In this paper, a higher order nonsymmetric interior penalty Galerkin (NIPG) method on a Bakhvalov mesh is developed for a weakly coupled system of singularly perturbed reaction-diffusion equations. At first, by selecting special penalty parameters at different mesh points, the supercloseness of the $ k+\frac{1}{2} $ order of our proposed method is derived, where $ k $ is the degree of polynomials space. Then, an optimal order of uniform convergence analysis in a balanced norm is performed. Finally, some numerical experiments are given to support our theoretical findings.
Citation: Xiaobing Bao, Lei Xu, Yong Zhang. Supercloseness of the NIPG method on Bakhvalov-type meshes for a system of singularly perturbed reaction-diffusion equations[J]. Networks and Heterogeneous Media, 2025, 20(4): 1230-1250. doi: 10.3934/nhm.2025053
In this paper, a higher order nonsymmetric interior penalty Galerkin (NIPG) method on a Bakhvalov mesh is developed for a weakly coupled system of singularly perturbed reaction-diffusion equations. At first, by selecting special penalty parameters at different mesh points, the supercloseness of the $ k+\frac{1}{2} $ order of our proposed method is derived, where $ k $ is the degree of polynomials space. Then, an optimal order of uniform convergence analysis in a balanced norm is performed. Finally, some numerical experiments are given to support our theoretical findings.
| [1] |
T. Linß, Layer-adapted meshes for convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 192 (2003), 1061–1105. https://doi.org/10.1016/S0045-7825(02)00630-8 doi: 10.1016/S0045-7825(02)00630-8
|
| [2] | H. G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, 2008. |
| [3] |
L. B. Liu, L. Xu, Y. Zhang, High-order finite element method on a Vulanovic-Bakhvalov mesh for a singularly perturbed convection-diffusion problem, Appl. Math. Lett., 136 (2023), 108457. https://doi.org/10.1016/j.aml.2022.108457 doi: 10.1016/j.aml.2022.108457
|
| [4] |
Y. Liao, L. B. Liu, L. Ye, T. Liu, Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation, Appl. Math. Lett., 145 (2023), 108755. https://doi.org/10.1016/j.aml.2023.108755 doi: 10.1016/j.aml.2023.108755
|
| [5] | T. Linß, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Springer-Verlag, Berlin, 2010. |
| [6] |
T. Linß, M. Stynes, Numerical solution of systems of singularly perturbed differential equations, Comput. Methods Appl. Math., 9 (2009), 165–191. https://doi.org/10.2478/cmam-2009-0010 doi: 10.2478/cmam-2009-0010
|
| [7] |
T. Linß, Analysis of a FEM for a coupled system of singularly perturbed reaction-diffusion equations, Numer. Algorithms, 50 (2009), 283–291. https://doi.org/10.1007/s11075-008-9228-1 doi: 10.1007/s11075-008-9228-1
|
| [8] |
G. Singh, S. Natesan, A uniformly convergent numerical scheme for a coupled system of singularly perturbed reaction-diffusion equations, Numer. Funct. Anal. Optim., 41 (2020), 1172–1189. https://doi.org/10.1080/01630563.2020.1740255 doi: 10.1080/01630563.2020.1740255
|
| [9] |
S. Toprakseven, P. Zhu, A parameter-uniform weak Galerkin finite element method for a coupled system of singularly perturbed reaction-diffusion equations, Filomat, 37 (2023), 4351–4374. https://doi.org/10.2298/FIL2313351T doi: 10.2298/FIL2313351T
|
| [10] | H. G. Roos, Error estimates in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems, preprint, arXiv: 1604.05120. |
| [11] |
N. Madden, M. Stynes, A weighted and balanced FEM for singularly perturbed reaction-diffusion problems, Calcolo, 58 (2021), 28. https://doi.org/10.1007/s10092-021-00421-w doi: 10.1007/s10092-021-00421-w
|
| [12] |
H. G. Roos, M. Schopf, Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems, J. Appl. Math. Mech. / Z. Angew. Math. Mech., 95 (2015), 551–565. https://doi.org/10.1002/zamm.201300226 doi: 10.1002/zamm.201300226
|
| [13] |
Y. Cheng, L. Yan, Y. Mei, Balanced-norm error estimate of the local discontinuous Galerkin method on layer-adapted meshes for reaction-diffusion problems, Numer. Algorithms, 91 (2022), 1597–1626. https://doi.org/10.1007/s11075-022-01316-9 doi: 10.1007/s11075-022-01316-9
|
| [14] |
X. Liu, M. Yang, Error estimations in the balanced norm of finite element method on Bakhvalov-Shishkin triangular mesh for reaction-diffusion problems, Appl. Math. Lett., 123 (2022), 107523. https://doi.org/10.1016/j.aml.2021.107523 doi: 10.1016/j.aml.2021.107523
|
| [15] |
J. Zhang, X. Liu, Convergence and supercloseness in a balanced norm of finite element methods on Bakhvalov-type meshes for reaction-diffusion problems, J. Sci. Comput., 88 (2021), 27. https://doi.org/10.1007/s10915-021-01542-8 doi: 10.1007/s10915-021-01542-8
|
| [16] |
X. Ma, J. Zhang, Supercloseness in a balanced norm of the NIPG method on Shishkin mesh for a reaction diffusion problem, Appl. Math. Comput., 444 (2023), 127828. https://doi.org/10.1016/j.amc.2022.127828 doi: 10.1016/j.amc.2022.127828
|
| [17] |
R. Lin, M. Stynes, A balanced finite element method for a system of singularly perturbed reaction-diffusion two-point boundary value problems, Numer. Algorithms, 70 (2015), 691–707. https://doi.org/10.1007/s11075-015-9969-6 doi: 10.1007/s11075-015-9969-6
|
| [18] |
T. Linß, M. Stynes, Numerical methods on Shishkin meshes for linear convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 190 (2001), 3527–3542. https://doi.org/10.1016/S0045-7825(00)00271-1 doi: 10.1016/S0045-7825(00)00271-1
|
| [19] |
M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), 152–161. https://doi.org/10.1137/0715010 doi: 10.1137/0715010
|
| [20] |
L. Xu, L. B. Liu, Z. Huang, G. Long, Supercloseness of the NIPG method on a Bakhvalov-type mesh for a singularly perturbed problem with two small parameters, Appl. Numer. Math., 207 (2025), 431–449. https://doi.org/10.1016/j.apnum.2024.09.016 doi: 10.1016/j.apnum.2024.09.016
|
| [21] | C. Clavero, J. L. Gracia, F. J. Lisbona, High order schemes for reaction-diffusion singularly perturbed systems, in BAIL 2008-Boundary and Interior Layers: Proceedings of the International Conference on Boundary and Interior Layers-Computational and Asymptotic Methods, 69 (2009), 107–115. https://doi.org/10.1007/978-3-642-00605-0_7 |
| [22] |
H. G. Roos, Error estimates for linear finite elements on Bakhvalov-type meshes, Appl. Math., 51 (2006), 63–72. https://doi.org/10.1007/s10492-006-0005-y doi: 10.1007/s10492-006-0005-y
|
| [23] |
J. Zhang, X. Liu, Optimal order of uniform convergence for finite element method on Bakhvalov-type meshes, J. Sci. Comput., 85 (2020), 2. https://doi.org/10.1007/s10915-020-01312-y doi: 10.1007/s10915-020-01312-y
|
| [24] |
G. Singh, S. Natesan, A uniformly convergent numerical scheme for a coupled system of singularly perturbed reaction-diffusion equations, Numer. Funct. Anal. Optim., 41 (2020), 1172–1189. https://doi.org/10.1080/01630563.2020.1740255 doi: 10.1080/01630563.2020.1740255
|
| [25] |
Ş. Toprakseven, S. Dinibutun, Error estimations of a weak Galerkin finite element method for a linear system of $l\geq2$ coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms, AIMS Math., 8 (2023), 15427–15465. https://doi.org/10.3934/math.2023788 doi: 10.3934/math.2023788
|
| [26] | P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, PA, 2002. |
| [27] |
Y. Cheng, On the local discontinuous Galerkin method for singularly perturbed problem with two parameters, J. Comput. Appl. Math., 392 (2021), 113485. https://doi.org/10.1016/j.cam.2021.113485 doi: 10.1016/j.cam.2021.113485
|
| [28] |
P. Zhu, Z. Xie, S. Zhou, A coupled continuous-discontinuous FEM approach for convection diffusion equations, Acta Math. Sci., 31 (2011), 601–612. https://doi.org/10.1016/S0252-9602(11)60260-9 doi: 10.1016/S0252-9602(11)60260-9
|