In this article, we focus on the BV regularity of the adapted entropy solutions of the conservation laws whose flux function contains infinitely many discontinuities with possible accumulation points. It is well known that due to discontinuities of the flux function in the space variable, the total variation of the solution can blow up to infinity in finite time. We establish the existence of total variation bounds for certain classes of fluxes and the initial data. Furthermore, we construct two counterexamples, which exhibit BV blow-up of the entropy solution. These counterexamples not only demonstrate that these assumptions are essential, but also show that the BV-regularity result of [S. S. Ghoshal, J. Differential Equations, 258 (3), 980-1014, 2015] does not hold true when the spatial discontinuities of the flux are infinite.
Citation: Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya. BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities[J]. Networks and Heterogeneous Media, 2024, 19(1): 196-213. doi: 10.3934/nhm.2024009
[1] | Mehmet Kunt, Artion Kashuri, Tingsong Du, Abdul Wakil Baidar . Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2020, 5(6): 5439-5457. doi: 10.3934/math.2020349 |
[2] | Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb . Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-α integrals and Montgomery identity. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624 |
[3] | Atiqe Ur Rahman, Khuram Ali Khan, Ammara Nosheen, Muhammad Saeed, Thongchai Botmart, Nehad Ali Shah . Weighted Ostrowski type inequalities via Montgomery identity involving double integrals on time scales. AIMS Mathematics, 2022, 7(9): 16657-16672. doi: 10.3934/math.2022913 |
[4] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[5] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[6] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some q-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[7] | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu . Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Mathematics, 2020, 5(6): 7122-7144. doi: 10.3934/math.2020456 |
[8] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[9] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[10] | Rabah Debbar, Abdelkader Moumen, Hamid Boulares, Badreddine Meftah, Mohamed Bouye . Some fractional integral type inequalities for differentiable convex functions. AIMS Mathematics, 2025, 10(5): 11899-11917. doi: 10.3934/math.2025537 |
In this article, we focus on the BV regularity of the adapted entropy solutions of the conservation laws whose flux function contains infinitely many discontinuities with possible accumulation points. It is well known that due to discontinuities of the flux function in the space variable, the total variation of the solution can blow up to infinity in finite time. We establish the existence of total variation bounds for certain classes of fluxes and the initial data. Furthermore, we construct two counterexamples, which exhibit BV blow-up of the entropy solution. These counterexamples not only demonstrate that these assumptions are essential, but also show that the BV-regularity result of [S. S. Ghoshal, J. Differential Equations, 258 (3), 980-1014, 2015] does not hold true when the spatial discontinuities of the flux are infinite.
In [4] the authors obtained the following generalization of Montgomery identity for quantum calculus.
Lemma 1. [4] (Quantum Montgomery identity) Let f:[a,b]→R, be an arbitrary function with daqf quantum integrable on [a,b], then the following quantum identity holds:
f(x)−1b−ab∫af(t)daqt=(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt | (1.1) |
where Kq,x(t) is defined by
Kq,x(t)={qt,0≤t≤x−ab−a,qt−1,x−ab−a<t≤1. | (1.2) |
Using this identity, the authors have obtained two Ostrowski type inequalities for quantum integrals and applied it in several special cases.
Unfortunately, in the proof of this lemma an error is made when calculating the integrals involving the kernel Kq,x(t) on the interval [x−ab−a,1]. Also, in the proofs of Theorem 3 and Theorem 4 a small mistake related to the convexity of |Daqf|r is made.
In the present paper we prove that the identity (1.1) and, thus, all of the consequent results are incorrect and provide corrections for these results.
The q-derivative of a function f:[a,b]→R for q∈⟨0,1⟩ (see [5] or [2] for a=0) is given by
Daqf(x)=f(x)−f(a+q(x−a))(1−q)(x−a),forx∈⟨a,b]Daqf(a)=limx→aDaqf(x) |
We say that f:[a,b]→R is q-differentiable if limx→aDaqf(x) exists. The q-derivative is a discretization of the ordinary derivative and if f is a differentiable function then ([1,3])
limq→1 Daqf(x)=f′(x). |
Further, the q-integral of f is defined by
x∫af(t)daqt=(1−q)(x−a)∞∑k=0qkf(a+qk(x−a)), x∈[a,b]. |
If the series on the right hand-side is convergent, then the q-integral ∫xaf(t)daqt exists and f:[a,b]→R is said to be q-integrable on [a,x]. If f is continuous on [a,b] the series (1−q)(x−a)∞∑k=0qkf(a+qk(x−a)) tends to the Riemann integral of f as q→1 ([1], [3])
limq→1x∫af(t)daqt=x∫af(t)dt. |
If c∈⟨a,x⟩ the q-integral is defined by
x∫cf(t)daqt=x∫af(t)daqt−c∫af(t)daqt. |
Obviously, the q-integral depends on the values of f at the points outside the interval of integration and an important difference between the definite q-integral and Riemann integral is that even if we are integrating a function over the interval [c,x], a<c<x<b, for q-integral we have to take into account its behavior at t=a as well as its values on [a,x]. This is the main reason for mistakes made in [4] since in the proof of Lemma 1 the following error was made:
1∫x−ab−aKq,x(t)Daqf(tb+(1−t)a)d0qt=1∫0(qt−1)Daqf(tb+(1−t)a)d0qt−x−ab−a∫0(qt−1)Daqf(tb+(1−t)a)d0qt. |
But Kq,x(t)≠(qt−1) for t∈[0,1] or for t∈[0,x−ab−a], so the equality does not hold.
Now, we give a proof that the quantum Montgomery identity (1.1) is not correct, since it does not hold for all x∈[a,b]. As we shall see, the identity (1.1) is valid only if x=a+qm+1(b−a) for some m∈N∪{0}. We have
(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt=(b−a)(1−q)∞∑k=0qkKq,x(qk)Daqf(a+qk(b−a)). |
For q∈⟨0,1⟩ let m∈N∪{0} be such that
qm+1≤x−ab−a<qm, |
in other words
m=⌈logqx−ab−a⌉−1. |
Then
Kq,x(qk)={qk+1−1,k≤m,qk+1,k≥m+1, |
and
(b−a)(1−q)∞∑k=0qkKq,x(qk)Daqf(a+qk(b−a))=(b−a)(1−q)(m∑k=0qk(qk+1−1)f(a+qk(b−a))−f(a+qk+1(b−a))(1−q)qk(b−a)+∞∑k=m+1qk(qk+1)f(a+qk(b−a))−f(a+qk+1(b−a))(1−q)qk(b−a))=−m∑k=0(f(a+qk(b−a))−f(a+qk+1(b−a)))+∞∑k=0qk+1(f(a+qk(b−a))−f(a+qk+1(b−a)))=f(a+qm+1(b−a))−f(b)+∞∑k=0qk+1(f(a+qk(b−a))−f(a+qk+1(b−a))). |
If we put S=∞∑k=0qkf(a+qk(b−a))=1(1−q)(b−a)b∫af(t)daqt, we have
∞∑k=0(qk+1)(f(a+qk(b−a))−f(a+qk+1(b−a)))=qS−(S−f(b)) |
and
1b−ab∫af(t)daqt+(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt=1b−ab∫af(t)daqt+(f(a+qm+1(b−a))−f(b))+qS−(S−f(b))=(1−q)S+f(a+qm+1(b−a))−f(b)+qS−S+f(b)=f(a+qm+1(b−a)) |
which is obviously not equal to f(x), unless x=a+qm+1(b−a).
This is no surprise since Jackson integral takes into account only f(a+qk(x−a)) for k∈N∪{0}. Thus, we have proved the next lemma which is a corrected version of Lemma 1 from [4].
Lemma 2. (Quantum Montgomery identity) Let f:[a,b]→R, be an arbitrary function with Daqf quantum integrable on [a,b], then for all x∈⟨a,b⟩ the following quantum identity holds:
f(a+q⌈logqx−ab−a⌉(b−a))−1b−ab∫af(t)daqt=(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt |
where Kq,x(t) is defined by
Kq,x(t)={qt,0≤t≤x−ab−a,qt−1,x−ab−a<t≤1. |
In Theorem 3 and Theorem 4 from [4] the authors have used the identity (1.1) to derive Ostrowski type inequalities for functions f for which Daqf is quantum integrable on [a,b] and |Daqf|r, r≥1 is a convex function. Since these inequalities depends on the validity of Lemma 1, our discussion invalidates all the results from [4].
More precisely, in all the inequalities an additional assumption x=a+qm(b−a) for some m∈N∪{0} should be added. In Theorems 3 and 4 |Daqf(a)|r and |Daqf(b)|r should be swapped, since in the proofs of Theorem 3 and Theorem 4, when applying the convexity of |Daqf|r the following mistake was made
|Daqf(tb+(1−t)a)|r≤t|Daqf(a)|r+(1−t)|Daqf(b)|r. |
Lastly, the integral K4(a,b,x,q) is incorrectly computed and should read:
K4(a,b,x,q)=1−q1+q(b−xb−a)+q1+q(b−xb−a)2. |
The main goal of this paper was to point out that some results in [4] are not correct. We have concentrated on Lemma 3 (Quantum Montgomery identity). The statement of that Lemma is not correct as we have shown. We also found and analyzed the mistake in the proof of Lemma 3.
However, we went one step further and stated and proved the correct version of Lemma 3 (it is Lemma 2 in our paper). We have also explained how can all inequalities derived from Quantum Montgomery identity be corrected.
Domagoj Kovačević was supported by the QuantiXLie Centre of Excellence, a project co financed by the Croatian Government and European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).
The authors declare that they have no competing interests.
After our Correction was accepted we were contacted by the first author of [4], Professor Kunt, who suggested an alternate way to correct the results of [4].
The incorrect version of Montgomery identity from [4]
f(x)−1b−ab∫af(t)daqt=(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt |
can be fixed in two ways: either by changing the left hand side or by changing the right hand side of this equation. In Lemma 2 we showed how to fix the identity by correcting the left hand side. This makes it easier to salvage the rest of results in [4], as all the results remain valid with the added assumption that x=a+qm(b−a) for some m∈N∪{0}.
Professor Kunt suggested correcting the right hand side of this equation to obtain the identity:
f(x)−1b−a∫baf(t)daqt=(b−a)[∫x−ab−a0qtDaqf(tb+(1−t)a)d0qt+∫1x−ab−a(qt−1)Daqf(tb+(1−t)a)d0qt]. (∗) |
By doing so, the proofs of all the remaining results have to be corrected as the bound used
|∫1x−ab−a(qt−1)Daqf(tb+(1−t)a)d0qt|≤∫1x−ab−a|(qt−1)Daqf(tb+(1−t)a)|d0qt |
does not hold for q-integrals in general. This is discussed, for example, on page 12 in [1,Section 1.3.1,Remark (ii)].
When x−ab−a=qm or equivalently x=a+qm(b−a) for some m∈N∪{0} the bound above does hold, which is why there is no need to change the rest of the results in [4] if one takes our approach. Nevertheless, we list below the results that can be obtained using identity (3.1). The results below are due to Professor Kunt.
Theorem 3 in [4] should be as follows:
Theorem 3. Let f:[a,b]→R be an arbitrary function with Daqf is quantum integrable on [a,b]. If |Daqf|r, r≥1 is a convex function, then the following quantum integral inequality holds:
|f(x)−1b−a∫baf(t)daqt|≤(b−a)[(11+q)1−1r[|Daqf(b)|r1(1+q)(1+q+q2)+|Daqf(a)|rq1+q+q2]1r+(x−ab−a)[|Daqf(b)|r(x−ab−a)11+q+|Daqf(a)|r(1−(x−ab−a)11+q)]1r] | (3.1) |
for all x∈[a,b].
Proof. Using convexity of |Daqf|r, we have that
|Daqf(tb+(1−t)a)|r≤t|Daqf(b)|r+(1−t)|Daqf(a)|r. | (3.2) |
By using (∗), quantum power mean inequality and (3.2), we have that
|f(x)−1b−a∫baf(t)daqt| | (3.3) |
=(b−a)|∫x−ab−a0qtDaqf(tb+(1−t)a)d0qt+∫1x−ab−a(qt−1)Daqf(tb+(1−t)a)d0qt|=(b−a)|∫10(qt−1)Daqf(tb+(1−t)a)d0qt+∫x−ab−a0Daqf(tb+(1−t)a)d0qt|≤(b−a)|∫10(qt−1)Daqf(tb+(1−t)a)d0qt|+|∫x−ab−a0Daqf(tb+(1−t)a)d0qt| |
≤(b−a)[∫10(1−qt)|Daqf(tb+(1−t)a)|d0qt+∫x−ab−a0|Daqf(tb+(1−t)a)|d0qt] |
≤(b−a)[(∫101−qtd0qt)1−1r(∫10(1−qt)|Daqf(tb+(1−t)a)|rd0qt)1r+(∫x−ab−a0d0qt)1−1r(∫x−ab−a0|Daqf(tb+(1−t)a)|rd0qt)1r]≤(b−a)[(∫10(1−qt)d0qt)1−1r×(|Daqf(b)|r∫10(1−qt)td0q+|Daqf(a)|r∫10(1−qt)(1−t)d0qt)1r+(∫x−ab−a0d0qt)1−1r×(|Daqf(b)|r∫x−ab−a0td0qt+|Daqf(a)|r∫x−ab−a0(1−t)d0qt)1r] |
On the other hand, calculating the following quantum integrals we have
∫10(1−qt)d0qt=(1−q)∞∑n=0qn(1−qn+1)=(1−q)[11−q−q1−q2]=11+q, | (3.4) |
∫10(1−qt)td0qt=(1−q)∞∑n=0qn[(1−qn+1)qn]=(1−q)[11−q2−q1−q3]=11+q−q1+q+q2=1(1+q)(1+q+q2), | (3.5) |
∫10(1−qt)(1−t)d0qt=∫101−qtd0qt−∫10(1−qt)td0qt=11+q−1(1+q)(1+q+q2)=q1+q+q2, | (3.6) |
∫x−ab−a0d0qt=(1−q)(x−ab−a)∞∑n=0qn=x−ab−a, | (3.7) |
∫x−ab−a0td0qt=(1−q)(x−ab−a)∞∑n=0qn(qn(x−ab−a))=(x−ab−a)211+q, | (3.8) |
∫x−ab−a0(1−t)d0qt=∫x−ab−a0d0qt−∫x−ab−a0td0qt=x−ab−a−(x−ab−a)211+q=(x−ab−a)[1−(x−ab−a)11+q]. | (3.9) |
Using (3.4)–(3.9) in (3.3), we have (3.1).
Theorem 4 in [4] should be as follows:
Theorem 4. Let f:[a,b]→R be an arbitrary function with Daqf is quantum integrable on [a,b]. If |Daqf|r, r>1 and 1r+1p=1 is convex function, then the following quantum integral inequality holds:
|f(x)−1b−a∫baf(t)daqt| | (3.10) |
≤(b−a)[(∫10(1−qt)pd0qt)1p(|Daqf(b)|r11+q+|Daqf(a)|rq1+q)1r+(x−ab−a)[|Daqf(b)|r(x−ab−a)11+q+|Daqf(a)|r(1−(x−ab−a)11+q)]1r] |
for all x∈[a,b].
Proof. By using (∗) and quantum Hölder inequality, we have
|f(x)−1b−a∫baf(t)daqt|≤(b−a)|∫10(qt−1)Daqf(tb+(1−t)a)d0qt|+|∫x−ab−a0Daqf(tb+(1−t)a)d0qt|≤(b−a)[∫10(1−qt)|Daqf(tb+(1−t)a)|d0qt+∫x−ab−a0|Daqf(tb+(1−t)a)|d0qt]≤(b−a)[(∫10(1−qt)pd0qt)1p(∫10|Daqf(tb+(1−t)a)|rd0qt)1r+(∫x−ab−a0d0qt)1p(∫x−ab−a0|Daqf(tb+(1−t)a)|rd0qt)1r]≤(b−a)[(∫10(1−qt)pd0qt)1p(∫10[t|Daqf(b)|r+(1−t)|Daqf(a)|r]d0qt)1r+(∫x−ab−a0d0qt)1p(∫x−ab−a0[t|Daqf(b)|r+(1−t)|Daqf(a)|r]d0qt)1r]≤(b−a)[(∫10(1−qt)pd0qt)1p(|Daqf(b)|r∫10td0qt+|Daqf(a)|r∫10(1−t)d0qt)1r+(∫x−ab−a0d0qt)1p(|Daqf(b)|r∫x−ab−a0td0qt+|Daqf(a)|r∫x−ab−a0(1−t)d0qt)1r]=(b−a)[(∫10(1−qt)pd0qt)1p(|Daqf(b)|r11+q+|Daqf(a)|rq1+q)1r+(x−ab−a)[|Daqf(b)|r(x−ab−a)11+q+|Daqf(a)|r(1−(x−ab−a)11+q)]1r]. |
We conclude this section by noting that the bounds obtained in the original paper [4] which, as we have previously shown, do hold with the added assumption x=a+qm(b−a) for some m∈N∪{0}, are tighter than the bounds obtained above by Professor Kunt. Professor Kunt's bounds, however, hold for all x∈[a,b].
[1] |
A. Adimurthi, S. S. Ghoshal, R. Dutta, G. D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (2011), 84–115. https://doi.org/10.1002/cpa.20346 doi: 10.1002/cpa.20346
![]() |
[2] |
A. Adimurthi, J. Jaffré, G. D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux function discontinuous in space, SIAM J. Numer. Anal. 42 (2004), 179–208. https://doi.org/10.1137/S003614290139562X doi: 10.1137/S003614290139562X
![]() |
[3] |
A. Adimurthi, S. Mishra, G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions, J. Hyperbolic Differ. Equ., 2 (2005), 783–837. https://doi.org/10.1142/S0219891605000622 doi: 10.1142/S0219891605000622
![]() |
[4] |
A. Adimurthi, S. Mishra, G. D. Veerappa Gowda, Convergence of Godunov type methods for a conservation law with a spatially varying discontinuous flux function. Math. Comp., 76 (2007), 1219–1242. https://doi.org/10.1090/S0025-5718-07-01960-6 doi: 10.1090/S0025-5718-07-01960-6
![]() |
[5] | A. Adimurthi, G. D. Veerappa Gowda, Conservation law with discontinuous flux, J. Math. Kyoto Univ., 43 (2003), 27–70. |
[6] |
B. Andreianov, C. Cancés, Vanishing capillarity solutions of buckley–leverett equation with gravity in two-rocks medium, Comput. Geosci., 17 (2013), 551–572. https://doi.org/10.1007/s10596-012-9329-8 doi: 10.1007/s10596-012-9329-8
![]() |
[7] |
B. Andreianov, K. H. Karlsen, N. H. Risebro, A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27–86. https://doi.org/10.1007/s00205-010-0389-4 doi: 10.1007/s00205-010-0389-4
![]() |
[8] |
E. Audusse, B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253–265. https://doi.org/10.1017/S0308210500003863 doi: 10.1017/S0308210500003863
![]() |
[9] |
R. Bürger, A. García, K. Karlsen, J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math., 60 (2008), 387–425. https://doi.org/10.1007/s10665-007-9148-4 doi: 10.1007/s10665-007-9148-4
![]() |
[10] |
R. Bürger, A. García, K. H. Karlsen, J. D. Towers, On an extended clarifier-thickener model with singular source and sink terms, European J. Appl. Math., 17 (2006), 257–292. https://doi.org/10.1017/S0956792506006619 doi: 10.1017/S0956792506006619
![]() |
[11] |
R. Bürger, K. H. Karlsen, N. H. Risebro, J. D. Towers, Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units, Numer. Math., 97 (2004), 25–65. https://doi.org/10.1007/s00211-003-0503-8 doi: 10.1007/s00211-003-0503-8
![]() |
[12] |
R. Bürger, K. H. Karlsen, J. D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal. 47 (2009), 1684–1712. https://doi.org/10.1137/07069314X doi: 10.1137/07069314X
![]() |
[13] |
G. Q. Chen, N. Even, C. Klingenberg, Hyperbolic conservation laws with discontinuous fluxes and hydrodynamic limit for particle systems, J. Differ. Equ., 245 (2008), 3095–3126. https://doi.org/10.1016/j.jde.2008.07.036 doi: 10.1016/j.jde.2008.07.036
![]() |
[14] |
S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation, SIAM J. Appl. Math., 56 (1996), 388–419. https://doi.org/10.1137/S0036139994242425 doi: 10.1137/S0036139994242425
![]() |
[15] |
M. Garavello, R. Natalini, B. Piccoli, A. Terracina, Conservation laws with discontinuous flux, Netw. Heterog. Media., 2 (2007), 159–179. https://doi.org/10.3934/nhm.2007.2.159 doi: 10.3934/nhm.2007.2.159
![]() |
[16] | S. S. Ghoshal, Optimal results on TV bounds for scalar conservation laws with discontinuous flux, J. Differential Equations, 258 (2015), 3,980–1014. |
[17] |
S. S. Ghoshal, BV regularity near the interface for nonuniform convex discontinuous flux, Netw. Heterog. Media., 11 (2016), 331–348. https://doi.org/10.3934/nhm.2016.11.331 doi: 10.3934/nhm.2016.11.331
![]() |
[18] |
S. S. Ghoshal, A. Jana, J. D. Towers, Convergence of a Godunov scheme to an Audusse-Perthame adapted entropy solution for conservation laws with BV spatial flux, Numer. Math., 146 (2020), 629–659. https://doi.org/10.1007/s00211-020-01150-y doi: 10.1007/s00211-020-01150-y
![]() |
[19] |
S. S. Ghoshal, S. Junca, A. Parmar, Fractional regularity for conservation laws with discontinuous flux, Nonlinear Anal. Real World Appl., 75 (2024), 103960. https://doi.org/10.1016/j.nonrwa.2023.103960 doi: 10.1016/j.nonrwa.2023.103960
![]() |
[20] |
S. S. Ghoshal, J. D. Towers, G. Vaidya, A Godunov type scheme and error estimates for scalar conservation laws with Panov-type discontinuous flux, Numer. Math., 151 (2022), 601–625. https://doi.org/10.1007/s00211-022-01297-w doi: 10.1007/s00211-022-01297-w
![]() |
[21] |
S. S. Ghoshal, J. D. Towers, G. Vaidya, Convergence of a Godunov scheme for conservation laws with degeneracy and BV spatial flux and a study of Panov type fluxes, J. Hyperbolic Differ. Equ., 19 (2022), 365–390. https://doi.org/10.1142/S0219891617500229 doi: 10.1142/S0219891617500229
![]() |
[22] | S. S. Ghoshal, J. D. Towers, and G. Vaidya. Well-posedness for conservation laws with spatial heterogeneities and a study of BV regularity, arXiv: 2010.13695 [Preprint], (2020), [cited 2024 Feb 18]. Available from: https://doi.org/10.48550/arXiv.2010.13695 |
[23] |
K. H. Karlsen, J. D. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux, Chinese Ann. Math. Ser. B, 25 (2004), 287–318. https://doi.org/10.1142/S0252959904000299 doi: 10.1142/S0252959904000299
![]() |
[24] |
K. H. Karlsen, J. D. Towers, Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition, J. Hyperbolic Differ. Equ., 14 (2017), 671–701. https://doi.org/10.1142/S0219891617500229 doi: 10.1142/S0219891617500229
![]() |
[25] |
S. Mishra, Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function, SIAM J. Numer. Anal., 43 (2005), 559–577. https://doi.org/10.1137/030602745 doi: 10.1137/030602745
![]() |
[26] |
S. N. Kružkov, First order quasilinear equations in several independent variables. Math. USSR Sb., 10 (1970), 217–243. https://doi.org/10.1070/SM1970v010n02ABEH002156 doi: 10.1070/SM1970v010n02ABEH002156
![]() |
[27] |
E. Y. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux, J. Hyperbolic Differ. Equ., 6 (2009), 525–548. https://doi.org/10.1142/S0219891609001915 doi: 10.1142/S0219891609001915
![]() |
[28] |
B. Piccoli, M. Tournus, A general bv existence result for conservation laws with spatial heterogeneities, SIAM J. Math. Anal., 50 (2018), 2901–2927. https://doi.org/10.1137/17M112628X doi: 10.1137/17M112628X
![]() |
[29] |
W. Shen, On the uniqueness of vanishing viscosity solutions for riemann problems for polymer flooding, Nonlinear Differ. Equ. Appl., 24 (2017), 24–37. https://doi.org/10.1007/s00030-017-0461-y doi: 10.1007/s00030-017-0461-y
![]() |
[30] |
J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., 38 (2000), 681–698. https://doi.org/10.1137/S0036142999363668 doi: 10.1137/S0036142999363668
![]() |
[31] |
J. D. Towers, An existence result for conservation laws having BV spatial flux heterogeneities–without concavity, J. Differ. Equ., 269 (2020), 5754–5764. https://doi.org/10.1016/j.jde.2020.04.016 doi: 10.1016/j.jde.2020.04.016
![]() |
1. | Andrea Aglić Aljinović, Lana Horvat Dmitrović , Ana Žgaljić Keko , Cauchy-Schwarz inequality for shifted quantum integral operator, 2024, 51, 12236934, 106, 10.52846/ami.v51i1.1749 |