C(T) |lw(t, ')”iZ(O,Wy
0

Therefore, by Eq (2.34),
d 2 2 || 92 2
St Mz ey + B[00t [ 20 PP
<C(T) |lw(t, ')”iz(o,w) + C(T) |1, Moo 0.00) -
Observe that, thanks to Eq (2.30) and the Holder inequality,
w(t, x) =2 f woywdy < 2 f lw||0,wl|dx
0 0
L2 Jw(t, 120,00y 10 (2, 120,009 -
Therefore, by the Young inequality,
”(,l)(l, ')”%‘X’(O,oo) < ||(1)(t, ')”%}(O’w) + ||axw(t9 ‘)”iz(o,oo) .
It follows from Eq (2.36) that
d 2 2 || 92 2
0Ny + B |00t 2 2.36)

SC(D) 1t M2(0.00) + C N0t 720 00 -

(0,00)

Observe that, thanks to Eq (2.30),
C(D) [10,0(t, 7200y = C(T) f 0,00, wdx = —C(T) f wdrwdx.
0 0
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Therefore, by the Young inequality,

C(g)w‘ I,Bé?iw| dx

2
< ott, Wiy + 5 [0t

CD (1, gy < f
0

2

L2(0,00) L2(0,00)

Consequently, by Eq (2.36),

ﬁZ
2
The Gronwall Lemma and Eq (2.30) gives

2
drw(t, ')||L2(0,c>o) <€) llwt, ')”22(0,00) :

d 2
E ||(L)(t, ')”LZ(O,oo) +

Bl ’
oot M)+ — j; e |8, ] 2y 95 (2.37)
<O ”M1 o— uz,o”iz(o,m) .

Equation (1.14) follows from Eqs (2.29) and (2.37).
. Proof of the Theorem 1.1 for Eqs (1.1)-(1.4)-(1.8)

In this section, we prove Theorem 1.1 for Eq (1.1)-(1.4)-(1.8).
Inspired by [52], we consider the following function:

v(t, x) = u(t, x) — g(t)e ™. (3.1
Observe that

ov(t, x) =0u(t,x) — g'(t)e™,

0.v(t, x) =0,u(t, x) + g(t)e™, 3.2)
(1, x) =0%u(t, x) — g(t)e™,

Fv(t, x) =03u(t, x) + g(te™,

Otv(t, x) =0%u — g(t)e™.

By Egs (1.1)-(1.4)-(1.8) and (3.2),
v(t,0) = u(t,0) — g(1) =0, &*v(t,0) = —g(1), (3.3)

while, by Eqgs (1.4) and (3.2), we have Eq (2.4).

Again by Eqgs (1.1)-(1.4)-(1.8) and (3.2), we have the following equation for v.

O + 2qv0.v + k(0,v)? + v02v + 607y + 0%y + yvoiv
= —2qg()e™v = 2qg(e 0 v + (2q — k = Y)g (e (3.4)
+ 2kg(He 0, — vg(De™ + 5g(He™ — Bg(He™ — yg(H)e™v
—yg(e ™ 0% + g'(He™ .

We prove the following result.
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Lemma 3.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

2 ,Cot !
2 Be ~Cos
||V(t9 )”Lz((),oo) + 6 j(; e

2
L2(0,00)

ds <C(T), (3.5)

Fv(s, )||

f (0,v(s,0))ds <C(T), (3.6)
0

and Eq (2.7) hold for every O <t < T.

The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Lemma 3.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

f (0,u(t,0))*ds < C(T), (3.7)
0

and Egs (2.8)—(2.10) hold for every 0 <t < T.
Proof. Arguing as in [52, Lemma 3.2], the proof is concluded.
Lemma 3.3. Fix T > 0 and assume Eq (1.2). Then,

2
10,142, zszy < Co (1 + MalFoo, e, ) 102068 |2 (3.8)

forevery) <t <T.
Proof. Let 0 <t < T. We begin by observing that, thanks to Eq (1.4),

||axu(t, ')”14(R+) :f 6xu(axll)3dx
0
= — u(t,0)(0,u(t,0))’ — 3 f u(0u)**udx (3.9)
0

= — g@lt,0)) = 3 f " (@) 5uds.
0

Observe that .
(O,u(t,0))° = -3 f (Oxu)*0*udx.
0

Therefore, by Eq (3.9),

10.u(t, Mjsce., = 38(0) fo w(axufaiudx -3 fo i u(Bxu)*Ojudx. (3.10)
Due to Eq (1.4) and the Young inequality,
3)g(?)| fo m(axu)zwimdx < Cy fo m(axu)zwiuux
< 210t Mg, + Col| 2, e
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3 V3udu
2

00 o ax 2
3 f 1ul(8,u)216%uldx = 2 f Ot
0 o |33

27
”axu(t’ )”14(R+) + Z f uz(aiu)zdx
0

dx

<

<

W[ = W =

Pu(t, )., .

7
4 2
”axu(t’ .)”L“(RJ,) + Z ||u||L°°(O, T)XR,

It follows from Eq (3.10) that

1 4 2 2 2
10t Msge,y < Co (1l 1y, ) 0200 | o,

which gives Eq (3.8).

Lemma 3.4. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that
' 2
10141, 72z, + 28 fo |&3uCs, | 2, ds <CT), 3.11)
!
4
fo 10xu(s, N o, ds <C(T), (3.12)

and Eq (2.19) hold for every 0 <t < T.

Proof. Let 0 <t < T. We begin by observing that, since u(z,0) = g(¢), we have that 0,u(z,0) = g’'(¢).
Therefore, by Eq (1.4)

© d
-2 f Otududx =20,u(t, 0)g'(1) + — Il Wrae, ) -
0
-26 f *ududx =0, (3.13)
0

Fu(t, | .

-2p° f udtudx =28
0
Consequently, thanks to Eq (3.13), multiplying Eq (1.1) by —26%u, an integration on (0, c0) gives

d
TNt Ve, + 28 |20 e

= —20.u(t,0)g'(t) + 4q f U0 ud*u + 2k f (0u)*0*udx (3.14)
0 0

+ 20 e, [se, + 2y f W@ idx.
’ 0

Thanks to Eqgs (1.4), (3.8) and the Young inequality,
218,u(t, 0)lIg' (Dldx < 2Cold.u(z, 0)] < Co + (D,u(z, 0))’,

” 2 2 2 2 2
4ql fo jud ullBuldx < g* llu(t, au(t, Mipage, ) + |03ut, )| 2 »

Networks and Heterogeneous Media Volume 21, Issue 1, 92—-146.



106

« 2
2l fo (@t 103uldx < i N0t Mljage,, + (|07, |2

<Gy (1 + ”””%""(0, T)><R+) |(9)2€u(t, ')||iZ(R+) + ”8@0’ ')HEZ(RQ ’
2l fo ul(u)*dx < > fo W2(@2udx + [|0%ute, e

Fu(t, ')”Z(R+) +[|%uc, ')“Z(Rn '

< Y2l .00
It follows from Eq (3.14) that
0., Mg, + 2803,
< Co (1+ Ml wqo 7yse., ) 20t )5, + Co
+ Co llu(t, D0.u(t, Y72z, , + (Osut, 0)).
An integration on (0, 7), Egs (1.9), (2.10), (2.9) and (3.7) give

!
10.u(t, M2z, + 287 fo 0%uCs. 2z, ds
t
< Co + Co (1 + lullfw o, 7ce, ) fo |0%uCs. 25, ds + Cot (3.15)

+ Cy j:llu(s, )0 u(s, -)IIiz(K) ds + fot(axu(s, 0))%ds
< C(T) (1 + Ml 7yxe. ) -
We prove Eq (2.19). Thanks to Egs (1.4), (2.8), (3.15) and the Holder inequality,
u*(t, x) =2 j:o ududy + g(t) < j:o |u|0uldx + Cy
<2 ||u(t, 2@, 101, 2w, + Co

<C(T) (1 + Ml 115 )

Hence,
4 2
”ulle(Q T)xRy — C(T) ||u||L°o(0’ T)xRy — C(T) <0,

which gives Eq (2.19).
Equation (3.11) follows from Egs (2.19) and (3.15).
Finally, we prove Eq (3.12). Thanks to Egs (2.19) and (3.8), we have that

10,248, M, < CT) [Put, ),

An integration on (0, 7) and Eq (2.10) gives Eq (3.12).

Lemma 3.5. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

[CRICDI i |8%uCs, [ 2., ds < CTD), (3.16)

Eqgs (2.22)—~(2.24) hold for every 0 <t < T.
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The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

4. Proof of the Theorem 1.1 for Eqs (1.1)-(1.5)-(1.8)

In this section, we prove Theorem 1.1 for Egs (1.1)-(1.5)-(1.8).
We begin by proving the following result

Lemma 4.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

2 ,Cot !
2 Be ~Cos
u(t, - + — e
|| ( )||L2(R+) 2 ~f0‘

TZeC()[
+
20

2

Oau(s, || an @ 4.1)

e, 4

!
f eyt (1,0)ds < C(T),
0

f u*(s, 0)ds < C(T), 4.2)
0

Egs (2.9), (3.7) and (2.10) hold for every O <t < T.

The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Lemma 4.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

9:u(t, Mz, <CT) \/ (1+ lozute. e ) (4.3)
62, Ml 0,00y SC(T) \/ \/(1 +||2uc, ~)||22(R+)), (4.4)

! 2
fo 10.24(5, I+ 0.y ds <C(T) \/ (1 + [[02ut, | e, T;Lz(m), (4.5)

forevery) <t <T.

The proof of this lemma is quite long and technical. Therefore, in order to improve the readability
of the paper, we postponed it in Section 7.

Lemma 4.3. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

!
[t e, + B fo |6uCs. ;s ds < €T, (4.6)

Egs (2.16), (2.18)—(2.20), (2.23) and (2.24) hold for every 0 <t < T.
Proof. Let 0 <t < T. Observe that, thanks to Eq (1.5),

2 foo Giuatudx :di ||0)2€u(t, -)||22(R+) ,
0 ! 4.7)

26f O udtudx =0.
0
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Therefore, thanks to Eq (4.7), multiplying Eq (1.1) by 28%u, an integration on (0, oo) gives

L{(t )||L2(R) I/t(t )||L2(R)

d
dt
= —4qf uaxuaiudx+67'2f uzaxuaiudx—ZKf (6xu)261udx 4.8)
0 0 0
-2y f Fudtudx — 2y f ud*udiudx.
0 0
Thanks to the Young inequality,

2qu8 u

Vs | PP dx

+B°Dy ||03u(t O

4q| f |0 ,ul|0tuldx = 2
0

4 2
< D% (e, YD u(t, I

()

67° f u?|0 ul|0%uldx = 2 f
0 0

L2R4)’

‘ﬁ \Dod*ul dx

37’2u26xu

o7t 0
sﬁZDgf u* (0u) 2u(t, )||L2(R)
974
< 2D; ||u||Lw«0 Py 10t N0t 2 e -

K(0,u)° 4
2|«| f 0u)*|0%uldx = 2 f Do0'tu| dx
O s |6\/Ds

<z ; 951t s, + B°Ds [J33ucr, -)||§2(R+> :

21 f ) |a§u||aj§u|dx:2 fo ) ﬁvaZ VDodu
ﬁzD ||52W Winge,y + 8D [kt Mo

2 fo a6l = 2 f |l Vst
3523) f W2(P) (e[

ﬁz Dy ||“”L°°<<0 T)XR,)

yu62

32”0 )”Lz(R ) +B Dy ”64M(t )||L2(R )’

where Dy is a positive constant, which will be specified later. It follows from Eq (4.8) that

d

d M(t )||L2(R)+ﬁ 2 - 5D9)”64”(t )||L2(R)
Cy

< Do Do (1 + Nz, T)><R+))””(t N0.u(t, N2z

C
+ D_Z (1 + a0, ez 30, ')”iz(&)
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CO 4
+ D_9 ||8xu(t’ .)||L4(R+) .
Taking Dy = 1/5, we have that

dt

2 2
du(t, ')||L2(R+> +B |[gruc, ')||L2(R+>
< Co (1 + B0,y ) (2. Dt Mg (4.9)

+Co (1 + Nl o, T)x&)) |[Gu, ')||iz(R+)

4
+ CO ||8xu(t, .)||L4(R+) .

Integrating on (0, ), by Egs (1.9), (2.9) and (4.1),
2 ' 2
[ e, 8 ot e
0
!
< Cy+ Cy (1 + ||M||i°°((o,T)xR+))f et Nru(t, My,
0
t
2
+ Cy (1 + ||M||iw((o, T)XRQ)‘fO‘ ||8§u(s, ')||L2(R+) ds
t
+Co [ 105 M, ds
0

/
< C(T) (1 + ”u”iw((o, T)><]R+)) + Coﬁ [10.u(s, ')||4L4(R+) ds.

Thanks to Eqs (4.5) and (7.42), we have that

!
At 87 [ 100,
0 (4.10)

2
<C(T) \/(1 #0200 e )
Thanks to Eq (4.10), we get

|[02u(t, - C(T) ||Q2ut, - C(T) <0,

.)”i""(O,T;LZ(RQ) ')”im(o, T;:L2(R.))

which gives Eq (2.16).

Equation (4.6) follows from Eqs (2.16) and (4.10), while Eqs (4.3), (4.4) and (4.6) give Eqs (2.18)
and (2.19), respectively.

We prove Eq (2.20). Observe that, thanks to Eq (1.5),

||8iu(t, ~)||22(R , = f"" Fududx = — f‘x’ *udtudx (4.11)
’ 0 0

Due to Eq (4.6) and the Young inequality,
2 (o]
ottt Mo, < [ b0
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1 1
55 ||6)2€u(t, ')”;(Rg + B ”81”0’ ')||iZ(R+)

2
LRy

1
<C(T) + 5 [|vuce,

An integration on (0, ¢) and Eq (4.6) give Eq (2.20).
We prove Eq (2.23). Thanks to Eqs (2.18), (4.6) and the Holder inequality,

(0.u(t, x))* =2 f 0 ududx + (0.u(t,0))* <2 f |0,ul|6uldx — 2 f d,ududx
0 0 0

Oout, )| o, < C(T).

L2(Ry)

§4f |8xu||6)2cu|dx < 410.u, 2w,
0

Hence,
”8):””[2}0((0, TxR,) = C(T),
which gives Eq (2.23).
Finally, we prove Eq (2.24). We begin by observing that, thanks to Eq (1.5),

4

Fult, N e, = f Pu(Pu)’dx = -3 f Ou(Pu)*udx. (4.12)
* 0 0

Arguing as in Lemma 2.6, we have Eq (2.24).

Lemma 4.4. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that Eq (2.27)
holds.

Proof. Let0 <t < T. Arguing as in Lemma 2.7, we have

2
L2(0,00)

18,142, N 72,00y SC(T) + 567 || Buct, ||
) 0 (4.13)
+58* [[0tu(t, )| 2.y + 67 f u?10,ull0,uldx.
’ 0

Thanks to Egs (2.18), (2.19) and the Young inequality,
67 f w0, ullBuldx = 6T |ulle o, 71xx. f |0 c1]|0,uldx
0 0
o 1
< C(T) f 10,ullduldx < C(T) 10,0, N7, + 5 10w, Werz,
0

1
It follows from Eq (4.13) that
2 2
8 N < O+ 562 00, + 58 [0
An integration on (0, £), Eqs (2.20) and (4.6) give Eq (2.27).
Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 4.1, 4.3, 4.4 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is solution of Eqs (1.1)-(1.5)-(1.8) and (1.13) holds.
Arguing as in Section 2, we have Eq (1.14).
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5. Proof of the Theorem 1.1 for Eqs (1.1)-(1.6)-(1.8)

In this section, we prove Theorem 1.1 for Egs (1.1)-(1.6)-(1.8).
We begin by proving the following result.

Lemma 5.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

8§u(s, -)||22(R+) ds

1
2 2 C -C
”M(t, ')||L2(R+)+ﬁ e Otf e
0

2020 (1 (-1
e u"(t,0)ds < C(T),
3 Jo
Eq (2.9) holds for every 0 <t <T.
Proof. Let 0 <t < T. We begin by observing that, thanks to Eq (1.6), we have
d 00
e, N, =2 fo ududx,
> 73 37,
—61 w0 udx :Tu (1,0), 5.2)
0
N _r2 |52 2
23 fo ud udx =2 ||6xu(t, -)||L2(R+) ,
2yf uzaiudx = —4)/[ u(d,u)’dx.
0 0
Thanks to Eq (5.2), multiplying Eq (1.1) by 2u, an integration on (0, o) gives
d 2 372
- lucr Miage,, + 28”07t | 2, + 7u4(t, 0)
00 00 2
=212y —«) f u(du)*dx - 2v f ud>udx + ?qbﬁ(l, 0).
0 0
By Eq (1.2), we have that
d 2 372
— luct, Miage + 28”070, |, + 7u“(t, 0) 53

& 2
-2y f udPudx + ?qlf(l‘, 0).
0

Thanks to the Young inequality,

2] f ull02uldx = 2 f e
0 0 ﬁ
2

4 2 2 || 92 2
< g Wt Mz, + B [, Mz,

2 2¢° ’
= 0)| [Tli(1,0) < “L(2,0) + =1 (1,0)
3t 9 2

lﬂ@iu| dx

2|q]

T|u(z, 0)Pdx = ‘
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2 2
g V3, 0,0)+ Su'(1,0) < q—2+5lu(t0)

7l \/_
It follows from Eq (5.3) that

d 2 272
Moy + B [0t [ e, + 50", 0)

SCVO ||M(t, )”22(R+) + CO'
By the Gronwall Lemma and Eq (1.9), we get
272! _
laCt, NP, + B f @, M, ds + T — f sy (1, 0)ds
0 0

<Coe®" < C(T),

which gives Eq (5.1).
We prove Eq (2.9). We begin by observing that, thanks to Eq (1.6),

110,cu(t, ')Iliz(K): f O.ududx = — f ud*udx.
0 0

Thanks to Eq (5.1) and the Holder inequality,

2 2
”axu(t, .)”LZ(RQ S‘f; |u||8xu|dx

dult, ')“Lz(R , ¢ 0%uc, )||L2(R+>'

(5.4)

<, g,

Therefore, by the Young inequality

||axu(t’ ')”[}(R )y = C(T) +

2u(t, Mo,

An integration on (0, ) and Eq (5.1) give Eq (2.9).
Finally, arguing as in Lemma 4.1 we have Eq (2.9).

Lemma 5.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that Egs (2.16),
(4.6), (2.18)—(2.21), (2.23) and (2.24) hold.

Proof. Let 0 <t < T. Observe that, thanks to Eq (1.6), 0,0,u(t,0) = 0. Therefore, again by Eq (1.6),
2 f 0y0udx = — ||82u(t Mroce., - (5.5)
0
Therefore, thanks to Eq (5.5), multiplying Eq (1.1) by 28*u, an integration on (0, o) gives

4 Jtuc |

L2(R,) Lult, )||L2(R+)

:—4qf u(')xu(')iudx+6‘r2f u28xu81udx—2kf ((')xu)zaiudx (5.6)
0 0 0
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-2v f Fudtudx — 2y f ud*udiudx.
0 0

Arguing as in Lemma 4.3, we have Eq (4.9). Observe that, thanks Eq (1.6),

(oo

10,24t Nizee(0, o0y = f Ou(Oyu)’dx = =3 f u(0u)*0*udx. (5.7)
0 0

Due to the Young inequality,
3 f |ual(0,14)*|0%uld x = f (02u)*|3udruldx
0 0
< Wt + 5 [ 0@
-2 L*(Ry) 2 0 X
1
2

9
4 2
< “axu(t’ .)||L4(R+) + 5 ”u”L"O((O, T)xR,

Oult, -)||12(R+) .

Therefore, by Eq (5.7),

4 2 2 2
10.24(t, g0, 00y < OMetllzes0, 7y, 0306, e - (5.8)

It follows from Egs (4.9) and (5.8) that

dt

Pt o, + B 0|
< CO (1 + ||u||ioo((0’ T)XRQ) ||M(f, -)8xu(t, .)”iz(RJr)
+C (1 + (1l 7w o, T)ng) ||3;2c”(t’ ')”iz(&) :

Integrating on (0, t), by Egs (1.9), (2.9) and (5.1), we have

!
||6)2Cu(t, ')||i2(R+) +6 jo‘

!
< Co+ Co (1 + uliZeqo e f luCs, (s, MEsqs., ds (5.9)
0

0iu(s, ')”;(Rg ds

!
2
+ Co (1 + 1l oo, ryxe) fo 0%uCs, ) ., ds
<C(T) (1 + ||M||im((o, T)><]R+))'
Observe that, thanks to Eqgs (5.1), (5.4) and the Holder inequality,
u*(t, x) :2f ud udx + 2u*(,0) < 2f |u]|0uldx — 2f uo udx
0 0 0
S4f |ullOuldx < 4lu(t, 2, 10:ut, 2,
0
<C(T) ||0%u]|

L0, T5L2(R4))
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Hence,
2 2
tllz5 0, 7w,y < C(T) ||axu||L°°(O,T;L2(R+)) :

Therefore, by Eqgs (5.9) and (5.10),

1
||8§u(t, ')”Z(Rg + 5 \fo‘
<C(T) (1 + || 0%

8iu(s, -)||i2(R+) ds

L=(0, T;LZ(R+))) ’

Arguing as in Lemma 2.5, we have Eq (2.16).

(5.10)

(5.11)

Equation (4.6) follows from Egs (2.16) and (5.11). Equation (2.18) gives Eq (4.6), while Egs (2.16)
and (5.10) give Eq (2.19). Arguing as in Lemma 4.3, we have Eqs (2.20) and (2.23), while arguing as

in Lemma 2.5, we have Eq (2.21).

Finally, we prove Eq (2.24). Observe that, thanks to Eq (1.6), we have Eq (4.12). Therefore, arguing

as in Lemma 4.3, we have Eq (2.24).

Arguing as in Section 4, we have Lemma 4.4.
Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 4.4, 5.1, 5.2 and the Cauchy-Kovalevskaya

Theorem [70], we have that u is a solution of Egs (1.1)-(1.6)-(1.8) and (1.13) holds.
Arguing as in Section 2, we have Eq (1.14).

6. Proof of the Theorem 1.1 for Eqs (1.1)-(1.7)-(1.8)

In this section, we prove Theorem 1.1 for Egs (1.1)-(1.7)-(1.8).
We begin by proving the following result.

Lemma 6.1. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that

Oau(s, || s < C(T),

2
L2(R+) d

!

2 2 C —Cos

||M(t, ')”L2(R+) +ﬁ e 0tf e oF
0

Eqgs (2.9) and (5.4) hold for every 0 <t < T.
Proof. Let 0 <t < T. Observe that, thanks to Eq (1.7),

d 00
e, M, =2 fo udyuds,
4qf u?dudx =0,
0
6611f wo.u =0,
0
26f uﬁiudx:—2f 0ududx = 0,
0 0

28 fo " wudx =28 |utt. | .

6.1)

(6.2)
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2yf uzﬁiudx:—%/f u(d,u)*dx.
0 0

Therefore, thanks to Eq (6.2), multiplying Eq (1.1) by 2u, thanks to Eq (6.2), an integration on (0, )

gives
Lt Ny, + 28 [Ptz |
dt > LR, x5 2R,
:2(27—/<)f u(axu)zdx—va uﬁiudx.
0 0

Thanks to Eq (1.2), we have

d ) o
e, + 28 0t e, = =20 f ududx.
0

Arguing as in Lemma 5.1, we have Eq (6.1). Finally, arguing as in Lemma 5.1, we have Eqs (2.9)

and (5.4).

Lemma 6.2. Fix T > 0 and assume Eq (1.2). There exists a constant C(T) > 0, such that Egs (2.16)—

(2.24) hold.
Proof. Let 0 <t < T. Observe that, by Eq (1.7), d;u(t,0) = 0,0,u(t,0) = 0. Consequentially,

dt

aiu(t, ')”Z(R y = 2f Giuﬁtudx.
* 0
Therefore, thanks to Eq (6.3) and arguing as in Lemma 4.3, we have

d
G 10 e, + B 108 e

2 2
< Co (1 + lltllF o, 7y ) a2, DDt e

+ Co (1 + Wl o, o) [0, )| iz(R+)

+ Co ll0.u(t, My, + 2161 f |03ullduldx.
0

Thanks to the Young inequality,

2/6] f 102 ul|0%uldx = f
0 0

262
= ﬁ_2 ||(9)3€u(t, ')”22(]&) +

26603u

Btuldx

ﬁZ

5 e[

®R)

It follows from Eq (6.4) that

Pt ||,

dt

ﬁZ
®) T BX ||(91u(t, ')HEZ(RQ

2 2
< Co (1 + 1l 0, 7y a2, sta(t, M

(6.3)

(6.4)

(6.5)
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+Co (1 + Nl 7o, T)an) |[uce, ')||22(R+)

+ Collduut, M, + Col|Outt. e, -

Arguing as in Lemma 2.5, we have that

3 3
. <[+ 5 I

(6.6)

9D?
+ (3D11 + 210) lvuc, ')||i2(0,oo)’

where Dy, D;; are two positive constant, which will be specified later. Therefore, by Eq (6.5),

d B CoD?
d—t ||(9il/l(l‘, -)||iz(R+) + (E —CoDq1 — 02 10) ||aiu(t’ .)HZ(RJ,)

2 2
< Co (1 + oo, 7y ) Mt DD ta(t, N e

1 1 2 2 2
+C (1 +— + — + Ullro 0, 7yxmy | || O3, ')”LZ(RQ

Dy; Dy
+ CO ||(9xu(l‘, )”24(R+) .
Taking 7
2
2
= 'B—, D,y = P ,
3C0 \/7(:0

Dy,

we have that

ﬁZ
du(t, ')”Z(Rg 1 ||6iu(t, ')”;(Rg

< Co (1 4+l oo, 7y, ) M0t DBttt e 6.7)

+Co (1 + [l 7o, T)an) |[O%uc, ’)”iz(&)

4
+ CO ”axu(t’ .)||L4(R+) .

dt

Thanks to Eq (1.7), we have Eq (5.7). Hence, by Eqgs (5.8) and (6.7),

ﬂZ
a)zcu(t’ ')”12(R+) + E ||8iu(t, .)”iz(Rar)

2 2
< Co (1 + Il o, 7y 0t sttt Mg,

+Co (1 + el o, T)xR+)) 65w, ')”;(Rﬂ '

dt

Integrating on (0, £), by Eqgs (1.9), (2.9) and (6.1), we get

[ o N O
AVl T gp ) 1S Ve,
!
< Co (1 + B e fo (s, ti(s, Mg, ds 6.8)
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!
+Cy (1 + [l 7o o, T)><R+))L ”8i”(s’ ')”;(RQ ds
<C(T) (1 + ||u||iw((o, T)><JR+))'

Arguing as in Lemma 5.2, we have Eq (5.10). Therefore, by Eqs (5.10) and (6.8), we get

[t e, + 55 [ Nt e
ey T g ), TR e,

<C(T) (1 + || 0%

(6.9)
L=(0, T;LZ(Rm) :

Arguing as in Lemma 2.5, we have Eqgs (2.16) and (2.17). Equation (2.18) follows from Eqs (2.17)
and (5.4), while Eqgs (2.16) and (5.10) give Eq (2.19). Arguing as in Lemma 2.5, we have Eqs (2.20)—
(2.23).

Finally, we prove Eq (2.24). Observe that, by Eqs (1.7) and (2.25),

02tz )}, = -3 f " 0,u(@uy P udx. (6.10)
" 0

Thanks to Eq (2.23) and the Young inequality,

00 1 4 9 00
2. 3\2193 2 2,93.\2
3](: 0.1l(D00)*|0zuldx < (|07, ‘)||L4(R+)+§fo (0u)"(Oru)dx

| T 4 2
35 oul(t, ')||L4(R+) + 10|70 0, 7y

Put, e,

4
LARY)

2
L2Ry)

1 2
<5 [[dRuce, )

+ C(T)

aiu(t» )”

Hence, by Eq (6.10),

1 2 4 3 2
3 Fut, )| oe., < CD|Fut, )| 25, -
An integration on (0, ¢) and Eq (2.20) give Eq (2.24).

Arguing as in Section 4, we have Lemma 4.4.
Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 4.4, 6.1, 6.2 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is a solution of Egs (1.1)-(1.7)-(1.8) and (1.13) holds.
Arguing as in Section 2, we have Eq (1.14).

7. Technical section

In this section, we collect the proof of Lemmas 2.1, 2.5, 3.1, 3.5, 4.1, and 4.2.

Proof of Lemma 2.1. Let 0 <t < T. We begin by observing that, thanks to Eq (2.3),

) d )
2](; vo,vdx :d_t v(z, ')“Lz(o,oo) >
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4q f vo,vdx =0,
0

20 f valvdx = — 26 f d,vovdx = 0,
0 0

v(t, ) (7.1)

|2
L2(0,00)°

28 f vo'tvdx = - 2° f dvd2vdx = 2°
0 0

2y f vzaivdx=—4y f w(0,v) dx.
0 0

Therefore, by Eq (7.1), multiplying Eq (2.5) by 2v, an integration on (0, o) gives
2
|L2(0,°°)

=2Q2y- K)f v(0,v)dx — 2Vf vo2vdx — 2g’(t)f e *vdx
0 0 0

Fv(t, )

d
2 IV g ) + 267

—2[g' () + K@) fo " e v — 4kh(1) fo ) e~ vd vdx

— 2kh*(1) j; " e Pvdx — 2k [g(0) + h(D)] fo " e Pvdx

+ 4kg(1) [g(F) + h(D)] j; ) xe *vdx + 4vh(1) j; ) e vdx

+ 2vg(t) fo ) e “vdx —2v|g(t) + h(t)] L ) xe “vdx

— 66h(1) fo " et - 46¢(1) j; " et

+26 [g(t) + h(D)] j; ) xe vdx + 87h(t) fo ) e “vdx

+65°g(1) fo ) e “vdx — 23 fo ) [g(t) + h(t)] xe *vdx

+ dyh(t) fo ) e Vidx + 2yg(t) fo ) e Vidx

— 4y [g(®) + h(D)] fo ) xe ™ vdx — 2yg(f) j; ) e v vdx

+ dyg(Dh() fo " e udx + 2780) fo " v

— 2yg(t) [g(t) + h(D)] fo ) xe *vdx — 2y [g(t) + h(t)] fo ) xe vd2vdx
+ 4yh(r) [g(t) + h(D)] fo " e Pvdx + 2y [g(2) + h(0)] fo e

— 2y [g(®) + h(?)] fo ) x*e *vdx — 2qh(t) fo ) e vidx — 2q(g(t) + h(t) fo ) xe ™ Vidx

+ 4qlg(t) + h(r) foo xe"vo,vdx — 4q[g(t) — h(t)]h(z) foo xe >y,
0 0

Networks and Heterogeneous Media Volume 21, Issue 1, 92—-146.



119

Thanks to Eq (1.2), we have that
My + 28 [0
= —2v fo ) va2vdx — 2g'(f) j; ) e *vdx (7.2)
—2[g(0) + I ()] fo " xe v - 4kh(1) fo " ey
— 2kh(1) fo " vdx - 2 [¢(1) + h(D)]* fo T e vdx
+ 4kg(1) [g(r) + h(t)] fo " e Pvdx + 4vh(1) fo " e tvdx
+2vg(1) fo " et — 2y [¢() + h(1)] fo " e v
— 66h(1) fo et 46g(1) fo e tvdx
+26 [g(®) + h(®)] fo ) xe vdx + 88%h(1) fo ) e *vdx
+68°g(t) f ) e vdx — 282 [g(t) + h(D)] j; ) xe vdx
wapnn) [ enidx 2y [ e
— 4y [g(t) + h(1)] fo xe ™ vidx — 2yg(t) fo ) e vd2vdx
+ dyg(Hh(r) fo ) e vdx + 2yg*(f) j; ) e “vdx
—2yg(t) [g(t) + h(t)] fo ) xe P vdx — 2y [g(t) + h(1)] fo ) xe *vo*vdx
+ 4yh(r) [g(t) + h(D)] fo " e Bvdx + 2y [g(r) + h(t)] fo " e v
—2y[g(®) + h(r)] fo ) x’e " vdx — 2qh(r) fo ) e Vidx
—2q(g(t) + h(z)) fo ) xe V2 dx + 4q(g(t) + h(z)) fo ) xe VO vdx
— 4q(g(t) — h(t)h(t) fo ) xe > vdx.

Observe that, for each x € (0, ),

(o)
e <l, xe*<e, f e Xdx =
0

2 —4x 2 -2x 4 —4x
dx =— dx = -, dx = —.
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Due Eqgs (1.3), (7.3) and the Young inequality,

« 1w
2| f Wll>vdx = 2 f ‘ \D6>|dx
0 0 BW%w 1
2
v 2 2 2 2
SﬁH%HWLNm@@+ﬂl%”@WLOM%mV

2|g' (1) j:o e *vldx < 2C f(;m e *vldx
< Co + Co v, ‘)”iz(o’m) )

218" (1) + K (2)| f:o xe *vldx < 2C Lw xe *|vldx
< Co+ Co IVt NP -

4|x||h(0)] fow e "|owvldx < 2C j:o V|0 vIdx

< Co IV M 2g.00) + Co llBxv(2,I[72

(0,00)
2|klh* () f e vldx < 2C, f e~ |vldx
0 0
< Co + ColV(t, NMEs g
20| [g(?) + h(t)]zf xe Hyldx < 2C0f x2e *vldx
0 0
< Co + ColV(t, NP
4xllg(D|1g(®) + h(?)| f xe > |vldx < 2C f e~ |vldx
0 0
< Co + ColV(t, s
4|v||h(t)|f e vldx < 2C0f e *vldx
0 0
< CO + CO ”V(t, ‘)”22(0,00) )
2|v||g(t)|f e vldx < 2C0f e *vldx
0 0
< Co + ColV(t, s
2|v|1g(®) +h(t)|f xe Mvldx < 2C0f xe *|v|dx
0 0
< CO + CO ||V(t, ')”il((),oo) s
6|6||h(t)|f e vldx < 2Cof e |vldx
0 0
< CO + CO ||V(f, .)”iz(o,oo) B
4|6||g(t)|f e vldx < 2Cof e |vldx
0 0

2
< CO + CO ||V(Z7 .)”LZ(O,OO) s

(0,00)
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2|0]1g(1) +h(t)|f xe *|vldx < 2C0f xe |vldx
0 0

2
< CO + CO ”V(t’ .)”Lz((),oo) )

8B%|h(1)| fo ) e vldx < 2Cy fo ) e vldx
< Co + Co IV, 729 0oy -

65°12(0)| fo ) e *vldx < 2Cy fo ) e vldx
< Co + Co IV, 729 0oy -

28° |g(t) + h(?)| fom xe *vldx < 2C fow xe *|v|dx
< Co + Co IV, 720 0oy -

Mﬂmanlfeﬂﬂdxscmwmoﬁ%my

2lyllg (@)l fo " endx < Gyl M2 000y
Mﬂmn+mmlfxfw%xSCﬂWLw@@@,
2lyllg®l f‘x’ e Wlldvldx < 2C, f"" VI vldx

<[

<——wan| + 82Dy ||6%vae, )|}

L2(0,00) L2(0,00)

Alyllg(H)h()| f e > vldx < 2C, f e > v|dx
0 0

2
< CO + CO ”V(t’ .)”Lz(O,oo) )

2lylg*(f) fo ) e "vldx < 2Cy fo ) e "vldx
< Co + Co vz, ')||iz(0,m),

2ylIg0)l Ig(#) + h(r)| L i xe |vldx < 2C, fo i xe > |vldx
< Co+ Co It Mg

20yl lg(0) + h(D)| f xe *v||0*vldx < 2C f V|0%v|dx
0

‘21‘&QW VD]

< E ”V(ta ')||L2(0’00) +B2D1 ||(9)26V(t’ .)”iZ(O,DO) ’
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Ayllh(0)| 1g(t) + h()| f xe *|vldx < 2C, f xe |v|dx
0 0
< Co + Cylv(t, ')”iz(o’w)’
2|yl 1g(®) +h(t)|f xe *|vldx < 2C0f xe *v|dx
0 0
< Co + CylIv(t, ‘)”iz(o’w),
20yl 1g(t) + h(0)| f x*e |vldx < 2C, f e vldx
0 0
< CO + CO ”V(t, ')”22(0’00) )
2lqlih(o) fo e™v2dx < CoIv(t, Mg, »
2|qll(g(t) + h(1)l f xe ™ vdx < Cy||v(t, ~)||22(R+),
0
4|qll(g(®) + h(p)| f xe *|0wldx < Cy f vllovldx
0 0
< CO ”V(t, )||i2(R+) + CO ”axv(ta )”iZ(R+) )
4qllg(t) — h(DIh()| f xe > ldx < Cy f xe > |v|dx
0 0

00
2 -4 2
< G f e dx + vt P
0

2

< CO + ”V(t, ')”LZ(RQ ’

where D is a positive constant, which will be specified later. It follows from Eq (7.2) that
L0t gy + B2 2 = 3D0) 21,
dt ) 12(0,00) 1 x ) 12(0,00)
1
SCVO (1 + H) ||V(l, ')”%2(0,00) + CO ”axv(t, ')”22(0’00) + CO-
1

Taking D; = 3, we have that

1
3’

d
T Mg+ B 02002

2 2
<Co IV(t, MF2(0.00) + Co 02Vt Nl 00y + Co-

(7.4)

Thanks to Eq (2.3),

Co l10:v(t, 172000 = Co f dvdvdx = —Cy f vovdsx.
0 0

Therefore, by the Young inequality,
C()V

|,86)2(v| dx

2
Colld(t, sy < f
0
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<Colbtt. s+ 00

L2(0,00) *

Consequently, by Eq (7.4),

||v<r M2 + £ > otve Mrz0me) = Co V(e s gy + Cor

By the Gronwall Lemma and Eq (2.4), we have

ﬁZeC()t —C
V(2 72000y + o
(0,00) 2 0

!
<Cpe"" + Cpe! f e Cds < C(T),
0

(92v(s )||

L2(0,00 )

which gives Eq (2.6).
Finally, we prove Eq (2.7). By Eq (2.3),

109, 720 00 = f 0,v0yvdx = — f vivdx.
0 0

Due to Eq (2.6) and the Young inequality,
19t NPy < f Ivldx
0

1
<5 I Mage, + ||azv(r M0
2
<C(T) +||dv, -)||L2 0o
Integrating on (0, t), by Eq (2.6), we have Eq (2.7).
Proof of Lemma 2.5. Let 0 <t < T. We begin by observing that, since from Eq (1.3) d,u(t,0) = g’(¢)
and 0,0,u(t,0) = h'(t). Therefore,
2 f Biu(?tudx =-— 20iu(t, 0)0;u(t,0) —2 f ﬁiuﬂlaxudx
0 0
= —20%u(t, 0)d,u(t, 0) + 26%u(t, 00,0,u(t, 0)

(7.5)

d
v |03, ')”izw,oo)

=- 2g’(t)83u(t 0) + 21 ()% u(t, 0)
+— ||82u(t )||

[2(0,00)

Consequently, thanks to Eq (7.5), multiplying Eq (1.1) by 28%u, an integration on (0, o0) gives

- ||82u(t )|| + 28 ||0%uc, ||

L2(0,00) L2(0,00)

= 2¢/ ()3 u(t, 0) — 21’ (1)0*u(t, 0) — 2« f w(axu)zaiudx (7.6)
0

Networks and Heterogeneous Media Volume 21, Issue 1, 92—-146.



124

—-2v f O*udtudx — 26 f Fudtudx — 2y f ud*ududx
0 0 0

—4q f ud ud udx.
R

Due to Egs (1.3), (2.12) and the Young inequality,

21g' (ON1Bu(t, 0)] < 2Coldu(t, 0)] < Co + (JLu(t, 0))*,
21 (1)]|0%u(t, 0)] < 2Cold>u(t, 0)| < Co + (82u(t, 0))?,

* * K(axu)z 4
2|« f (0,u)*|0tuldx = 2 f VD,0%u
0 o |BVD; LB ’
2

K 4 2 4 2
< B2D, [10.cu(z, ')||L4(0,oo) +B°Ds ||ax”(t’ ')”LZ(O,OO)

dx

G
Dy’

Co 2 2 2 2 4 2
S 52||”||L°°((0,T)x<o,oo>> dut, ')”Lz(o,oo) + 5D ||0ur, ‘)”Lz(o,oo) +

2
vou

21v] fo 102ull 0 uldx = 2 fo s |6 \/D2u| dx
< L |utto|y . + B0 utt, ]
,32D2 XA 1 12(0,00) N 120,000 0

603u

dx

lﬁ\/ﬁzaiu

2/6] f |03 ul|0%uldx = 2 f
0 o |BVD;

0
2D, Fult, ')Hiz(o,oo) +B°D; || dult, ')“22(0#”) ’

- | yudiu 4
2yl f udul|0%uldx = 2 f 1 1B/D,0
0 0 ﬂ«/DZLB ’

,}/2 00 2
N T .
'a O

2
7D, edll 70 0. 7y%(0,000)
2

<

dx

<

dru(, ')“iz(o,oo) +B°Da ||t ')”iz(o,w) ’

quou 4
4 f Ul uldx = 2 f JDad | dx
1 R R ﬁVDz ‘ﬂ ?
<2 e, 342, o, + B2D2 [ 0ut, [ e
,82 D, L*(R,) X L*(R)

where, D, is a positive constants, which will be specified later. Therefore, by Eq (7.6),

2
L2(0,00)

omu(t, || + 87 (2 - 5D,) ||otu(t, )|

dt L2(0,00)

1 3 2 2 2, Co i 2
< Co(l + D—z) + (Bu(1,0))* + (Pu(t,0))> + D, ||B3u, -)||L2(O’OO)

C() 2 2 2 C() 2
+ D, (1 + ||M||L°°<<0,T)x(0,oo))) ||6x”(fa ')”Lz(o’oo) + D, ez, )0ua(t, N2, -
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Taking D, = £, we have that

d
dt ”62”(t’ ')”22(0 o) +'82 ”64”(t’ ')||L2(0 00)
< Co + (Bu(t, 0)* + (A2u(t, 0))* + Co ||03u(t, )||L2(Ow)

2
+Co (1 + ||”||L°°(<0,T>x<0,oo») |uc, ')”Lz(o,w)
2
+ CO ”I/l(t, ')0xu(ta ')llLZ(R+) .

Observe that, by the Young inequality,

(Fu(t,0)* = -2 f Fudtudx <2 f 02 ull0tuldx
0

f '2(’)u

(0u(t,0))* = -2 f Fududx <2 f |0%ul|0? uldx

2 B
|ﬁaiu| dx < 7 ||(9iu(t, ')“iz(o,m) t ||6iu(t, ')”;(o,m) ’

u(t )||L2(0 )+||03u(t )||L2(000)

Consequently, by Eq (7.7),

d B?
dt ||62”(t’ ')”22(0 ) Y ||84u(t, ')||L2(0,oo)

< Co+Cy ||5 ”(f )”LZ(O o0)

2 2
+Co (1 + ”u”L"“((O,T)X(O,oo))) ||(9xu(t, ')”Lz(o’w)
2

+ Collut, D,u(t, NP, -

Observe that

Lu(t, )||L2(0 o = f Fududx = —0*u(t, 0)du(t,0) — f 8*ud udx.
0 0

Therefore, by the Young inequality,

Sult, -)|| 20 ST, 0)1183u(z,0)] + f |6%u)|6* uldx

S2—D3(02u(t 0))* +—(a*u(t 0)) + fo )

g_(aﬁu(t, 0))% + —3(8iu(t, 0))’

Lult, )||L2(O o T ult, ')”22(0,00) ’

2D

(7.7)

(7.8)

(7.9)

(7.10)

where D3, D, are two positive constants, which will be specified later. Thanks to the Young inequality,

2
G |a3u| dx

1 1~
——(0%u(t,0))* =— f Pududx =2 f
2D Ds Jo 0
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Lult, )||L2(0 w0)?

\/_D3ail/l
2

4 Lult, )||L2(0 o)

—((93u(t 0))? =D; f Fudtudx =2 f

0

dx

3

Sg |[03ut, ')”22(0,00) + T3

xu(t, ')”12(0’00) .

It follows from Eq (7.10) that

12000 = (55 + 7 W0
D2
(5 ot
that is
3 3
e L
(7.11)
oD\,
(3000 2 ot
Therefore, by Eq (7.9),
d
yr |92ute. }200 + (% — CoDy — COD2)||a4u(t M0
< Co+Cofl+ ot i
o+t 0( 0. D " ||“||L°°«0T>x(0m>)) |0%uct, )||L2(0 )
+ CO ||u(t7 )axu(ta ')”LZ(RQ .
Taking
B 1Bl
D=2 D= : 7.12
1= 30, 3 o (7.12)
we have that
d iz
5”02 u(t, ')“12(000) _”84”0 ')“LZ(ooo)
< Co+Cy (1 + ||“||Lw((o )X, oo))) ||<9 u(t, )”Lz(o )
+ CO ”M(t, )axu(t, )||L2(R+) .
Integrating on (0, ), by Egs (1.9), (2.10), (2.9) and (2.15),
ﬁ
||62M(l )||L2(Ooo) 42 M(S )||L2(Ooo)
< Cy + Cot + Cy (1 + 1l 0.1 pxc0000) fo [ERTE! e (7.13)
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!
‘G f (s, ti(s, Mg, ds
<C(T) (1 + ||M||iw((0,T)x(0,oo)))
< e (1 {1+ [0 oz

We prove Eq (2.16). Thanks to Eq (7.13), we have that

2117 2
O] oo 112000 = C(T)(l * \/(1 + ||0u Lm<0,T;L2<o,oo>)))'
Hence,
&ulf; — C(T) ||6u] ~C(T) <0
XL (0,T;L2(0,00)) XIL=(0,T;L2(0,00)) -

Arguing as in [74, Lemma 2.4], we have Eq (2.16).

Equation (2.17) follows from Eqs (2.16) and (7.13). Moreover, Egs (2.14) and (2.16) give Eq (2.18),
while Eq (2.19) follows from Eqs (2.15) and (2.16).

We prove Eq (2.20). Thanks to Egs (7.11) and (7.12), we have that

”ai”(t’ ')HiZ(o,oo) <G (Haiu(t, ')”12(0,00) + ”8i”(t’ ')“22(0,00))'

Integrating on (0, c0), by Eqgs (2.10) and (2.17), we have Eq (2.20).
Equations (2.21) and (2.22) follow from Egs (2.10), (2.17), (2.20), (7.8) and an integration on (0, ).
Finally, we prove Eq (2.23). Thanks to Egs (1.3), (2.17), (2.18) and the Holder inequality,

(Ou(t, x))* =2 f Oududy + h*(f) < 2 f |0.ul|0*uldx + Cq
0 0
<2110,14(t, M2 0,00 0308, )| 2 ) + Co < €T

Hence,
2
||axu||L°o((0,T)><(o,oo)) <),

which gives Eq (2.23).
Proof of Lemma 3.1. Let 0 <t < T. We begin by observing that, thanks to Eq (3.3),

2£ Va[Vd.x :E ”V(l, .)”Lz(o,oo) ’
4qf V20, vdx =0,
0
26 f vaivdx = — 26 f 0,v0>vdx (7.14)
0 0

23 f volvdx = — 23 f 0,v0>vdx
0 0
=28%0,v(1, 0)dw(1, 0) + 28°||82v(t, ||

R+)
= = 2820,(t, 0)g(0) + 28° |01, || e, -
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2y f vzaivdx:—4y f w(O,v) dx.
0 0

Consequently, multiplying Eq (3.4) by 2v, thanks to Eq (7.14), an integration on (0, co) gives

d 2 «
T I Mgy + 28 [0 [ ) + 2 6= 29) f V(@) dx
0

- —4qg(t)f eV dx — 4qg(1) f e vovdx +2(2q — k — )’)gz(t)f e~ vdx
0 0 0

+ 4kg(t) f evovdx — 2vg(t) f e vdx + 26g(1) f e “vdx
0 0 0
—2B°g(t) f e vdx — 2yg(t) f e Vids — 2yg(t) f e v vdx
0 0 0
+2g'(1) f e vdx — 20 f axvaivdx — 2B%0,v(t,0)g (7).
0 0

Thanks to Eq (1.2), we have that

d
Ty + 28 0002

= —4qg(1) \[0 ) e V2dx — 4qg(1) L ) e 'vo,vdx
+2(2q — k —y)g*(®) ]0‘00 e > vdx + 4kg(1) I)OO e v vdx
—2vg(t) Lm evdx + 20g(1) fom e “vdx
—2B%¢(1) fom e vdx — 2yg(t) fom e Vs
—2yg(t) f(; ) e vd*vdx + 2g (1) f(; ) e *vdx

-26 f 00> vdx — 28°0,v(1, 0)g(?).
0

. 1
f e Hdx = —,
0 4

thanks to Eqs (1.4), (7.3), (7.16) and the Young inequality,

Since

Hqllg®) f e Vdx < Colv(t, g -
0
4glig(®) f e~ Mid.vldx < 2C f vilovidx
0 0
< ColV(t, M2 g0y + CollB(t, Ny -

212g — k — Y|g*(1) f e *Ivldx < 2C, f e v|dx
0 0

(7.15)

(7.16)
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<G fo e+ Co IV, e
< Co + Co IVt e »

4lxllg (@) fo i e *pllovldx < 2C ﬁ i Vo vidx
< Co I, N2y + CollBev(t, MNia. )

2|V||g(t)|f e_x|v|dx£2C0f e *vldx
0 0

-2 2
< CO f € )Cdx + CO ”V(t, ')llLZ(R+)
0

2
< CO + +C0 ||V(l, ')llLZ(R+) )

2161lg(o) f ¢ vldx < 2Co f ol
0 0

-2 2
< Cy f e dx + Co [Iv(t. Miage,
0

2
< CO + CO ”V(ta ')llLZ(R+) 5

Zﬁzlg(t)lf e‘xlvldeZC‘gf e *vldx
0 0

-2 2
< Co f e dx + Co (e, )P
0

2
L2(Ry)°

21ylig(0) fo e Vidx < Co V(e Mg,

< Co + v, )l

2lyllg@)| f e MId2vidx < Cy f VIIdvldx
0 0

= f ) |ﬁ6§v
0

2
< Colltt, Mg + 2 800

L2(0,00)

dx

Cov
B

')HZ(RJ,) ’

2|g’(t)|f e_xlvldeZCof e *vldx
0 0

-2 2
<Co [ e G,
0

2
< CO + CO ”V(ta .)”LZ(RQ ’

2161 f 10.VPvldx = f 200,
0 0 ﬁ

262 2 ﬁz 2 2
< ﬁ—z ||axV(t» ')llLZ(R+) + ? ||8xv(t’ .)”LZ(O,oo) ?

[ﬁ8§v| dx

2%10,v(t, 0)llg()ldx < 2Cold,v(t,0)| < Co + (A,v(2, 0))*.
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It follows from Eq (7.15) that

d
T+ B 02002

(7.17)
< CO ”V(t, )||i2(R+) + CO ||axV(t, )ll%Z(R+) + (axv(t9 O))2 + CO'
Observe that . .
wﬂ@mf:—gf mw@wszj‘wﬂw@un
0 0
Therefore, by the Young inequality,
120,
(@02, 0)) < f ‘TV |B6| dx
20 P (7.18)
2 2 2
<5 10 M0 + G 1003, -
Consequently, by Eq (7.17),
d 2 :32 2 2
T+ 5 12 (7.19)

2 2
< CO ”V(ta ')llLZ(R+) + CO ”ax\/'(t, ')||L2(R+) + C0~

Observe that, thanks to Eq (3.3), we have that
Collov(t, ~)||iz(R+) = Cof 0,vovdx = —Cof v()ivdx.
0 0

Thanks to the Young inequality,

* | V3Cyv||Bo%v
Collov(t, MNam | =2 f X
0 L2(R4) 0 28 V3

2
<Colltt, Wi,y + o 8000 -

dx

If follows from Eq (7.19)

d 2 B\ 2
LGRS (AGR] PN
2

< CO ”V(ta ')llLZ(R+) + CO'

By the Gronwall Lemma and Eq (2.4), we have

ﬁZeCOI ! c
||V(t, )”iZ 0.00 +t = e of
(0,00) 3 0

!
<Cpe"" + Cpe f e ds < C(T),
0

éﬁv(s, ')”22(0,00) ds

which gives Eq (3.5).
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Arguing as in Lemma 2.1, we have Eq (2.7).
Finally, we prove Eq (3.6). Integrating Eq (7.18) on (0, ), we have that

00 ! 2 !
2 2 B 2 2
fo (@0v(s,0))%ds < Cy fo IG5 M, s + 5 fo 102005 )20, 5

Equation (3.6) follows from Eqs (2.7) and (3.5).

Proof of Lemma 3.5. Let 0 < t < T. We begin by observing that, thanks Eq (1.4), du(¢,0) = g'(¢).
Consequentially, by Eq (1.4), we have that

2 f Otududx = — 20°u(t, 0)d,u(t,0) — 2 f 32ud,0,udx
0

= - 20} 2u(t, e (7.20)
= = 28%u(t,0)g'(t) + — ||82u(t I -
Therefore, thanks to Eq (7.20), an integration of Eq (1.1) on (0, o) gives
di ||6iu(t, ')HiZ(R 1 2'82 ”61”0’ ')HZ(R )
t + +
= —4q fom ud. ud udx — 2 ﬁm(axu)zaiudx -2v fom *udtudx (7.21)

-26 f O udtudx — 2y f ududtudx + 20°u(t, 0)g' (t).
0 0
Due to Eqgs (1.4), (2.19), (3.11) and the Young inequality,
sl [ ho,ultuids < Aol o, [ 0.uuid
0

C(T)a u LB Bt

10.14(2, 320,00y + B D ||6iu(t, -)IILZ(M

< 2C(T) f |0.ul|0%uldx = 2
0
L CM)
D

6

) )+ﬁD oruce, |

2|«| f (0u)*|0%uldx = 2 f
0 0

K> 4
S ﬁ2—D6 ”axu(ta ')||L4(]R+)

2| f |a§u||aiu|dx:2 f
0

wu(t, )||L2(R th D6||64”(t )”LZ(R )’

L2(Ry)’

k(0, u)

= |Ip VD

<U(t, ')||L2(R+) ’

2
voiu

BZD
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56%u
2061 f 183 ulld*uldx = 2 f ‘ \ﬁ\/_ Dedu

Lult, )||L2(R T8 D6||84”(l )||L2(R)

ﬁZD

2ly| f lulll 63 ullduldoc < 2Ly | lullpo, 7yx, f |0%u|0uld x
0

CT(?2
0 g

) e

<2C(T) f |02ul|6uldx = 2

Lut, )||L2(R )

218ut, 0)||g (0] < 2Co|Fu(t, 0)]| < Co + (Bu(t, 0))?,
where Dg is a positive constant, which will be specified later. It follows from Eq (7.21) that

—||82u(t )||L2(R)+,8 (2 = 5Dy) ||0ru(t, )||

o) K>
06 B2Dg

L2(R4)

||(9x1/l(t, .)lli“(RQ + D—6 ||a)2cu(t’ ')||iZ(R+)

,82D ||a3u(t Wrae., + Co+ @u(t, 0)>.

Taking D¢ = 1/5, we have

d
dr ||6)2c”(t’ ')HiZ(R ) +'82 ||64u(t, ')“iz(R )

5k
< C(T) + 2 IDuc, Misge,y + CD |02t ). (7.22)
56° 2
o |83, )| 2., + Co + (@u(, 0))%,
Observe that . .
(Pu(t,0))* = -2 f Fudtudx <2 f 102 ull0tuldx.
0 0
Therefore, by the Young inequality,
(@u(t,0))* < | dx
(7.23)

’32 ”63 @, )||L2(R ) + B3 ”64”(t )||L2(R )"

Consequentially, by Eq (7.22), we have

L, ')HiZ(R y t <u(t, ')HZ(RQ

5k
<C(T)+ = 7 10.ua(t, Nsz, + C(T) |02, )||

d
dt
L2(Ry)
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562 +2
2
Integrating on (0, t), by Egs (1.9), (2.10), (3.11) and (3.12), we get

Fut, )|[}2e, + Co-

62 2 ﬁ_z t 64 2 d
L, ')||L2(R+)+ 2 Jo ” U, ')||L2(R+) 5

52 !
<G+ CTy+ f 10.24(s, s, ds + C(T) f
0 0

56242 [
,32+ j; |35 )}y, ds + Cot < CCT).

which gives Eq (3.16).

Equation (2.22), follows from Eqgs (3.11), (3.16), (7.23) and an integration on (0, 7).

We prove Eq (2.23). Thanks to Egs (3.11), (3.16) and the Holder inequality,

(Ou(t, x))* =2 f Oxududy + 2 f 0ududx < 4 f |0..ul|0*uldx
0 0 0

oau(t, )||,»m , < CCD).

S4 ||0xl/l(t, ')”LZ(RQ 2R,) =

Hence,
2
”('jxu”[fo((oj)XK) < C(T),

which gives Eq (2.23).
Finally, we prove Eq (2.24). We begin by observing that, thanks to

4

|0t ae, = fo O2u(@*uy’dx = -3 fo 0,u(02u)2 0 udx.

Thanks to Eq (2.23) and the Young inequality,
3 f 10,u|(0%u)*|03uldx = f |30.ud3u| (F2u)*dx
0 0

9 [ 1
<3 fo 0,10 (@ a0’ dx + = 3t Ve

4
LY0 0)

< 5 0l (0, 7yxcme, ) ||Ocue(ts ')||L2(R+) + 5 ou(t, )”

1
< C(T)||ut, ')“iz t3 du(t, ')||4L4(R+)'

®+)

It follows from Eq (7.24) that

1
! Johuce < C(T) ||uz, ||,

4
')||L4<R+) ®s)
An integration on (0, ¢) and Eq (3.11) give Eq (2.24).

Arguing as in Section 2, we have Lemma 2.7.
Now, we prove Theorem 1.1.

6)2€u(s, -)||iz(R+) ds

(7.24)
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Proof of Theorem 1.1. Fix T > 0. Thanks to Lemmas 2.7, 3.2, 3.4, 3.5 and the Cauchy-Kovalevskaya
Theorem [70], we have that u is solution of Eqs (1.1)-(1.4)-(1.8) and (1.13) holds.
Arguing as in Section 2, we have Eq (1.14).

Proof of Lemma 4.1. Let 0 < t < T. Multiplying Eq (1.1) by 2u, thanks to Eqs (1.2) and (1.5), an
integration on (0, co) gives

d 00
T [ ) f wOudx
dt 2R,) ,

00 ! 00
=— 4qf w0 udx + 67° f wdudx — 2Kf u(d,u)’dx

0 0 0

— 2vf ud*udx — 25f ududx — 23> f ududx
0 0 0

-2y f uzaiudx
0

4 2

w(1,0) — —u'(t,0) + 22y — k) u(t? u)-dx

- 2vf uc’)iudx + 2(5[ (')xu(')iudx + 287 f Oud udx
0 0 0
+ 2yu2(t O)a u(t, 0)

2 00
u(t,0) — —u(t,0) - f ududx
0

+26 f 0,ud>udx —
0

2u(t, Mo, + 27183, 0)3,(1,0).

Therefore, we have that

d ) 2 37,
E ”I/l(t, ')llLZ(R+) xu(t, .)||L2(R+) + 7” (t’ O)

4 (o) (o)

= ?‘hﬁ(t, 0) — 2v f ud*udx + 26 f Oxududx (7.25)
0 0

+ 2yu(t,0)0,u(t, 0).

Due to the Young inequality,

461‘ 3
—||u(t,0)) = dx
‘ |l 0P =2| 2
< sl u*(1,0) + T Dyut(t,0) = < ITI VD71 (t, 0) + 7°Dau’ (£, 0)
D5 Tlel 7 VD
q4

+272Du* (2,0
D 2D’ (t,0),

2y f |ul|02uldx = f
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Lult, )||L2(R )

268 u

2v? )
< ,8_2 ”u(ta ')”LZ(R )

216] f 10,ul|6%uldx = |B0u| dx
0

6? ’
< S 10t Mg,y + 5 (|02 ) -

[ydxu(t, 0)

20yl (2, 0)l8u(z, 0)] = 2| t,0)———=
yiu u T\/_ T|\/_

2
< ?Du’*(1,0) + -

(8 u(r, 0,

where D5 is a positive constant, which will be specified later. It follows from Eq (7.25) that

2 1
it o, + 37 (— - 07) u'(t,0)

d 2
E ||u(t’ .)lle(R+) 4

< Collut, NPage,, + Collauult, MPags, + 7(6 (1, 0))>.

D3
Taking D; = 1/20, we have that

d 2 2 || 52 2 31 4

T e, + 7 |0t | e, + S0 0)

< Co llu(t, N2, + Co l0,u(t, Nz, . + Co@.u(t,00)* + Cy (7.26)
< Co llu(t, M2z, + 2Co 10:u(t, 2., + Co@u(t, 0))* + Co.

Observe that

Colld.ut, M72ge,, + Co@yu(t, 0))* = Co f 0,ud udx — 2C, f O,ududx
0 0

oo oo (7.27)
= —Cou(t, 0)d,u(t,0) — Co f ud*udx - 2C, f 0ududx.
0 0
Due to the Young inequality,
2cof 10l uldx = f |—| |Co VD5
< D—8 10,04(2, Mg, + CoDs |02, |2,
1 1~ ., 2
=~ lt:009,u(1,0) = - fo udiudx + DyCo ||03u(t, )| 2 s
where Dy is a positive constant, which will be specified later. It follows from Eq (7.27) that
Col105(t, 72z, + Co(@u(t, 0))°
1 1 ®
- (CO + —) u(t,0)0,u(t,0) — (Co + —)f ud*udx (7.28)
Dy Dg ) Jo
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2

+ DsCo [0t ) 2, -
Due to the Young inequality,
1 (Co+ 3)
Co + — | lu(z, 0)|10,u(t, 0)] = ———Iu(z, 0)|Cold.u(z, 0)|
Dy Co

S((Cow% 2

)) W31, 0) + %(axu(t, 0))°,

Co
1 = 2 _ ~ (CO + DL) u 4
(co+ 38) fo ulld2uldx = 2 fo 2—\/1)_88 | VDstu|dx
(Co+ DLS)2 2

) llu(z, .)||22(R+) + Dy ||6iu(t, ~)||Lz(0’oo) :

Therefore, by Eq (7.28), we have that

C
Colldutt. Mz, + = @uur,0))

2 2
(©28) i O

2
0 4D8 ||M(t, .)”LZ(]RQ

2

+ Dg(Co + 1) [03uct, ) e, »

which gives
2Co 185t 72z, + Co(@u(t, 0))°

2
B [Z(Co + DLS))Z uz(t’ 0+ Z(Co + Dig)

2
C() 4D8 ”I/l(t, ')llLZ(R+)

2

+2Dg(Cy+ 1) 2R

It follows from Eqs (7.26) and (7.29) that

a)zcu(t7 )”

d ) ) ) 2 3%,
— . Mz, + (B2 = 2051 + Co) |07t )| e, + 552 0)

2(C°+DLs)2 2 2(C0+Dls) 2 2
< C() + T ||Lt(t, .)”LZ(RQ + C— u (f, O) + C().
8 0
Takin
g P
bs=1a+vco

we have that

d 2 2 372
e, Mo, + % |8%t, ] e, + 55 0)

< CO ”M(t, )lliZ(R+) + Couz(t’ 0) + CO-

(7.29)

(7.30)

(7.31)
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Thanks to the Young inequality

2
Coil(t,0) = 2 Co V20 V2[rlu’(r Y et —u 4(t,0). (7.32)

242 27 20

It follows from Eq (7.31) that

2
u(t )||L2(R ) Ou4(t9 0)
+ C().

d 2
E ||u(t’ .)”LZ(RJr) 2

S CO ||I/t(l, .)”LZ(R+)

By the Gronwall Lemma and Eq (1.9), we get

2 ,Cot
A2 Be —Cos
e, Mg + 2o fo

<Ce® < C(T),

&uts. )} e f O, 00
u(s, s+ ‘u’(t,0)ds
LZ(R) 20 0

which gives Eq (4.1).

Equation (4.2) follows Eqs (4.1), (7.32) and an integration on (0, t), while, Eqs (4.1) (4.2), (7.29),
(7.30) and an integration on (0, ¢) give Eqs (2.9) and (3.7).

Finally, we prove Eq (2.9). We begin by proving

!
f 10.14(s, M0, ) d5 < C(T). (7.33)
0
By the Young inequality,
(Ocu(t, x))* =2 f 0,ud*udy + 2(du(t, 0))* < 2 f 0,ud*udx + 2(0.u(t, 0))*
0

0

<2 f |0.ull0?uldx + 2(0,u(t, 0))*
0

< N9t Nrge,, + |2t s, + 2(sr, 0)2.

Hence, )
10,242, M Fo 0,00y < N0ttt Mgy + [[F700CE |, + 2Butaa, 0)).
Equation (7.33) follows from Eqgs (2.9), (3.7), (4.1) and an integration on (0, 7). We prove

!
f lluCs, 0zu(s, N2, ds < C(T). (7.34)
0
Observe that, by Eq (4.1),
fo WP@u)dx < [lult, Wi, 192402, ooy < CY .01, N,y -

An integration on (0, 7) gives Eq (7.34).
Therefore, the proof is concluded.
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Proof of Lemma 4.2. Let 0 <t < T. We begin by proving Eq (4.3). Observe that

(o)

ww@m@ﬁszﬁam@u:—mgm@mLm—jﬂuxmm
0

0

Thanks to Eq (4.1) and the Holder and the Young inequalities,

mmmwm@ws%M@@+%@W@mfsfmm+wmmmf

fo ulldul < Nult, Mz 036, )| 2, < CO) 02U, )| 2, -

Therefore, by Eq (7.35), we have that
10,24(2, Nage,, < 12(2,0) + @, 0))° + C(T) ||t )| o, -
Observe that . .
f@m+mmmmf=—{fl@Mn—zf‘@w@m.
0 0

Due to Eq (4.1) and the Holder and the Young inequalities,

f |u]|0uldx = 2 f

< ~ ”M(t )”LZ(R ) + D8 ”a I/t(l )”LZ(R )

a)
< Dy + Dg [10,u(t, 2z

‘f 10,ull02uldx = 2 j\y¢i¢u
0

1 2
2 2
< Dy 10t Moee, + - [ERTCS! .

2
ou

8

where Dy is a positive constant, which will be specified later. It follows from Eq (7.36) that

u*(t,0) + (0,u(t, 0))?
San
D

8

+2D“wm0umé®) Hyuﬁ)”

L2Ry) "

Therefore, by Eqgs (7.36) and (7.38)

C(T)
(1 = 2Dg) 18t 72z, < b D ||62 M, + CD|Outt e
Taking Dg = 1/4, thanks to the Young inequality, we have that
ot WP, <C(T) + 4| @ut, s, + CT) |02z, )|
5 N0 N, = U New,) HE N 2,

<an@+

2t M)

(7.35)

(7.36)

(7.37)

(7.38)
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which gives Eq (4.3).
We prove Eq (4.4). Thanks to Egs (4.1), (4.3) and the Holder inequality,

u?(t, x) =2 f ududy + u*(t,0) < 2 f ududx — 2 f ududx < 4 f |40 culdx
0 0 0 0

2
<A u(t, 2@, 10, N g, < C(T) \/(1 + ||0%u(t, ')||L2(R+))‘

Hence,

HMnm;@@scavJ@+H%MnM;K}

which gives Eq (4.4).
Finally, we prove Eq (4.5). We begin by proving that

2
mwﬂm%@nscavJ0+H%4bmﬂmKQ- (739)

Observe that, thanks Eqs (4.1), (4.3) and the Holder inequality,

W (1,0)=-2 f ududx <2 f |u]|0uldx
0 0

<2 ludt, 2y N0, Nl 2y < C(T) \/(1 +

utt, )

Hence,

2
wuomémnscavJ0+H%4bmpw&Q’
which gives Eq (7.39).

Observe that

||8xu(t, -)”Al‘f‘(]l&,) = f axu(aiufdx
0

= — u(t, 0)(0,u(t, 0))* - 3 f ) u(0,u)*0*udx (7.40)
0

:3u(l,0)f (axu)zﬁiudx—Sf u(@xu)zf)iudx.
0 0

Due to the Young inequality,

3)ut, 0)| f (Ox1)*|0%uldx = f (0c1)*|3u(t, 0)0%uldx
0 0

1

9 (o6}
< — |0 ult, ~)||Z‘0’oo) + Ef u?(t, 0)(0*u)*dx
0

<
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9 2
4 2 2
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0

dx
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It follows from Eq (7.40) that

1
6 ”axu(t’ )”‘[‘44(R+)

9 X 3 X , (7.41)
<3 (||u<-,0>||Lw(o,T) + 5 e W) 3t e -
By Eq (4.4), we have that
2
el 0.7y, < CCT) \/(1 2. e ) 7.42)

Therefore, by Eqs (7.39), (7.41) and (7.42),

0.t M, < CT) \/ (S N | C700)

An integration on (0, ¢) and Eq (4.1) give Eq (4.5)
8. Conclusions

In this paper, we have investigated the initial-boundary value problem associated with the
Kuramoto-Velarde equation on the half-line. Under suitable structural assumptions on the coefficients
and assuming initial data in H?(0, 00), we established the well-posedness of the problem for a wide
class of boundary conditions, including Dirichlet, mixed, and higher-order boundary constraints. The
main result guarantees existence, uniqueness, and continuous dependence on the initial data of
solutions in appropriate Sobolev spaces with precise stability estimates. The analysis relies on the
derivation of delicate a priori estimates, which are obtained through energy methods tailored to the
high-order and strongly nonlinear structure of the equation. A crucial role is played by the
compatibility condition between the nonlinear terms and the fourth-order dissipation, which allows us
to control the nonlinear effects and close the estimates. The use of suitable auxiliary functions further
enables the treatment of nonhomogeneous boundary conditions. From a mathematical perspective,
these results extend the theory for the Kuramoto-Velarde and related equations, which has so far been
mainly focused on the Cauchy problem, by providing a comprehensive well-posedness theory in the
presence of boundaries. From a physical viewpoint, the analysis supports the mathematical
consistency of models arising in crystal growth, spinodal decomposition, and interface dynamics
when boundary effects are taken into account. However, several questions remain open. Possible
directions for future research include the study of global-in-time behavior, the existence and stability
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of stationary or traveling wave solutions under boundary constraints, and the extension of the present
analysis to weaker initial regularity or to multidimensional settings. Another interesting perspective
concerns the investigation of control and stabilization problems for the Kuramoto-Velarde equation in
bounded or semi-bounded domains.
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