Research article Special Issues

A machine learning solutions approach of a time-delayed stochastic $ \tilde{S}\tilde{E}\tilde{I}\tilde{R}\tilde{V} $ model

  • Published: 12 June 2025
  • In this work, we analyze the dynamics of a stochastic $ \tilde{S}\tilde{E}\tilde{I}\tilde{R}\tilde{V} $ model with a time delay. We mainly investigate the time delay's influence on these classes' asymptotic behavior. Furthermore, we examine the existence and stability of disease-free and endemic equilibrium points. To better understand the parameter's effects on the spread of an epidemic, we integrate artificial neural networks with the Bayesian regularization method. Additionally, leveraging physics-informed artificial intelligence (AI) and specialized machine training, we develop an advanced framework for solving systems of partial differential equations (PDEs). This approach enhances the accuracy of predictions and facilitates the optimal control and effective implementation of real-world epidemic management strategies.

    Citation: Mostafa Zahri, Inayat khan, Rahat Zarin, Amir khan, Rukhsar Ikram. A machine learning solutions approach of a time-delayed stochastic $ \tilde{S}\tilde{E}\tilde{I}\tilde{R}\tilde{V} $ model[J]. Networks and Heterogeneous Media, 2025, 20(2): 701-731. doi: 10.3934/nhm.2025030

    Related Papers:

  • In this work, we analyze the dynamics of a stochastic $ \tilde{S}\tilde{E}\tilde{I}\tilde{R}\tilde{V} $ model with a time delay. We mainly investigate the time delay's influence on these classes' asymptotic behavior. Furthermore, we examine the existence and stability of disease-free and endemic equilibrium points. To better understand the parameter's effects on the spread of an epidemic, we integrate artificial neural networks with the Bayesian regularization method. Additionally, leveraging physics-informed artificial intelligence (AI) and specialized machine training, we develop an advanced framework for solving systems of partial differential equations (PDEs). This approach enhances the accuracy of predictions and facilitates the optimal control and effective implementation of real-world epidemic management strategies.



    加载中


    [1] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [2] L. Billard, P. W. A. Dayananda, A multi-stage compartmental model for HIV-infected individuals: Ⅰ–Waiting time approach, Math. Biosci., 249 (2014), 92–101. https://doi.org/10.1016/j.mbs.2013.08.011 doi: 10.1016/j.mbs.2013.08.011
    [3] P. Pongsumpun, I. M. Tang, Dynamics of a new strain of the H1N1 influenza a virus incorporating the effects of repetitive contacts, Comput. Math. Methods Med., 2014 (2014), 487974. https://doi.org/10.1155/2014/487974 doi: 10.1155/2014/487974
    [4] A. Din, Y. Li, Q. Liu, Viral dynamics and control of hepatitis B virus (HBV) using an epidemic model, Alexandria Eng. J., 59 (2020), 667–679. https://doi.org/10.1016/j.aej.2020.01.034 doi: 10.1016/j.aej.2020.01.034
    [5] A. Naheed, M. Singh, D. Lucy, Numerical study of SARS epidemic model with the inclusion of diffusion in the system, Appl. Math. Comput., 229 (2014), 480–498. https://doi.org/10.1016/j.amc.2013.12.062 doi: 10.1016/j.amc.2013.12.062
    [6] R. K. Upadhyay, N. Kumari, V. S. H. Rao, Modeling the spread of bird flu and predicting outbreak diversity, Nonlinear Anal. Real World Appl., 9 (2008), 1638–1648. https://doi.org/10.1016/j.nonrwa.2007.04.009 doi: 10.1016/j.nonrwa.2007.04.009
    [7] A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complexity, 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0 doi: 10.1007/s11424-021-0053-0
    [8] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅱ.–The problem of endemicity, Proc. R. Soc. London, Ser. A, 138 (1932), 55–83. https://doi.org/10.1098/rspa.1932.0171 doi: 10.1098/rspa.1932.0171
    [9] J. Danane, K. Allali, Z. Hammouch, Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos, Solitons Fractals, 136 (2020), 109787. https://doi.org/10.1016/j.chaos.2020.109787 doi: 10.1016/j.chaos.2020.109787
    [10] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons Fractals, 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
    [11] S. Ullah, M. Altaf Khan, M. Farooq, A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 1–14. https://doi.org/10.1140/epjp/i2018-12072-4 doi: 10.1140/epjp/i2018-12072-4
    [12] A. Din, K. Shah, A. Seadawy, H. Alrabaiah, D. Baleanu, On a new conceptual mathematical model dealing the current novel coronavirus-19 infectious disease, Results Phys., 19 (2020), 103510. https://doi.org/10.1016/j.rinp.2020.103510 doi: 10.1016/j.rinp.2020.103510
    [13] W. J. Edmunds, G. F. Medley, D. J. Nokes, The transmission dynamics and control of hepatitis B virus in the Gambia, Stat. Med., 15 (1996), 2215–2233. https://doi.org/10.1002/(SICI)1097-0258(19961030)15:20<2215::AID-SIM369>3.0.CO;2-2 doi: 10.1002/(SICI)1097-0258(19961030)15:20<2215::AID-SIM369>3.0.CO;2-2
    [14] A. Khan, R. Zarin, G. Hussain, A. H. Usman, U. W. Humphries, J. F. Gomez-Aguilar, Modeling and sensitivity analysis of HBV epidemic model with convex incidence rate, Results Phys., 22 (2021), 103836. https://doi.org/10.1016/j.rinp.2021.103836 doi: 10.1016/j.rinp.2021.103836
    [15] A. Din, Y. Li, Controlling heroin addiction via age-structured modeling, Adv. Differ. Equ., 521 (2020), 1–17. https://doi.org/10.1186/s13662-020-02983-5 doi: 10.1186/s13662-020-02983-5
    [16] T. Khan, G. Zaman, Classification of different hepatitis B infected individuals with saturated incidence rate, Springerplus, 5 (2016), 1082. https://doi.org/10.1186/s40064-016-2706-3 doi: 10.1186/s40064-016-2706-3
    [17] A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos, Solitons Fractals, 141 (2020), 110286. https://doi.org/10.1016/j.chaos.2020.110286 doi: 10.1016/j.chaos.2020.110286
    [18] G. Hussain, A. Khan, M. Zahri, G. Zaman, Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination, Chaos, Solitons Fractals, 160 (2022), 112195. https://doi.org/10.1016/j.chaos.2022.112195 doi: 10.1016/j.chaos.2022.112195
    [19] Y. M. Marwa, I. S. Mbalawata, S. Mwalili, W. M. Charles, Stochastic dynamics of cholera epidemic model: Formulation, analysis and numerical simulation, J. Appl. Math. Phys., 7 (2019), 1097–1125. https://doi.org/10.4236/jamp.2019.75084 doi: 10.4236/jamp.2019.75084
    [20] Y. Qian, É. Marty, A. Basu, E. B. O'Dea, X. Wang, S. Fox, et al., Physics-informed deep learning for infectious disease forecasting, preprint, arXiv: 2501.
    [21] X. Chen, J. Cao, J. H. Park, J. Qiu, Stability analysis and estimation of domain of attraction for the endemic equilibrium of an SEIQ epidemic model, Nonlinear Dyn., 87 (2017), 975–985. https://doi.org/10.1007/s11071-016-3092-7 doi: 10.1007/s11071-016-3092-7
    [22] A. Din, Y. Li, Lévy noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal–fractional Atangana–Baleanu order model, Phys. Scr., 96 (2021), 124008. https://doi.org/10.1088/1402-4896/ac1c1a doi: 10.1088/1402-4896/ac1c1a
    [23] A. Atangana, S. İ. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos, Solitons Fractals, 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [24] A. Khan, G. Hussain, M. Zahri, G. Zaman, U. Wannasingha Humphries, A stochastic SACR epidemic model for HBV transmission, J. Biol. Dyn., 14 (2020), 788–801. https://doi.org/10.1080/17513758.2020.1833993 doi: 10.1080/17513758.2020.1833993
    [25] J. Li, G. Q. Sun, Z. Jin, Pattern formation of an epidemic model with time delay, Physica A, 403 (2014), 100–109. https://doi.org/10.1016/j.physa.2014.02.025 doi: 10.1016/j.physa.2014.02.025
    [26] N. Chan Chí, E. AvilaVales, G. García Almeida, Analysis of a HBV model with diffusion and time delay, J. Appl. Math., 2012 (2012), 578561. https://doi.org/10.1155/2012/578561 doi: 10.1155/2012/578561
    [27] A. Din, Y. Li, A. Yusuf, Delayed hepatitis B epidemic model with stochastic analysis, Chaos, SolItions Fractals, 146 (2021), 110839. https://doi.org/10.1016/j.chaos.2021.110839 doi: 10.1016/j.chaos.2021.110839
    [28] O. Babasola, E. O. Omondi, K. Oshinubi, N. M. Imbusi, Stochastic delay differential equations: A comprehensive approach for understanding biosystems with application to disease modelling, AppliedMath, 3 (2023), 702–721. https://doi.org/10.3390/appliedmath3040037 doi: 10.3390/appliedmath3040037
    [29] Z. Bai, S. L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., 263 (2015), 221–232. https://doi.org/10.1016/j.amc.2015.04.048 doi: 10.1016/j.amc.2015.04.048
    [30] Q. Liu, Q. Chen, D. Jiang, The threshold of a stochastic delayed SIR epidemic model with temporary immunity, Physica A, 450 (2016), 115–125. https://doi.org/10.1016/j.physa.2015.12.056 doi: 10.1016/j.physa.2015.12.056
    [31] J. Li, Z. Teng, Bifurcations of an SIRS model with generalized non-monotone incidence rate, Adv. Differ. Equ., 2018 (2018), 1–21. https://doi.org/10.1186/s13662-018-1675-y doi: 10.1186/s13662-018-1675-y
    [32] A. Din, T. Khan, Y. Li, H. Tahir, A. Khan, W. A. Khan, Mathematical analysis of dengue stochastic epidemic model, Results Phys., 20 (2020), 103719. https://doi.org/10.1016/j.rinp.2020.103719 doi: 10.1016/j.rinp.2020.103719
    [33] A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005. https://doi.org/10.1088/1402-4896/abfacc doi: 10.1088/1402-4896/abfacc
    [34] T. Khan, A. Khan, G. Zaman, The extinction and persistence of the stochastic hepatitis B epidemic model, Chaos, Solitions Fractals, 108 (2018), 123–128. https://doi.org/10.1016/j.chaos.2018.01.036 doi: 10.1016/j.chaos.2018.01.036
    [35] R. Khasminskii, Stochastic Stability of Differential Equations, Springer Science & Business Media, 66 (2011). https://doi.org/10.1007/978-3-642-23280-0
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(765) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog