In this paper, we investigated the nonlinear dynamics and pattern formation of a fractional-order three-variable Oregonator model. We first performed a linear stability analysis of the model without diffusion, deriving equilibrium points and Jacobian eigenvalues, and verified Matignon's stability conditions. A high-precision numerical scheme was developed, and simulations revealed that even tiny variations in fractional order produce significant changes in long-term trajectories. For the reaction-diffusion model, we analyzed Turing instability under integer-order diffusion and derived the critical wave-number conditions via Routh-Hurwitz criteria. Weakly nonlinear analysis near the Turing threshold yielded coupled amplitude equations whose coefficients predicted stripe, hexagon, and mixed patterns. Extensive two-dimensional numerical experiments confirmed the theoretical predictions: Depending on diffusion coefficients and other parameters, the model evolved into bullseye, spiral, labyrinthine, or spot-stripe mixtures.
Citation: Jia Yu Yang, Yu Lan Wang, Zhi Yuan Li. Exploring dynamics and pattern formation of a fractional-order three-variable Oregonator model[J]. Networks and Heterogeneous Media, 2025, 20(4): 1201-1229. doi: 10.3934/nhm.2025052
In this paper, we investigated the nonlinear dynamics and pattern formation of a fractional-order three-variable Oregonator model. We first performed a linear stability analysis of the model without diffusion, deriving equilibrium points and Jacobian eigenvalues, and verified Matignon's stability conditions. A high-precision numerical scheme was developed, and simulations revealed that even tiny variations in fractional order produce significant changes in long-term trajectories. For the reaction-diffusion model, we analyzed Turing instability under integer-order diffusion and derived the critical wave-number conditions via Routh-Hurwitz criteria. Weakly nonlinear analysis near the Turing threshold yielded coupled amplitude equations whose coefficients predicted stripe, hexagon, and mixed patterns. Extensive two-dimensional numerical experiments confirmed the theoretical predictions: Depending on diffusion coefficients and other parameters, the model evolved into bullseye, spiral, labyrinthine, or spot-stripe mixtures.
| [1] |
K. Sriram, S. Bernard, Complex dynamics in the Oregonator model with linear delayed feedback, Chaos, 18 (2008), 023126. https://doi.org/10.1063/1.2937015 doi: 10.1063/1.2937015
|
| [2] |
H. Mahara, T. Yamaguchi, Y. Morikawa, T. Amemiya, T. Yamamoto, H. Miike, et al., Forced excitations and excitable chaos in the photosensitive Oregonator under periodic sinusoidal perturbations, Physica D, 205 (2005), 275–282. https://doi.org/10.1016/j.physd.2005.01.014 doi: 10.1016/j.physd.2005.01.014
|
| [3] |
R. J. Field, R. M. Mazo, N. Manz, Science, serendipity, coincidence, and the Oregonator at the University of Oregon, 1969–1974, Chaos, 32 (2022), 052101. https://doi.org/10.1063/5.0087455 doi: 10.1063/5.0087455
|
| [4] |
K. Imaeda, T. Tei, Bifurcation and chaos caused by an external periodic force in the Oregonator of BZ reaction, J. Phys. Soc. Jpn., 55 (1986), 743–752. https://doi.org/10.1143/JPSJ.55.743 doi: 10.1143/JPSJ.55.743
|
| [5] |
C. P. Li, Z. Wang, Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution, Math. Comput. Simul., 182 (2021), 838–857. https://doi.org/10.1016/j.matcom.2020.12.007 doi: 10.1016/j.matcom.2020.12.007
|
| [6] |
Z. Y. Li, Y. L. Wang, F. G. Tan, X. H. Wan, H. Yu, J. S. Duan, Solving a class of linear nonlocal boundary value problems using the reproducing kernel, Appl. Math. Comput., 265 (2015), 1098–1105. https://doi.org/10.1016/j.amc.2015.05.117 doi: 10.1016/j.amc.2015.05.117
|
| [7] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
| [8] |
H. Che, Y. L. Wang, Z. Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simul., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
|
| [9] |
C. Han, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fract., 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207
|
| [10] |
X. L. Gao, Z. Y. Li, Y. L. Wang, Chaotic dynamic behavior of a fractional-order financial system with constant inelastic demand, Int. J. Bifurcation Chaos, 34 (2024), 2450111. https://doi.org/10.1142/S0218127424501116 doi: 10.1142/S0218127424501116
|
| [11] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Lect. Notes Math., 2004. |
| [12] |
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
|
| [13] |
K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
|
| [14] | C. P. Li, F. H. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, Boca Raton, 2015. |
| [15] | C. P. Li, M. Cai, Theory and Numerical Approximations of Fractional Integrals and Derivatives, Society for Industrial and Applied Mathematics, Philadelphia, 2019. |
| [16] |
H. L. Zhang, Y. L. Wang, J. X. Bi, S. H. Bao, Novel pattern dynamics in a vegetation-water reaction-diffusion model, Math. Comput. Simul., 241 (2026), 97–116. https://doi.org/10.1016/j.matcom.2025.09.020 doi: 10.1016/j.matcom.2025.09.020
|
| [17] |
S. Zhang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, Networks Heterogen. Media, 20 (2025), 648–669. https://doi.org/10.3934/nhm.2025028 doi: 10.3934/nhm.2025028
|
| [18] | I. Petr'aš, Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science & Business Media, Heidelberg, 2011. |
| [19] |
C. Xu, M. Liao, M. Farman, A. Shehzad, Hydrogenolysis of glycerol by heterogeneous catalysis: A fractional order kinetic model with analysis, MATCH Commun. Math. Comput. Chem., 91 (2024), 635–664. https://doi.org/10.46793/match.91-3.635X doi: 10.46793/match.91-3.635X
|
| [20] |
C. Xu, M. Farman, Y. Pang, Z. Liu, M. Liao, L. Yao, et al., Mathematical analysis and dynamical transmission of SEIrIsR model with different infection stages by using fractional operator, Int. J. Biomath., 2025 (2025), 2450151. https://doi.org/10.1142/S1793524524501511 doi: 10.1142/S1793524524501511
|
| [21] |
C. G. Liu, J. L. Wang, Passivity of fractional-order coupled neural networks with multiple state/derivative couplings, Neurocomputing, 455 (2021), 379–389. https://doi.org/10.1016/j.neucom.2021.05.050 doi: 10.1016/j.neucom.2021.05.050
|
| [22] |
C. Jiang, A. Zada, M. T. Şenel, T. Li, Synchronization of bidirectional N-coupled fractional-order chaotic systems with ring connection based on antisymmetric structure, Adv. Differ. Equ., 2019 (2019), 1–16. https://doi.org/10.1186/s13662-019-2380-1 doi: 10.1186/s13662-019-2380-1
|
| [23] |
T. Jia, X. Chen, L. He, F. Zhao, J. Qiu, Finite-time synchronization of uncertain fractional-order delayed memristive neural networks via adaptive sliding mode control and its application, Fractal Fract., 6 (2022), 502. https://doi.org/10.3390/fractalfract6090502 doi: 10.3390/fractalfract6090502
|
| [24] |
Y. Zhao, Y. Sun, Z. Liu, Y. Wang, Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type, AIMS Math., 5 (2020), 557–567. https://doi.org/10.3934/math.2020037 doi: 10.3934/math.2020037
|
| [25] |
Z. Liu, Y. Ding, C. Liu, C. Zhao, Existence and uniqueness of solutions for singular fractional differential equation boundary value problem with p-Laplacian, Adv. Differ. Equ., 2020 (2020), 83. https://doi.org/10.1186/s13662-019-2482-9 doi: 10.1186/s13662-019-2482-9
|
| [26] |
R. Xing, M. Xiao, Y. Zhang, J. Qiu, Stability and Hopf bifurcation analysis of an (n+ m)-neuron double-ring neural network model with multiple time delays, J. Syst. Sci. Complexity, 35 (2022), 159–178. https://doi.org/10.1007/s11424-021-0108-2 doi: 10.1007/s11424-021-0108-2
|
| [27] |
X. Du, M. Xiao, J. Qiu, Y. Lu, J. Cao, Stability and dynamics analysis of time-delay fractional-order large-scale dual-loop neural network model with cross-coupling structure, IEEE Trans. Neural Networks Learn. Syst., 36 (2024), 7873–7887. https://doi.org/10.1109/TNNLS.2024.3413366 doi: 10.1109/TNNLS.2024.3413366
|
| [28] |
H. Wang, M. Xiao, B. Tao, F. Xu, Z. Wang, C. Huang, et al., Improving dynamics of integer-order small-world network models under fractional-order PD control, Sci. China Inf. Sci., 63 (2020), 112206. https://doi.org/10.1007/s11432-018-9933-6 doi: 10.1007/s11432-018-9933-6
|
| [29] |
P. Li, R. Gao, C. Xu, Y. Li, A. Akgül, D. Baleanu, Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system, Chaos, Solitons Fractals, 166 (2023), 112975. https://doi.org/10.1016/j.chaos.2022.112975 doi: 10.1016/j.chaos.2022.112975
|
| [30] |
L. Yang, M. Dolnik, A. M. Zhabotinsky, I. R. Epstein, Pattern formation arising from interactions between Turing and wave instabilities, J. Chem. Phys., 117 (2002), 7259–7265. https://doi.org/10.1063/1.1507110 doi: 10.1063/1.1507110
|
| [31] |
R. Peng, F. Sun, Turing pattern of the Oregonator model, Nonlinear Anal., 72 (2010), 2337–2345. https://doi.org/10.1016/j.na.2009.10.034 doi: 10.1016/j.na.2009.10.034
|
| [32] | Y. Jia, F. Feng, Y. Zhang, Y. He, Pattern formation induced by subdiffusion in Oregonator model, J. Hebei Univ. (Nat. Sci. Ed.), 37 (2017), 19–25. |
| [33] |
C. Xu, C. Aouiti, Z. Liu, P. Li, L. Yao, Bifurcation caused by delay in a fractional-order coupled Oregonator model in chemistry, MATCH Commun. Math. Comput. Chem., 88 (2022), 371–396. https://doi.org/10.46793/match.88-2.371X doi: 10.46793/match.88-2.371X
|
| [34] |
C. Xu, W. Zhang, C. Aouiti, Z. X. Liu, L. Yao, Bifurcation dynamics in a fractional-order Oregonator model including time delay, MATCH Commun. Math. Comput. Chem., 87 (2022), 397–414. https://doi.org/10.46793/match.87-2.397X doi: 10.46793/match.87-2.397X
|
| [35] |
H. Li, Y. Yao, M. Xiao, Z. Wang, L. Rutkowski, Turing pattern dynamics in a fractional-diffusion Oregonator model under PD control, Nonlinear Anal. Model. Control, 30 (2025), 1–21. https://doi.org/10.15388/namc.2025.30.38967 doi: 10.15388/namc.2025.30.38967
|
| [36] | F. C. Liu, X. F. Wang, Multi-armed spiral waves in three-component reaction diffusion systems, J. Hebei Univ. (Nat. Sci. Ed.), 29 (2009), 376–380. |
| [37] | C. P. Li, F. H. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, Boca Raton, 2015. |
| [38] | D. Y. Xue, C. N. Zhao, Y. Q. Chen, A modified approximation method of fractional order system, in Proceedings of IEEE International Conference on Mechatronics and Automation, (2006), 1043–1048. https://doi.org/10.1109/ICMA.2006.257769 |
| [39] |
D. Y. Xue, L. Bai, Numerical algorithms for Caputo fractional-order differential equations, Int. J. Control, 90 (2017), 1201–1211. https://doi.org/10.1080/00207179.2016.1158419 doi: 10.1080/00207179.2016.1158419
|
| [40] | D. Y. Xue, Fractional Calculus and Fractional-Order Control, Science Press, Beijing, 2018. |
| [41] |
X. H. Wang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of the fractional Hastings-Powell model with the Grünwald-Letnikov differential derivative, Int. J. Bifurcation Chaos, 35 (2025), 2550145. https://doi.org/10.1142/S0218127425501457 doi: 10.1142/S0218127425501457
|
| [42] |
M. Bodson, Explaining the Routh–Hurwitz criterion: A tutorial presentation, IEEE Control Syst. Mag., 40 (2020), 45–51. https://doi.org/10.1109/MCS.2019.2949974 doi: 10.1109/MCS.2019.2949974
|
| [43] |
Z. Bao, Q. Zhou, Z. Yang, Q. Yang, L. Xu, T. Wu, A multi time-scale and multi energy-type coordinated microgrid scheduling solution—Part I: Model and methodology, IEEE Trans. Power Syst., 30 (2014), 2257–2266. https://doi.org/10.1109/TPWRS.2014.2367127 doi: 10.1109/TPWRS.2014.2367127
|
| [44] |
S. Ghorai, S. Poria, Emergent impacts of quadratic mortality on pattern formation in a predator–prey system, Nonlinear Dyn., 87 (2017), 2715–2734. https://doi.org/10.1007/s11071-016-3222-2 doi: 10.1007/s11071-016-3222-2
|
| [45] |
S. Kumari, R. K. Upadhyay, P. Kumar, V. Rai, Dynamics and patterns of species abundance in ocean: A mathematical modeling study, Nonlinear Anal. Real World Appl., 60 (2021), 103303. https://doi.org/10.1016/j.nonrwa.2021.103303 doi: 10.1016/j.nonrwa.2021.103303
|
| [46] |
X. L. Gao, H. L. Zhang, X. Y. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506–18527. https://doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
|