Research article

A monotone finite volume scheme for linear drift-diffusion and pure drift equations on one-dimensional graphs

  • Published: 12 June 2025
  • We propose numerical schemes for the approximate solution of problems defined on the edges of a one-dimensional graph. In particular, we consider linear transport and a drift-diffusion equations, and discretize them by extending finite volume schemes with upwind flux to domains presenting bifurcation nodes with an arbitrary number of incoming and outgoing edges, and implicit time discretization. We show that the discrete problems admit positive unique solutions, and we test the methods on the intricate geometry of electrical treeing.

    Citation: Beatrice Crippa, Anna Scotti, Andrea Villa. A monotone finite volume scheme for linear drift-diffusion and pure drift equations on one-dimensional graphs[J]. Networks and Heterogeneous Media, 2025, 20(2): 670-700. doi: 10.3934/nhm.2025029

    Related Papers:

  • We propose numerical schemes for the approximate solution of problems defined on the edges of a one-dimensional graph. In particular, we consider linear transport and a drift-diffusion equations, and discretize them by extending finite volume schemes with upwind flux to domains presenting bifurcation nodes with an arbitrary number of incoming and outgoing edges, and implicit time discretization. We show that the discrete problems admit positive unique solutions, and we test the methods on the intricate geometry of electrical treeing.



    加载中


    [1] S. Bahadoorsingh, S. M. Rowland, The role of power quality in electrical treeing of epoxy resin, in 2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, IEEE, Vancouver, BC, Canada, (2007), 221–224. https://doi.org/10.1109/CEIDP.2007.4451500
    [2] G. Buccella, A. Villa, D. Ceresoli, R. Schurch, L. Barbieri, R. Malgesini, et al., A computational modelling of carbon layer formation on treeing branches, Modell. Simul. Mater. Sci. Eng., 31 (2023), 035001. https://doi.org/10.1088/1361-651X/acac44 doi: 10.1088/1361-651X/acac44
    [3] R. Schurch, S. M. Rowland, R. S. Bradley, P. J. Withers, Imaging and analysis techniques for electrical trees using X-ray computed tomography, IEEE Trans. Dielectr. Electr. Insul., 21 (2014), 53–63. https://doi.org/10.1109/TDEI.2013.003911 doi: 10.1109/TDEI.2013.003911
    [4] R. Schurch, J. Ardila-Rey, J. Montana, A. Angulo, S. M. Rowland, I. Iddrissu, et al., 3D characterization of electrical tree structures, IEEE Trans. Dielectr. Electr. Insul., 26 (2019), 220–228. https://doi.org/10.1109/TDEI.2018.007486 doi: 10.1109/TDEI.2018.007486
    [5] W. J. K. Raymond, H. A. Illias, H. Mokhlis, Partial discharge classifications: Review of recent progress, Measurement, 68 (2015), 164–181. https://doi.org/10.1016/j.measurement.2015.02.032 doi: 10.1016/j.measurement.2015.02.032
    [6] S. K. Pankaj, K. M. Keener, Cold plasma: Background, applications and current trends, Curr. Opin. Food Sci., 16 (2017), 49–52. https://doi.org/10.1016/j.cofs.2017.07.008 doi: 10.1016/j.cofs.2017.07.008
    [7] Y. Nyanteh, L. Graber, C. Edrington, S. Srivastava, D. Cartes, Overview of simulation models for partial discharge and electrical treeing to determine feasibility for estimation of remaining life of machine insulation systems, in 2011 Electrical Insulation Conference (EIC), IEEE, (2011), 327–332. https://doi.org/10.1109/EIC.2011.5996172
    [8] J. Jow, W. K. Lee, G. S. Cieloszyk, Stochastic simulation of water treeing in heterogeneous media using a field enhancement equation, in Proceedings of Conference on Electrical Insulation and Dielectric Phenomena-CEIDP'96, IEEE, 2 (1996), 758–761. https://doi.org/10.1109/CEIDP.1996.564619
    [9] G. Callender, P. L. Lewin, Plasma dynamic simulations of partial discharges within electrical tree structures, in 2019 IEEE Electrical Insulation Conference (EIC), IEEE, (2019), 340–343. https://doi.org/10.1109/EIC43217.2019.9046581
    [10] A. Villa, R. Schurch, L. Barbieri, G. Buccella, R. Malgesini, D. Palladini, Towards the plasma-polymer simulation in treeing branches, in 2022 IEEE 4th International Conference on Dielectrics (ICD), IEEE, (2022), 171–174. https://doi.org/10.1109/ICD53806.2022.9863222
    [11] A. Villa, L. Barbieri, M. Gondola, A. R. Leon-Garzon, R. Malgesini, A PDE-based partial discharge simulator, J. Comput. Phys., 345 (2017), 687–705. https://doi.org/10.1016/j.jcp.2017.05.045 doi: 10.1016/j.jcp.2017.05.045
    [12] A. Villa, L. Barbieri, M. Gondola, A. R. Leon-Garzon, R. Malgesini, An implicit three-dimensional fractional step method for the simulation of the corona phenomenon, Appl. Math. Comput., 311 (2017), 85–99. https://doi.org/10.1016/j.amc.2017.04.037 doi: 10.1016/j.amc.2017.04.037
    [13] A. Villa, L. Barbieri, M. Gondola, A. R. Leon-Garzon, R. Malgesini, Stability of the discretization of the electron avalanche phenomenon, J. Comput. Phys., 296 (2015), 369–381. https://doi.org/10.1016/j.jcp.2015.05.013 doi: 10.1016/j.jcp.2015.05.013
    [14] A. Villa, L. Barbieri, G. Marco, R. Malgesini, A. R. Leon-Garzon, Simulation of the AC corona phenomenon with experimental validation, J. Phys. D: Appl. Phys., 50 (2017), 435201. https://doi.org/10.1088/1361-6463/aa84f0 doi: 10.1088/1361-6463/aa84f0
    [15] E. Estradam, The Structure of Complex Networks: Theory and Applications, American Chemical Society, 2012.
    [16] M. Newman, Networks, Oxford University Press, 2018.
    [17] A. Bressan, S. Čanić, M. Garavello, M. Herty, B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47–111. https://doi.org/10.4171/EMSS/2 doi: 10.4171/EMSS/2
    [18] B. Piccoli, M. Garavello, Traffic flow on networks, Am. Inst. Math. Sci., 2006.
    [19] S. Göttlich, M. Herty, A. Klar, Network models for supply chains, Commun. Math. Sci., 3 (2005), 545–559.
    [20] M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845–855. https://doi.org/10.1002/mma.1197 doi: 10.1002/mma.1197
    [21] M. Herty, A.l Klar, B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160–173. https://doi.org/10.1137/060659478 doi: 10.1137/060659478
    [22] J. Hild, G. Leugering, Real-time control of urban drainage systems, Math. Optim. Water Networks, (2012), 129–150.
    [23] W. A. M. Wybo, D. Boccalini, B. Torben-Nielsen, M. O. Gewaltig, A sparse reformulation of the green's function formalism allows efficient simulations of morphological neuron models, Neural Comput., 27 (2015), 2587–2622. https://doi.org/10.1162/NECO_a_00788 doi: 10.1162/NECO_a_00788
    [24] G. Bretti, R. Natalini, B. Piccoli, Numerical approximations of a traffic flow model on networks, Networks Heterogen. Media, 1 (2005), 57–84. https://doi.org/10.3934/nhm.2006.1.57 doi: 10.3934/nhm.2006.1.57
    [25] P. Goatin, E. Rossi, Comparative study of macroscopic traffic flow models at road junctions, Networks Heterogen. Media, 15 (2020), 261–279. https://doi.org/hal-02474650
    [26] V. Gyrya, A. Zlotnik, An explicit staggered-grid method for numerical simulation of large-scale natural gas pipeline networks, Appl. Math. Modell., 65 (2019), 34–51. https://doi.org/10.1016/j.apm.2018.07.051 doi: 10.1016/j.apm.2018.07.051
    [27] G. Leugering, Domain decomposition of an optimal control problem for semi-linear elliptic equations on metric graphs with application to gas networks, Appl. Math., 8 (2017), 1074. https://doi.org/10.4236/am.2017.88082 doi: 10.4236/am.2017.88082
    [28] S. K. Godunov, I. Bohachevsky, Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Math. Sbornik, 47 (1959), 271–306.
    [29] D. Aregba-Driollet, V. Milišić, Kinetic approximation of a boundary value problem for conservation laws, Numer. Math., 97 (2004), 595–633. https://doi.org/10.1007/s00211-003-0514-5 doi: 10.1007/s00211-003-0514-5
    [30] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004.
    [31] J. E. Lagnese, G. Leugering, Domain in Decomposition Methods in Optimal Control of Partial Differential Equations, Springer Science & Business Media, 2004.
    [32] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, 2013.
    [33] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1–137. https://doi.org/10.1017/S0962492904000212 doi: 10.1017/S0962492904000212
    [34] M. Benzi, F. Durastante, F. Zigliotto, Modelling advection on distance-weighted directed networks, preprint, arXiv: 2410.11352.
    [35] J. C. Xu, L. Zikatanov, A monotone finite element scheme for convection-diffusion equations, Math. Comput., 68 (1999), 1429–1446.
    [36] K. Lipnikov, D. Svyatskiy, Y. Vassilevski, A monotone finite volume method for advection–diffusion equations on unstructured polygonal meshes, J. Comput. Phys., 229 (2010), 4017–4032. https://doi.org/10.1016/j.jcp.2010.01.035 doi: 10.1016/j.jcp.2010.01.035
    [37] W. Hundsdorfer, B. Koren, J. G. Verwer, A positive finite-difference advection scheme, J. Comput. Phys., 117 (1995), 35–46. https://doi.org/10.1006/jcph.1995.1042 doi: 10.1006/jcph.1995.1042
    [38] B. Crippa, A. Scotti, A. Villa, A mixed-dimensional model for the electrostatic problem on coupled domains, J. Comput. Phys., (2025), 114015. https://doi.org/10.1016/j.jcp.2025.114015
    [39] W. F. Fang, K. Ito, Global solutions of the time-dependent drift-diffusion semiconductor equations, J. Differ. Equ., 123 (1995), 523–566.
    [40] A. Jüngel, Drift-diffusion equations, Transp. Equ. Semicond., (2009), 1–29. https://doi.org/10.1007/978-3-540-89526-8_5
    [41] P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer Science & Business Media, 2012.
    [42] D. L. Scharfetter, H. K. Gummel, Large-signal analysis of a silicon read diode oscillator, IEEE Trans. Electron Devices, 16 (1969), 64–77. https://doi.org/10.1109/T-ED.1969.16566 doi: 10.1109/T-ED.1969.16566
    [43] I. Berre, F. Doster, E. Keilegavlen, Flow in fractured porous media: A review of conceptual models and discretization approaches, Transp. Porous Media, 130 (2019), 215–236.
    [44] M. Karimi-Fard, L. J. Durlofsky, K. Aziz, An efficient discrete-fracture model applicable for general-purpose reservoir simulators, SPE J., 9 (2004), 227–236. https://doi.org/10.2118/88812-PA doi: 10.2118/88812-PA
    [45] T. Koch, Projection-based resolved interface 1D-3D mixed-dimension method for embedded tubular network systems, Comput. Math. Appl., 109 (2022), 15–29. https://doi.org/10.1016/j.camwa.2022.01.021 doi: 10.1016/j.camwa.2022.01.021
    [46] L. Cattaneo, P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments, Int. J. Numer. Methods Biomed. Eng., 30 (2014), 1347–1371. https://doi.org/10.1002/cnm.2661 doi: 10.1002/cnm.2661
    [47] J. Badwaik, A. M. Ruf, Convergence rates of monotone schemes for conservation laws with discontinuous flux, SIAM J. Numer. Anal., 58 (2020), 607–629. https://doi.org/10.1137/19M1283276 doi: 10.1137/19M1283276
    [48] J. von Below, Classical solvability of linear parabolic equations on networks, J. Differ. Equ., 72 (1988), 316–337. https://doi.org/10.1016/0022-0396(88)90158-1 doi: 10.1016/0022-0396(88)90158-1
    [49] J. Banasiak, P. Namayanja, Asymptotic behaviour of flows on reducible networks, Networks Heterogen. Media, 9 (2014). https://doi.org/10.3934/nhm.2014.9.197
    [50] A. Villa, R. Schurch, L. Barbieri, R. Malgesini, G. Buccella, An uncoupled implementation of the local mean energy plasma model, J. Comput. Phys., 447 (2021), 110674. https://doi.org/10.1016/j.jcp.2021.110674 doi: 10.1016/j.jcp.2021.110674
    [51] T. H. Sandve, I. Berre, J. M. Nordbotten, An efficient multi-point flux approximation method for Discrete Fracture–Matrix simulations, J. Comput. Phys., 231 (2012), 3784–3800. https://doi.org/10.1016/j.jcp.2012.01.023 doi: 10.1016/j.jcp.2012.01.023
    [52] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handb. Numer. Anal., 7 (2000), 713–1018. https://doi.org/10.1016/S1570-8659(00)07005-8
    [53] R. J. Plemmons, M-matrix characterizations. I—nonsingular M-matrices, Linear Algebra Appl., 18 (1977), 175–188. https://doi.org/10.1016/0024-3795(77)90073-8 doi: 10.1016/0024-3795(77)90073-8
    [54] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 2012.
    [55] F. Z. Zhang, The Schur Complement and its Applications, Springer Science & Business Media, 2006.
    [56] R. J. LeVeque, Numerical Methods for Conservation Laws, Springer Birkhäuser Basel, 1992.
    [57] A. Villa, R. Schurch, G. Buccella, L. Barbieri, C. Laurano, R. Malgesini, et al., Simulation of surface-plasma interaction with high surface conductivity, J. Comput. Phys., 456 (2022), 111029.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(792) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog