Here, by integrating continuous control and dynamic event-triggered impulsive control (DETIC) based on a piecewise function ratio framework, a hybrid control strategy is developed to solve prescribed-time stabilization (PTS) for nonlinear systems. Different from the traditional methods, the designed hybrid control strategy is rooted in DETIC, and the designed triggering mechanism allows the impulsive triggering instants to be dynamically adjusted, with the Zeno behavior being eliminated. The dynamic event-triggered mechanism (DETM) is utilized to determine the instants of impulses, thereby reducing unnecessary control execution and enhancing control efficiency. Moreover, the proposed approach is utilized for the master-slave synchronization of the Lorenz system, and numerical experiments are conducted to demonstrate the practicality and efficiency of the developed hybrid control scheme.
Citation: Yanmei Yang, Xiaoying Zhu, Lichao Feng, Liping Du. Prescribed-time stabilization for nonlinear systems via hybrid continuous and dynamic event-triggered impulsive control[J]. Networks and Heterogeneous Media, 2025, 20(4): 1251-1268. doi: 10.3934/nhm.2025054
Here, by integrating continuous control and dynamic event-triggered impulsive control (DETIC) based on a piecewise function ratio framework, a hybrid control strategy is developed to solve prescribed-time stabilization (PTS) for nonlinear systems. Different from the traditional methods, the designed hybrid control strategy is rooted in DETIC, and the designed triggering mechanism allows the impulsive triggering instants to be dynamically adjusted, with the Zeno behavior being eliminated. The dynamic event-triggered mechanism (DETM) is utilized to determine the instants of impulses, thereby reducing unnecessary control execution and enhancing control efficiency. Moreover, the proposed approach is utilized for the master-slave synchronization of the Lorenz system, and numerical experiments are conducted to demonstrate the practicality and efficiency of the developed hybrid control scheme.
| [1] |
J. Hahn, M. Mönnigmann, W. Marquardt, A method for robustness analysis of controlled nonlinear systems, Chem. Eng. Sci., 59 (2004), 4325–4338. https://doi.org/10.1016/j.ces.2004.06.026 doi: 10.1016/j.ces.2004.06.026
|
| [2] |
Z. H. Zhao, T. Wang, J. Y. Yu, M. V. Basin, Bilateral cooperative control of nonlinear multiagent systems with state and output quantification, IEEE Trans. Cybern., 55 (2025), 2949–2957. https://doi.org/10.1109/TCYB.2025.3545144 doi: 10.1109/TCYB.2025.3545144
|
| [3] |
Z. H. Zhao, J. Y. Yu, T. Wang, F. Peng, Adaptive fuzzy resilient decentralized control for nonlinear large-scale CPSs under DoS attacks, IEEE Trans. Fuzzy Syst., 32 (2024), 5899–5909. https://doi.org/10.1109/TFUZZ.2024.3434726 doi: 10.1109/TFUZZ.2024.3434726
|
| [4] |
S. J. Fan, T. Wang, C. H. Qin, J. B. Qiu, M. Li, Optimized backstepping attitude containment control for multiple spacecrafts, IEEE Trans. Fuzzy Syst, 32 (2024), 5248–5258. https://doi.org/10.1109/TFUZZ.2024.3418577 doi: 10.1109/TFUZZ.2024.3418577
|
| [5] | T. Yang, Practical stability of impulsive control, in Impulsive Control Theory, Springer, Berlin, Heidelberg, (2001), 149–197. https://doi.org/10.1007/3-540-47710-1_6 |
| [6] |
E. G. Gilbert, G. A. Harasty, A class of fixed-time fuel-optimal impulsive control problems and an efficient algorithm for their solution, IEEE Trans. Autom. Control, 16 (1971), 1–11. https://doi.org/10.1109/TAC.1971.1099656 doi: 10.1109/TAC.1971.1099656
|
| [7] |
X. Z. Liu, K. X. Zhang, Input-to-state stability of time-delay systems with delay-dependent impulses, IEEE Trans. Autom. Control, 65 (2019), 1676–1682. https://doi.org/10.1109/TAC.2019.2930239 doi: 10.1109/TAC.2019.2930239
|
| [8] |
W. L. He, X. Y. Gao, W. M. Zhong, F. Qian, Secure impulsive synchronization control of multi-agent systems under deception attacks, Inf. Sci., 459 (2018), 354–368. https://doi.org/10.1016/j.ins.2018.04.020 doi: 10.1016/j.ins.2018.04.020
|
| [9] |
X. Y. He, X. D. Li, S. J. Song, Prescribed-time stabilization of nonlinear systems via impulsive regulation, IEEE Trans. Syst., Man, Cybern., 53 (2022), 981–985. https://doi.org/10.1109/TSMC.2022.3188874 doi: 10.1109/TSMC.2022.3188874
|
| [10] |
A. Anta, P. Tabuada, To sample or not to sample: Self-triggered control for nonlinear systems, IEEE Trans. Autom. Control, 55 (2010), 2030–2042. https://doi.org/10.1109/TAC.2010.2042980 doi: 10.1109/TAC.2010.2042980
|
| [11] |
H. Shen, C. J. Peng, H. C. Yan, S. Y. Xu, Data-driven near optimization for fast sampling singularly perturbed systems, IEEE Trans. Autom. Control, 69 (2024), 4689–4694. https://doi.org/10.1109/TAC.2024.3352703 doi: 10.1109/TAC.2024.3352703
|
| [12] |
D. P. Yang, W. Ren, X. D. Liu, W. S. Chen, Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs, Automatica, 69 (2016), 242–249. https://doi.org/10.1016/j.automatica.2016.03.003 doi: 10.1016/j.automatica.2016.03.003
|
| [13] |
M. Abdelrahim, R. Postoyan, J. Daafouz, D. Nešić, Robust event-triggered output feedback controllers for nonlinear systems, Automatica, 75 (2017), 96–108. https://doi.org/10.1016/j.automatica.2016.09.044 doi: 10.1016/j.automatica.2016.09.044
|
| [14] |
H. Shen, W. Zhao, J. D. Cao, J. H. Park, J. Wang, Predefined-time event-triggered tracking control for nonlinear servo systems: A fuzzy weight-based reinforcement learning scheme, IEEE Trans. Fuzzy Syst., 32 (2024), 4557–4569. https://doi.org/10.1109/TFUZZ.2024.3403917 doi: 10.1109/TFUZZ.2024.3403917
|
| [15] |
Z. H. Zhang, G. H. Yang, Event-triggered fault detection for a class of discrete-time linear systems using interval observers, ISA Trans., 68 (2017), 160–169. https://doi.org/10.1016/j.isatra.2016.11.016 doi: 10.1016/j.isatra.2016.11.016
|
| [16] |
X. Y. Meng, L. H. Xie, Y. C. Soh, Asynchronous periodic event-triggered consensus for multi-agent systems, Automatica, 84 (2017), 214–220. https://doi.org/10.1016/j.automatica.2017.07.008 doi: 10.1016/j.automatica.2017.07.008
|
| [17] |
Y. P. Guan, Q. L. Han, X. H. Ge, On asynchronous event-triggered control of decentralized networked systems, Inf. Sci., 425 (2018), 127–139. https://doi.org/10.1016/j.ins.2017.10.024 doi: 10.1016/j.ins.2017.10.024
|
| [18] |
X. D. Li, D. G. Peng, J. D. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
|
| [19] |
H. L. Liu, T. X. Zhang, X. D. Li, Event-triggered control for nonlinear systems with impulse effects, Chaos Solitons Fractals, 153 (2021), 111499. https://doi.org/10.1016/j.chaos.2021.111499 doi: 10.1016/j.chaos.2021.111499
|
| [20] |
X. D. Li, P. Li, Input-to-state stability of nonlinear systems: Event-triggered impulsive control, IEEE Trans. Autom. Control, 67 (2021), 1460–1465. https://doi.org/10.1109/TAC.2021.3063227 doi: 10.1109/TAC.2021.3063227
|
| [21] |
L. C. Feng, M. Y. Dai, N. Ji, Y. L. Zhang, L. P. Du, Prescribed-time stabilization of nonlinear systems with uncertainties/disturbances by improved time-varying feedback control, AIMS Math., 9 (2024), 23859–23877. https://doi.org/10.3934/math.20241159 doi: 10.3934/math.20241159
|
| [22] |
W. L. Lu, X. W. Liu, T. P. Chen, A note on finite-time and fixed-time stability, Neural Networks, 81 (2016), 11–15. https://doi.org/10.1016/j.neunet.2016.04.011 doi: 10.1016/j.neunet.2016.04.011
|
| [23] |
H. Shen, X. Yu, H. C. Yan, J. H. Park, J. Wang, Robust fixed-time sliding mode attitude control for a 2-DOF helicopter subject to input saturation and prescribed performance, IEEE Trans. Transp. Electrif., 11 (2024), 1223–1233. https://doi.org/10.1109/TTE.2024.3402316 doi: 10.1109/TTE.2024.3402316
|
| [24] |
K. X. Zhang, B. Gharesifard, Hybrid event-triggered and impulsive control for time-delay systems, Nonlinear Anal. Hybrid Syst., 43 (2021), 101–109. https://doi.org/10.1016/j.nahs.2021.101109 doi: 10.1016/j.nahs.2021.101109
|
| [25] |
T. H. Yu, Y. Z. Liu, J. D. Cao, Finite-time stability of dynamical system under event-triggered hybrid control, Appl. Math. Model., 117 (2023), 286–295. https://doi.org/10.1016/j.apm.2022.12.031 doi: 10.1016/j.apm.2022.12.031
|
| [26] |
J. L. Liu, Y. D. Wang, J. D. Cao, D. Yue, X. P. Xie, Secure adaptive-event-triggered filter design with input constraint and hybrid cyber attack, IEEE Trans. Cybern., 51 (2020), 4000–4010. https://doi.org/10.1109/TCYB.2020.3003752 doi: 10.1109/TCYB.2020.3003752
|
| [27] |
W. L. He, B. Xu, Q. L. Han, F. Qian, Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies, IEEE Trans. Cybern., 50 (2019), 2996–3008. https://doi.org/10.1109/TCYB.2019.2920093 doi: 10.1109/TCYB.2019.2920093
|
| [28] |
Q. Li, B. Shen, Z. D. Wang, T. W. Huang, J. Luo, Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach, IEEE Trans. Cybern., 49 (2018), 1979–1986. https://doi.org/10.1109/TCYB.2018.2818941 doi: 10.1109/TCYB.2018.2818941
|
| [29] |
X. N. Li, H. Q. Wu, J. D. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simul., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010
|
| [30] |
X. N. Li, H. Q. Wu, J. D. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385–397. https://doi.org/10.1016/j.apm.2022.10.051 doi: 10.1016/j.apm.2022.10.051
|
| [31] |
C. C. Li, C. Y. Zhang, L. C. Feng, Z. H. Wu, Note on prescribed-time stability of impulsive piecewise-smooth differential systems and application in networks, Networks Heterog. Media, 19 (2024), 970–991. https://doi.org/10.3934/nhm.2024043 doi: 10.3934/nhm.2024043
|
| [32] |
L. C. Feng, C. C. Li, Abdel-Aty. Mahmoud, J. D. Cao, Prescribed-time stability of nonlinear impulsive piecewise systems and synchronization for dynamical networks, Qual. Theory Dyn. Syst., 24 (2025), 165. https://doi.org/10.1007/s12346-025-01302-1 doi: 10.1007/s12346-025-01302-1
|