This paper considers the work of combining the proper orthogonal decomposition (POD) reduced-order method with the discontinuous Galerkin (DG) method to solve three-dimensional time-domain Euler equations. The POD-DG formulation is established by constructing the POD base vector space, based on POD technology one can apply the Galerkin projection of the DG scheme to this dimension reduction space for calculation. Its overall goal is to overcome the disadvantages of high computational cost and memory requirement in the DG algorithm, reduce the degrees of freedom (DOFs) of the calculation model, and save the calculation time while ensuring acceptable accuracy. Numerical experiments verify these advantages of the proposed POD-DG method.
Citation: Lan Zhu, Li Xu, Jun-Hui Yin, Shu-Cheng Huang, Bin Li. A discontinuous Galerkin Method based on POD model reduction for Euler equation[J]. Networks and Heterogeneous Media, 2024, 19(1): 86-105. doi: 10.3934/nhm.2024004
[1] | Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056 |
[2] | Andreas Hiltebrand, Siddhartha Mishra . Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145 |
[3] | Leqiang Zou, Yanzi Zhang . Efficient numerical schemes for variable-order mobile-immobile advection-dispersion equation. Networks and Heterogeneous Media, 2025, 20(2): 387-405. doi: 10.3934/nhm.2025018 |
[4] | Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711 |
[5] | JinJun Yong, Changlun Ye, Xianbing Luo . A fully discrete HDG ensemble Monte Carlo algorithm for a heat equation under uncertainty. Networks and Heterogeneous Media, 2025, 20(1): 65-88. doi: 10.3934/nhm.2025005 |
[6] | Liuchao Xiao, Wenbo Li, Leilei Wei, Xindong Zhang . A fully discrete local discontinuous Galerkin method for variable-order fourth-order equation with Caputo-Fabrizio derivative based on generalized numerical fluxes. Networks and Heterogeneous Media, 2023, 18(2): 532-546. doi: 10.3934/nhm.2023022 |
[7] | Salim Meddahi, Ricardo Ruiz-Baier . A new DG method for a pure–stress formulation of the Brinkman problem with strong symmetry. Networks and Heterogeneous Media, 2022, 17(6): 893-916. doi: 10.3934/nhm.2022031 |
[8] | Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye . A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12(4): 619-642. doi: 10.3934/nhm.2017025 |
[9] | Timothy Blass, Rafael de la Llave . Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6(2): 241-255. doi: 10.3934/nhm.2011.6.241 |
[10] | Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021 |
This paper considers the work of combining the proper orthogonal decomposition (POD) reduced-order method with the discontinuous Galerkin (DG) method to solve three-dimensional time-domain Euler equations. The POD-DG formulation is established by constructing the POD base vector space, based on POD technology one can apply the Galerkin projection of the DG scheme to this dimension reduction space for calculation. Its overall goal is to overcome the disadvantages of high computational cost and memory requirement in the DG algorithm, reduce the degrees of freedom (DOFs) of the calculation model, and save the calculation time while ensuring acceptable accuracy. Numerical experiments verify these advantages of the proposed POD-DG method.
In this article, we prove the non-existence of solutions to the following quasilinear elliptic problem which has degenerate coercivity in their principal part by approximation,
{−div(a(x,u,∇u))+|u|q−1u=λ,x∈Ω,u=0,x∈∂Ω, | (1) |
where
a(x,t,ξ)⋅ξ≥c|ξ|p(1+|t|)θ(p−1), | (2) |
|a(x,t,ξ)|≤c0(|ξ|p−1+b(x)), | (3) |
[a(x,t,ξ)−a(x,t,ξ′)]⋅[ξ−ξ′]>0, | (4) |
for almost every
It is well-known that[3,9], problem
{−Δu+|u|q−1u=δ0,x∈Ω,u=0,x∈∂Ω. |
In the famous work [9], Brezis proved that if
{−Δun+|un|q−1un=fn,x∈Ω,un=0,x∈∂Ω, | (5) |
with
limn→∞∫Ω∖Bϱ(0)|fn−f|=0. |
Then
{−Δu+|u|q−1u=f,x∈Ω,u=0,x∈∂Ω. |
This fact shows that
The main goal of this paper is to study the non-existence of solutions to problem (1). More precisely, consider the limit of approximating equation (9)(see Theorem 1.2 below), our main task is to understand which is the limit of solutions to (9) and what equation it satisfies. A point worth emphasizing is that, even if
In order to state the main results of this paper, we need some definitions.
Let
capr(K,Ω)=inf{‖u‖rW1,r0:u∈C∞c(Ω),u≥χK}, |
where
Let
If
Let
limn→+∞∫Ωf+nφdx=∫Ωφdλ+,limn→+∞∫Ωf−nφdx=∫Ωφdλ−, | (6) |
for every function
‖f+n‖L1(Ω)≤C,‖f−n‖L1(Ω)≤C. | (7) |
For all
Tk(s)=max{−k,min{k,s}},Gk(s)=s−Tk(s). |
Firstly we stale the existence result.
Theorem 1.1. Let
{−div(a(x,u,∇u))+|u|q−1u=g,x∈Ω,u=0,x∈∂Ω. | (8) |
if
q<N(1−θ)N−(1+θ(p−1)). |
Moreover,
u∈Mp1(Ω),|∇u|∈Mp2(Ω), |
where
p1=N(p−1)(1−θ)N−p,p2=N(p−1)(1−θ)N−(1+θ(p−1)). |
Remark 1. The previous result gives existence and uniqueness of the entropy solution
Our main results are following:
Theorem 1.2. Let
{−div(a(x,un,∇un))+|un|q−1un=fn+gn,x∈Ω,un=0,x∈∂Ω. | (9) |
Then
σ<pq(q+1+θ(p−1))(p−1), |
if
q>r(p−1)[1+θ(p−1)]r−p, | (10) |
where
limn→+∞∫Ω|un|q−1unφdx=∫Ω|u|q−1uφdx+∫Ωφdλ,∀φ∈C(Ω). | (11) |
Remark 2. The above theorem shows that there is not a solution to problem (1) can be obtained by approximation, if
Remark 3. Boccardo et.al [7] considered the non-existence result to the following problem
{−div(a(x,∇u)(1+u)γ)+u=μ,x∈Ω,u=0,x∈∂Ω, | (12) |
where
The structure of this paper is as follows: Section 2 mainly gives some lemmas which play a important role in the process of proof of the main theorem. The proof of theorem 1.1 and 1.2 are given in Section 3.
In the following,
In order to prove Theorem 1.1 and 1.2, the following basic lemmas and definitions are required.
Lemma 2.1. (see Lemma 2.1 of [22]) Let
0≤ψ+δ≤1,0≤ψ−δ≤1,∫Ω|∇ψ+δ|rdx≤δ,∫Ω|∇ψ−δ|rdx≤δ,0≤∫Ω(1−ψ+δ)dλ+≤δ,0≤∫Ω(1−ψ−δ)dλ−≤δ,0≤∫Ωψ−δdλ+≤δ,0≤∫Ωψ+δ)dλ−≤δ,ψ+δ≡1,x∈K+,ψ+δ≤1,x∈K−, | (13) |
for every
Definition 2.2. Let
∇Tk(u)=vχ{|u|≤k},a.einΩandforeveryk>0. |
Define the gradient of
Definition 2.3. Let
∫Ωa(x,u,∇u)⋅∇Tk(u−φ)dx+∫Ω|u|q−1uTk(u−φ)dx≤∫ΩgTk(u−φ)dx, |
for every
Definition 2.4. Marcinkiewicz space
|{|υ|≥k}|≤Cks, |
for any
If
Ls(Ω)⊂Ms(Ω)⊂Ls−ε(Ω). |
Lemma 2.5. Let
∫Ω|∇Tk(u)|pdx≤Ckρ, |
for some positive constant
|∇u|∈Mpss+ρ(Ω). |
Proof. Let
|{|∇u|>σ}|=|{|∇u|>σ,|u|≤k}|+|{|∇u|>σ,|u|>k}|≤|{|∇Tk(u)|>σ}|+|{|u|>k}|. | (14) |
Moreover,
|{|∇Tk(u)|>σ}|≤1σp∫Ω|∇Tk(u)|pdx≤Ckρσp. | (15) |
Since
|{|u|>k}|≤Cks. | (16) |
Combining (14)-(16), we have
|{|∇u|>σ}|≤Ckρσp+Cks≤Ckpss+ρ. |
Therefore, by Definition 2.4, we get
Lemma 2.6. Let
∫Ω|∇Tk(un)|pdx≤Ckρ, |
for any
Lemma 2.7. Let
∫{k<|u|<k+h}|∇u|pdx≤Ckθ(p−1). |
Proof. For any given
Tk,h(s)=Th(s−Tk(s))={s−ksgn(s),k≤|s|<k+h,h,|s|≥k+h,0,|s|≤k. |
Take
∫{k<|u|<k+h}(a(x,u,∇u)⋅∇u)dx+∫Ω|u|q−1uTk,h(u)dx=∫ΩgTk,h(u)dx. | (17) |
Since
∫{k<|u|<k+h}(a(x,u,∇u)⋅∇u)dx≤∫ΩgTk,h(u)dx, | (18) |
and
∫ΩgTk,h(u)dx≤h∫{|u|>k}|g|dx≤C. | (19) |
According to the assumption (2) and (17)-(19), we get,
∫{k<|u|<k+h}|∇u|pdx≤Ckθ(p−1). |
Proposition 1. Let
∫{|u|<k}|∇u|pdx≤Ckρ | (20) |
for every
|{|u|>k}|≤Ck−p1. |
Proof. For every
‖Tk(u)‖p∗≤C(N,p,θ)‖∇Tk(u)‖p≤Ckρp, |
where
{|u|≥η}={|Tk(u)≥η|}. |
Hence
|{|u|>η}|≤‖Tk(u)‖p∗p∗ηp∗≤C(kρ)p∗pη−p∗. |
Setting
|{|u|>k}|≤Ck−N(p−ρ)N−p. |
This fact shows that
Proposition 2. Assume that
|{|∇u|>h}|≤Ch−p2, |
for every
Proof. For
ψ(k,λ)=|{|∇u|p>λ,|u|>k}|. |
Using the fact that the function
ψ(0,λ)=|{|∇u|p>λ}|≤1λ∫λ0ψ(0,s)ds≤ψ(k,0)+1λ∫λ0ψ(0,s)−ψ(k,s)ds. | (21) |
By Proposition 1,
ψ(k,0)≤Ck−p1, | (22) |
where
∫∞0ψ(0,s)−ψ(k,s)ds=∫{|u|<k}|∇u|pdx≤Ckρ. | (23) |
Combining (21)-(23), we arrive at
ψ(0,λ)≤Ckρλ+Ck−p1. | (24) |
Let
|{|∇u|>h}|≤Ch−N(p−ρ)N−ρ. |
That is
In this section we prove Theorem 1.1 and 1.2 combining the results of Sections 2.
In the proofs of Theorem 1.1 and 1.2,
limδ→0+limm→+∞limn→+∞ω(n,m,δ)=0. |
If the quantity does not depend on one or more of the three parameters
limδ→0+limn→+∞ω(n,δ)=0. |
The proof of Theorem 1.1 will be divided in several steps.
Proof. (1)Uniqueness: Let
Step 1. Assume that
I:=∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=−∫Ω|u1|q−1u1Tk(u1−Thu2)dx−∫Ω|u2|q−1u2Tk(u2−Thu1)dx+∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx. | (25) |
Step 2. Denote
A0={x∈Ω:|u1−u2|<k,|u1|<h,|u2|<h},A1={x∈Ω:|u1−Thu2|<k,|u2|≥h},A2={x∈Ω:|u1−Thu2|<k,|u2|<h,|u1|≥h}. |
For
∇Tk(u1−Thu2)=∇(u1−u2) |
and
∇Tk(u2−Thu1)=∇Tk(u2−u1). |
Thus, for every
∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx:=I0. | (26) |
For
∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx=∫A1a(x,u1,∇u1)⋅∇u1dx≥0. | (27) |
For
∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx≥−∫A2a(x,u1,∇u1)⋅∇u2dx. | (28) |
Similarly, denote
A∗1={x∈Ω:|u2−Thu1|<k,|u1|≥h},A∗2={x∈Ω:|u2−Thu1|<k,|u1|<h,|u2|≥h}. |
Then for
∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A∗1a(x,u2,∇u2)⋅∇u2dx≥0. | (29) |
For
∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx≥−∫A∗2a(x,u2,∇u2)⋅∇u1dx. | (30) |
Summing up (26)-(30) in the form
I1=∫A2a(x,u1,∇u1)⋅∇u2dx+∫A∗2a(x,u2,∇u2)⋅∇u1dx:=I11+I12. |
Now, we estimate
I11≤‖a(x,u1,∇u1)‖Lp′({h≤|u1|≤h+k})‖∇u2‖Lp({h−k≤|u2|≤h})≤c0(‖∇u1‖p−1Lp′({h≤|u1|≤h+k})+‖b(x)‖Lp′({|u1|≥h}))‖∇u2‖Lp({h−k≤|u2|≤h}). |
Therefore, by Lemma 2.7 and Proposition 2,
Hence, we find
∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx+ε(h). | (31) |
Step 3. Now estimate the terms on the right hand side of (25). Denote
B0={x∈Ω:|u1|<h,|u2|<h},B1={x∈Ω:|u1|≥h},B2={x∈Ω:|u2|≥h}. |
For
∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx=∫B0(|u1|q−1u1−|u2|q−1u2)Tk(u1−u2)dx≥0, | (32) |
and
∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx=∫B0(g1−g2)Tk(u1−u2)dx≤0. | (33) |
For
∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx≤k∫B1(|u1|q−1u1+|u2|q−1u2)dx:=J1, |
and
∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx≤k∫B1(|g1|+|g2|)dx:=J2. |
For
∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx≤k∫B2(|u1|q−1u1+|u2|q−1u2)dx:=J∗1, |
and
∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx≤k∫B2(|g1|+|g2|)dx:=J∗2. |
According to
J1+J2+J∗1+J∗2→0ash→∞. | (34) |
Step 4. Combining (25) and (31)-(34), we have
∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx≤ε(h), |
where
∫{|u1−u2|<k}[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx≤0, |
for all
(2) Existence:
Step 1. Let
F(x,u)=g(x)−β(u), |
where
Let
γn(s)=βn(s)+1n|s|p−2s. |
Then by [20], there exists
{−diva(x,un,∇un)+γn(x,un)=gn,x∈Ω,un=0,x∈∂Ω, | (35) |
holds in the sense of distributions in
By density arguments, we can take
∫{k≤|un|<k+h}a(x,un,∇un)⋅∇undx+∫{|un|>k}γnTh(un−Tk(un))dx=∫{|un|>k}gnTh(un−Tk(un))dx, | (36) |
and
∫{|un|>k}a(x,un,∇un)⋅∇undx+∫ΩγnTk(un)dx=∫ΩgnTk(un)dx. | (37) |
Combine (36) with (2) (fix the ellipticity constant
∫{k<|un|<k+h}|∇un|pdx≤hkθ(p−1)∫{|un|>k}gndx≤hkθ(p−1)‖gn‖L1(Ω)=Ckθ(p−1). | (38) |
Since
∫{|un|>k}|γn(un)|dx≤∫{|un|>k}|gn|dx≤‖gn‖L1(Ω)≤C. | (39) |
Combine (37) with
∫{|un|<k}|∇un|pdx≤Ck1+θ(p−1). | (40) |
Step 2. Convergence. Using (38) and Proposition 1, we have
Next we prove that
For
{|un−um|>t}⊂{|un|>k}∪{|um|>k}∪{|Tk(un)−Tk(um)|>t}. |
Thus
|{|un−um|>t}|≤|{|un|>k}|+|{|um|>k}|+|{|Tk(un)−Tk(um)|>t}|. |
Choosing
Tk(un)→Tk(u)inLploc(Ω)anda.einΩ. |
Then
|{|Tk(un)−Tk(um)|>t}∩BR|≤t−q∫Ω∩BR|Tk(un)−Tk(um)|qdx≤ϵ, |
for all
Now to prove that
{|∇un−∇um|>t}∩BR⊂{|un−um|≤k,|∇un|≤l,|∇um|≤l,|∇un−∇um|>t}∪{|∇un|>l}∪{|∇um|>l}∪({|un−um|>k}∩BR). |
Choose
[a(x,t,ξ)−a(x,t,ξ′)]⋅[ξ−ξ′]≥μ. |
This is a consequence of continuity and strict monotonicity of
dn=gn−γn(x,un). | (41) |
Taking
∫{|un−um|<k}[a(x,un,∇un)−a(x,um,∇um)]⋅∇(un−um)dx=∫Ω(dn−dm)Tk(un−um)dx≤Ck1+θ(p−1). |
Then
{|un−um|≤k,|∇un|≤l,|∇um|≤l,|∇un−∇um|>t}≤1μ∫{|un−um|<k}[a(x,un,∇un)−a(x,um,∇um)]⋅∇(un−um)dx≤1μCk1+θ(p−1)≤ϵ, |
if
Since
Finally, since
Step 3. In order to prove the existence of the solution completely, we still need to prove that sequence
q∈(1,N(1−θ)N−(1+θ(p−1))). |
Indeed, by Proposition 2,
a(x,un,∇un)→a(x,u,∇u). |
It follows that
a(x,u,∇u)∈MN(1−θ)N−(1+θ(p−1))⊂Lqloc(Ω), |
for all
In this subsection, we give the proof of Theorem 1.2 following some ideas in [11,22].
Proof. Step 1 (A priori estimates). Firstly, choosing
∫Ωa(x,un,∇un)⋅∇Tk(un)(1−φδ)sdx+∫Ω|un|q−1unTk(un)(1−φδ)sdx=s∫Ωa(x,un,∇un)⋅∇φδTk(un)(1−φδ)s−1dx+∫ΩgnTk(un)(1−φδ)sdx+∫Ωf+nTk(un)(1−φδ)sdx+∫Ωf−nTk(un)(1−φδ)sdx. | (42) |
By (2), we get
∫Ωa(x,un,∇un)⋅∇Tk(un)dμ≥c∫Ω|∇Tk(un)|p(1+|Tk(un)|)θ(p−1)dμ, | (43) |
here
Since
∫Ω|un|q−1unTk(un)(1−φδ)sdx≥∫{|un|≥k}|un|q−1unTk(un)dμ≥kq+1μ({|un|≥k}). | (44) |
Using (3) and the Young inequality, we find
∫Ω|a(x,un,∇un)⋅∇φδTk(un)(1−φδ)s−1|dx≤c0k∫Ω(|∇un|p−1+b(x))(|∇φ+δ|+|∇φ+δ|)(1−φδ)s−1dx≤Ck∫Ω(|∇un|(p−1)r′+|b(x)|r′)(1−φδ)(s−1)r′dx+Ck∫Ω(|∇φ+δ|r+|∇φ+δ|r)dx≤Ck(∫Ω(|∇un|(p−1)r′+|b(x)|r′)(1−φδ)(s−1)r′dx+δ). | (45) |
Combine (42)-(45), by (7) and
∫Ω|∇Tk(un)|p(1+|Tk(un)|)θ(p−1)dμ+kq+1μ({|un|≥k})≤Ck(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ(Ω). | (46) |
For a fixed
μ({|∇un|>σ})=μ({|∇un|>σ,|un|<k})+μ({|∇un|>σ,|un|≥k})≤1σp∫Ω|∇Tk(un)|pdμ+μ({|u|>k})≤(1+k)θ(p−1)σp∫Ω|∇Tk(un)|p(1+|Tk(un)|)θ(p−1)dμ+μ({|u|>k})≤C(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ(Ω))((1+k)1+θ(p−1)σp+1kq), |
which implies
μ|{|∇un|>σ}|≤Cσ−pqq+1+θ(p−1)(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ|Ω|). | (47) |
Let
(p−1)r′<η<pqq+1+θ(p−1). | (48) |
Clearly, such
∫Ω|∇un|ηdμ≤C(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ(Ω)). |
By the Holder's inequality,
∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx≤C(∫Ω|∇un|ηdμ)(p−1)r′η≤C(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ|Ω|)(p−1)r′η. |
By Lemma 2.1,
∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx≤C(δ+μ|Ω|)≤C(δ). | (49) |
Using (46) and (49), we conclude that
∫Ω|∇Tk(un)|pdx≤Ck1+θ(p−1). | (50) |
According to Lemma 2.5, we have
By (50) and Lemma 2.6, there exists a subsequence, still denoted by
Since
a(x,un,∇un)→a(x,u,∇u)stronglyin(Ls(Ω))N, | (51) |
for every
Step 2 (Energy estimates). Let
∫{un>2m}uqn(1−ψδ)dx=ω(n,m,δ), | (52) |
and
∫{un<−2m}|un|q(1−ψδ)dx=ω(n,m,δ). | (53) |
Choose
βm(s)={sm−1,m<s≤2m,1,s>2m,0,s≤m. |
We obtain
1m∫{m<un<2m}a(x,un,∇un)⋅∇un(1−ψδ)dx(A)−∫Ωa(x,un,∇un)⋅∇ψδβm(un)dx(B)+∫Ω|un|q−1unβm(un)(1−ψδ)dx(C)=∫Ωf+nβm(un)(1−ψδ)dx(D)−∫Ωf−nβm(un)(1−ψδ)dx(E)+∫Ωgnβm(un)(1−ψδ)dx.(F) |
Since
−(B)=∫Ωa(x,u,∇u)⋅∇ψδβm(u)dx+ω(n)=ω(n,m), |
and
(C)≥∫{un>2m}uqn(1−ψδ)dx. |
By
(D)≤∫Ωf+n(1−ψδ)dx=∫Ω(1−ψ+δ)dλ+−∫Ωψ−δdλ−+ω(n)=ω(n,δ), |
and
(F)=ω(n,m). |
We get (52), the proof of (53) is identical.
Step 3 (Passing to the limit). Now we show that
∫Ωa(x,un,∇un)⋅∇Tk(un−φ)(1−ψδ)dx(A)−∫Ωa(x,un,∇un)⋅∇ψδTk(un−φ)dx(B)+∫Ω|un|q−1unTk(un−φ)(1−ψδ)dx(C)=∫Ωf+nTk(un−φ)(1−ψδ)dx(D) |
−∫Ωf−nTk(un−φ)(1−ψδ)dx(E)+∫ΩgnTk(un−φ)(1−ψδ)dx.(F) |
By (13),
(A)=∫{|un−φ|<k}a(x,un,∇un)⋅∇un(1−ψδ)dx−∫{|un−φ|<k}a(x,un,∇un)⋅∇φ(1−ψδ)dx, |
while
∫{|un−φ|<k}a(x,un,∇un)⋅∇φ(1−ψδ)dx=∫{|u−φ|<k}a(x,u,∇u)⋅∇φdx+ω(n,δ). |
The Fatou lemma implies
∫{|u−φ|<k}a(x,u,∇u)⋅∇udx≤limn→∞inf∫{|un−φ|<k}a(x,un,∇un)⋅∇undx. |
Using (13), (51), we have
−(B)=∫Ωa(x,u,∇u)⋅∇ψδTk(u−φ)dx+ω(n)=ω(n,δ). |
While
(F)=∫ΩgTk(u−φ)dx+ω(n,δ), |
and
|(D)|+|(E)|=∫Ω(f+n+f−n)Tk(un−φ)(1−ψδ)dx≤k∫Ω(f+n+f−n)(1−ψδ)dx=ω(n,δ). |
So that we only need to deal with
(C)=∫{−2m≤un≤2m}|un|q−1unTk(un−φ)(1−ψδ)dx(G)+k∫{un>2m}uqn(1−ψδ)dx+k∫{un<−2m}|un|q(1−ψδ)dx.(H) |
By (52) and (53), we get
(H)=ω(n,m,δ), |
and
(G)=∫Ω|u|q−1uTk(u−φ)(1−ψδ)dx+ω(n,m)=∫Ω|u|q−1uTk(u−φ)dx+ω(n,m,δ). |
Summing up the result of (A)-(H), we have
∫Ωa(x,u,∇u)⋅∇Tk(u−φ)dx+∫Ω|u|q−1uTk(u−φ)dx≤∫ΩgTk(u−φ)dx. |
Thus
Finally we prove (10). Choose
∫Ωa(x,un,∇un)⋅∇φdx+∫Ω|un|q−1unφdx=∫Ω(fn+gn)φdx. |
Thanks to the assumptions of
limn→+∞∫Ω|un|q−1unφdx=−∫Ωa(x,u,∇u)⋅∇φdx+∫Ωgφdx+∫Ωφdλ. | (54) |
Since the entropy solution of (8) is also a distributional solution of the same problem, for the same
∫Ωa(x,u,∇u)⋅∇φdx+∫Ω|u|q−1uφdx=∫Ωgφdx. | (55) |
Together with (54) and (55), we find
limn→+∞∫Ω|un|q−1unφdx=∫Ω|u|q−1uφdx+∫Ωφdλ. |
Thus (11) holds for every
The authors also would like to thank the anonymous referees for their valuable comments which has helped to improve the paper.
[1] |
C. R. Nastase, D. J. Mavriplis, A parallel hp-multigrid solver for three-dimensional discontinuous Galerkin discretizations of the Euler equations, 45th AIAA Aerospace Sciences Meeting and Exhibit, (2007), 512. https://doi.org/10.2514/6.2007-512 doi: 10.2514/6.2007-512
![]() |
[2] |
H. Luo, J. D. Baum, R. Löhner, A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids, J. Comput. Phys., 211 (2006), 767–783. https://doi.org/10.1016/j.jcp.2005.06.019 doi: 10.1016/j.jcp.2005.06.019
![]() |
[3] |
R. Hartmann, P. Houston, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183 (2002), 508–532. https://doi.org/10.1063/1.5033621 doi: 10.1063/1.5033621
![]() |
[4] |
F. Bassi, S. Rebay., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138 (1997), 251–285. https://doi.org/10.1006/jcph.1997.5454 doi: 10.1006/jcph.1997.5454
![]() |
[5] |
F. Bassi, S. Rebay., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), 267–279. https://doi.org/10.1006/jcph.1996.5572 doi: 10.1006/jcph.1996.5572
![]() |
[6] |
L. Chen, M. B. Ozakin, R. Zhao, H. Bagci, A locally-implicit discontinuous Galerkin time-domain method to simulate metasurfaces using generalized sheet transition conditions, IEEE Trans. Antennas Propag., 71 (2023), 869–881. https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887215 doi: 10.1109/AP-S/USNC-URSI47032.2022.9887215
![]() |
[7] |
G. S. Baruzzi, Wagdi Habashi, A second order finite element method for the solution of the transonic Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids., 20 (1995), 671–693. https://doi.org/10.1002/fld.1650200802 doi: 10.1002/fld.1650200802
![]() |
[8] |
M. Gurris, D. Kuzmin, S. Turek., Implicit finite element schemes for the stationary compressible Euler equations, Int. J. Numer. Methods Fluids., 69 (2012), 1–28. https://doi.org/10.1002/fld.2532 doi: 10.1002/fld.2532
![]() |
[9] |
A. Jameson, D. Mavriplis, Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh, AIAA J, 24 (1986), 611–618. https://doi.org/10.2514/3.9315 doi: 10.2514/3.9315
![]() |
[10] |
W. K. Anderson, Comparison of finite volume flux vector splittings for the Euler equations, AIAA J., 24 (2015), 1453–1460. https://doi.org/10.2514/3.9465 doi: 10.2514/3.9465
![]() |
[11] |
L. Acedo, S. B. Yuste, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), 1862–1874. https://doi.org/10.1137/030602666 doi: 10.1137/030602666
![]() |
[12] |
R. F. Warming, B. J. Hyett, The modified equation approach to the stability and accuracy of finite difference method, J. Comput. Phys., 14 (1974), 159–179. https://doi.org/10.1016/0021-9991(74)90011-4 doi: 10.1016/0021-9991(74)90011-4
![]() |
[13] |
U. Baur, P. Benner, L. Feng, Model order reduction for linear and nonlinear systems: A system-theoretic perspective, Arch. Comput. Methods Eng., 21 (2014), 331–358. https://doi.org/10.1007/s11831-014-9111-2 doi: 10.1007/s11831-014-9111-2
![]() |
[14] |
Z. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, Appl. Numer. Math., 43 (2002), 9–44. https://doi.org/10.1016/S0168-9274(02)00116-2 doi: 10.1016/S0168-9274(02)00116-2
![]() |
[15] |
S. Renee, M. Laura, P. Benjamin, W. Karen, Projection-based model reduction: Formulations for physics-based machine learning, Comput Fluids., 179 (2019), 704–717. https://doi.org/10.1016/j.compfluid.2018.07.021 doi: 10.1016/j.compfluid.2018.07.021
![]() |
[16] |
J. Jiang, Y. Chen, N. Akil, Offline-enhanced reduced basis method through adaptive construction of the surrogate training set, J Sci Comput., 73 (2017), 853–875. https://doi.org/10.1007/s10915-017-0551-3 doi: 10.1007/s10915-017-0551-3
![]() |
[17] |
Z. Peng, Y. Chen, Y. Cheng, F. Li, A reduced basis method for radiative transfer equation, J Sci Comput., 91 (2022), 5. https://doi.org/10.1007/s10915-022-01782-2 doi: 10.1007/s10915-022-01782-2
![]() |
[18] |
D. Binion., X. Chen, A Krylov enhanced proper orthogonal decomposition method for efficient nonlinear model reduction, Finite Elem. Anal. Des., 47 (2011), 728–738. https://doi.org/10.1016/j.finel.2011.02.004 doi: 10.1016/j.finel.2011.02.004
![]() |
[19] |
L. Sirovich., Turbulence and the dynamics of coherent structures part Ⅰ: Coherent structures, Appl. Math., 45 (1986), 561–571. https://doi.org/10.1090/qam/910464 doi: 10.1090/qam/910464
![]() |
[20] |
C. L. Pettit, P. S. Beran., Application of proper orthogonal decomposition to the discrete Euler equations, Int. J. Numer. Methods Eng., 55 (2002), 479–497. https://doi.org/10.1002/nme.510 doi: 10.1002/nme.510
![]() |
[21] |
J. Goss, K. Subbarao., Inlet shape optimization based on POD model reduction of the Euler equations, 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, (2008), 5809. https://doi.org/10.2514/6.2008-5809 doi: 10.2514/6.2008-5809
![]() |
[22] |
G. Kerschen, J. C. Golinval, A. F. Vakakis, L. A. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear Dyn., 41 (2005), 147–169. https://doi.org/10.1007/s11071-005-2803-2 doi: 10.1007/s11071-005-2803-2
![]() |
[23] |
Q. Wang, N. Ripamonti, J. S. Hesthaven, Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism, J Comput Phys., 410 (2020), 109402. https://doi.org/10.1016/j.jcp.2020.109402 doi: 10.1016/j.jcp.2020.109402
![]() |
[24] |
T. Akman, Error estimates for space–time discontinuous Galerkin formulation based on proper orthogonal decomposition, Appl. Anal., 96 (2017), 461–482. https://doi.org/10.1080/00036811.2016.1143930 doi: 10.1080/00036811.2016.1143930
![]() |
[25] |
C. Gräßle, M. Hinze, POD reduced order modeling for evolution equations utilizing arbitrary finite element discretizations, Adv. Comput. Math., 44 (2018), 1941–1978. https://doi.org/10.1007/s10444-018-9620-x doi: 10.1007/s10444-018-9620-x
![]() |
[26] |
Z. D. Luo, F. Teng, J. Chen, A POD-based reduced-order Crank-Nicolson finite volume element extrapolating algorithm for 2D Sobolev equations, Math. Comput. Simul., 146 (2018) 118–133. https://doi.org/10.1016/j.matcom.2017.11.002 doi: 10.1016/j.matcom.2017.11.002
![]() |
[27] |
S. F Zhu, L. Dedè, A. Quarteroni, Isogeometric analysis and proper orthogonal decomposition for parabolic problems, Numer Math., 135 (2017), 333–370. https://doi.org/10.1007/s00211-016-0802-5 doi: 10.1007/s00211-016-0802-5
![]() |
[28] |
R. C. Li, Q. B. Wu, S. F. Zhu, Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems, J Comput Phys., 387 (2019), 280–302. https://doi.org/10.1016/j.jcp.2019.02.051 doi: 10.1016/j.jcp.2019.02.051
![]() |
[29] |
S. F Zhu, L. Dedè, A. Quarteroni, Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation, ESAIM: M2AN, 51 (2017), 1197–1221. https://doi.org/10.1051/m2an/2016056 doi: 10.1051/m2an/2016056
![]() |
[30] |
S. Jun, K. H Park, H. M Kang, D. H Lee, M. Cho, Reduced order model of three-dimensional Euler equations using proper orthogonal decomposition basis, J Mech Sci Technol., 24 (2010), 601–608. https://doi.org/10.1007/s12206-010-0106-0 doi: 10.1007/s12206-010-0106-0
![]() |
[31] |
R. Hartmann, Error estimation and adjoint based refinement for an adjoint consistent DG discretisation of the compressible Euler equations, Int J Comput Sci Mat, 1 (2007), 207–220. https://doi.org/10.1504/IJCSM.2007.016532 doi: 10.1504/IJCSM.2007.016532
![]() |
[32] |
X. Zhang, C. Shu, Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms, J Comput Phys., 230 (2011), 1238–1248. https://doi.org/10.1016/j.jcp.2010.10.036 doi: 10.1016/j.jcp.2010.10.036
![]() |
[33] |
M Boizard, R Boyer, G Favier, P. Larzabal, Fast multilinear Singular Values Decomposition for higher-order Hankel tensors, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), (2014), 437–440. https://doi.org/10.1109/SAM.2014.6882436 doi: 10.1109/SAM.2014.6882436
![]() |
[34] |
P. Batten, N. Clarke, C. Lambert, D. M. Causon, On the choice of wavespeeds for the HLLC Riemann solver, SIAM J Sci Comput, 18 (1997), 1553–1570. https://doi.org/10.1137/S1064827593260140 doi: 10.1137/S1064827593260140
![]() |
[35] |
S. Simon, J. C. Mandal, A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control, Comput Fluids., 174 (2018), 144–166. https://doi.org/10.1016/j.compfluid.2018.07.001 doi: 10.1016/j.compfluid.2018.07.001
![]() |
[36] |
S. Simon, J. C. Mandal, A simple cure for numerical shock instability in the HLLC Riemann solver, J Comput Phys., 378 (2019), 477–496. https://doi.org/10.1016/j.jcp.2018.11.022 doi: 10.1016/j.jcp.2018.11.022
![]() |
[37] | Y. Zhu., A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, New York: John Wiley & Sons, 2006. |
[38] |
B. Cockburn, S. Hou, C. W Shu, TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅳ: the multidimensional case, Math Comp, 55 (1990), 545–581. https://doi.org/10.1090/S0025-5718-1990-1010597-0 doi: 10.1090/S0025-5718-1990-1010597-0
![]() |
[39] |
H. Zhang, J. Y Yan, X. Qian, X. M Gu, S. H Song, On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-fractional Allen-Cahn equation, Numer. Algorithms, 88 (2021), 1309–1336. https://doi.org/10.1007/s11075-021-01077-x doi: 10.1007/s11075-021-01077-x
![]() |
[40] |
H. Luo, J. Baum, R. Löhner, A fast p-Multigrid Discontinuous Galerkin Method for Compressible Flows at All Speeds, AIAA J, 46 (2008), 635–652. https://doi.org/10.2514/1.28314 doi: 10.2514/1.28314
![]() |
[41] |
J. Burkardt, M. Gunzburger, H. C. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Eng., 196 (2006), 337–355. https://doi.org/10.1016/j.cma.2006.04.004 doi: 10.1016/j.cma.2006.04.004
![]() |
[42] |
Z. Luo, J. Gao, A POD reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in a lossy medium, J. Math. Anal. Appl., 444 (2016), 433–451. https://doi.org/10.1016/j.jmaa.2016.06.036 doi: 10.1016/j.jmaa.2016.06.036
![]() |
[43] |
K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90 (2001), 117–148. https://doi.org/10.1007/s002110100282 doi: 10.1007/s002110100282
![]() |
[44] | V. Schmitt, Pressure distributions on the ONERA M6-wing at transonic Mach numbers, experimental data base for computer program assessment, AGARD AR138, (1979). |
1. | A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, S. Aly, Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response, 2023, 616, 03784371, 128604, 10.1016/j.physa.2023.128604 | |
2. | D. Burini, N. Chouhad, Virus models in complex frameworks: Towards modeling space patterns of SARS-CoV-2 epidemics, 2022, 32, 0218-2025, 2017, 10.1142/S0218202522500476 | |
3. | N. Bellomo, F. Brezzi, M. A. J. Chaplain, New trends of mathematical sciences towards modeling virus pandemics in a globally connected world, 2022, 32, 0218-2025, 1923, 10.1142/S0218202522010011 | |
4. | A. M. Elaiw, A. S. Shflot, A. D. Hobiny, Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model, 2022, 8, 2473-6988, 6136, 10.3934/math.2023310 | |
5. | A. M. Elaiw, N. H. AlShamrani, E. Dahy, A. A. Abdellatif, Aeshah A. Raezah, Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection, 2023, 11, 2227-7390, 592, 10.3390/math11030592 | |
6. | Ahmed M. Elaiw, Abdullah J. Alsaedi, Afnan Diyab Al Agha, Aatef D. Hobiny, Global Stability of a Humoral Immunity COVID-19 Model with Logistic Growth and Delays, 2022, 10, 2227-7390, 1857, 10.3390/math10111857 | |
7. | Giulia Bertaglia, Chuan Lu, Lorenzo Pareschi, Xueyu Zhu, Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread, 2022, 32, 0218-2025, 1949, 10.1142/S0218202522500452 | |
8. | Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity, 2022, 10, 2227-7390, 4382, 10.3390/math10224382 | |
9. | Ryan Weightman, Anthony Sbarra, Benedetto Piccoli, Coupling compartmental models with Markov chains and measure evolution equations to capture virus mutability, 2022, 32, 0218-2025, 2099, 10.1142/S0218202522500506 | |
10. | Jiying Ma, Shasha Ma, Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China, 2022, 20, 1551-0018, 3070, 10.3934/mbe.2023145 | |
11. | Marcelo Bongarti, Luke Diego Galvan, Lawford Hatcher, Michael R. Lindstrom, Christian Parkinson, Chuntian Wang, Andrea L. Bertozzi, Alternative SIAR models for infectious diseases and applications in the study of non-compliance, 2022, 32, 0218-2025, 1987, 10.1142/S0218202522500464 | |
12. | N. Bellomo, M. Esfahanian, V. Secchini, P. Terna, What is life? Active particles tools towards behavioral dynamics in social-biology and economics, 2022, 43, 15710645, 189, 10.1016/j.plrev.2022.10.001 | |
13. | Ahmed M. Elaiw, Abdulsalam S. Shflot, Aatef D. Hobiny, Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host, 2022, 10, 2227-7390, 4756, 10.3390/math10244756 | |
14. | Henrique A. Tórtura, José F. Fontanari, The synergy between two threats: Disinformation and COVID-19, 2022, 32, 0218-2025, 2077, 10.1142/S021820252250049X | |
15. | Juan Pablo Agnelli, Bruno Buffa, Damián Knopoff, Germán Torres, A Spatial Kinetic Model of Crowd Evacuation Dynamics with Infectious Disease Contagion, 2023, 85, 0092-8240, 10.1007/s11538-023-01127-6 | |
16. | A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, Global stability of a delayed SARS-CoV-2 reactivation model with logistic growth, antibody immunity and general incidence rate, 2022, 61, 11100168, 12475, 10.1016/j.aej.2022.05.034 | |
17. | A. D. Al Agha, A. M. Elaiw, Global dynamics of SARS-CoV-2/malaria model with antibody immune response, 2022, 19, 1551-0018, 8380, 10.3934/mbe.2022390 | |
18. | Diletta Burini, Nadia Chouhad, Nicola Bellomo, Waiting for a Mathematical Theory of Living Systems from a Critical Review to Research Perspectives, 2023, 15, 2073-8994, 351, 10.3390/sym15020351 | |
19. | Ahmed M. Elaiw, Afnan D. Al Agha, Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model, 2022, 10, 2227-7390, 4390, 10.3390/math10224390 | |
20. | A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny, Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity, 2022, 20, 1551-0018, 3873, 10.3934/mbe.2023182 | |
21. | Ali Algarni, Afnan D. Al Agha, Aisha Fayomi, Hakim Al Garalleh, Kinetics of a Reaction-Diffusion Mtb/SARS-CoV-2 Coinfection Model with Immunity, 2023, 11, 2227-7390, 1715, 10.3390/math11071715 | |
22. | Matthew O. Adewole, Farah A. Abdullah, Majid K. M. Ali, 2024, 3203, 0094-243X, 030007, 10.1063/5.0225272 | |
23. | Elsayed Dahy, Ahmed M. Elaiw, Aeshah A. Raezah, Hamdy Z. Zidan, Abd Elsattar A. Abdellatif, Global Properties of Cytokine-Enhanced HIV-1 Dynamics Model with Adaptive Immunity and Distributed Delays, 2023, 11, 2079-3197, 217, 10.3390/computation11110217 | |
24. | Nicola Bellomo, Jie Liao, Annalisa Quaini, Lucia Russo, Constantinos Siettos, Human behavioral crowds review, critical analysis and research perspectives, 2023, 33, 0218-2025, 1611, 10.1142/S0218202523500379 | |
25. | Diletta Burini, Damian A. Knopoff, Epidemics and society — A multiscale vision from the small world to the globally interconnected world, 2024, 34, 0218-2025, 1567, 10.1142/S0218202524500295 | |
26. | Ahmed M. Elaiw, Aeshah A. Raezah, Matuka A. Alshaikh, Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies, 2023, 11, 2227-7390, 3138, 10.3390/math11143138 | |
27. | Nicola Bellomo, Massimo Egidi, From Herbert A. Simon’s legacy to the evolutionary artificial world with heterogeneous collective behaviors, 2024, 34, 0218-2025, 145, 10.1142/S0218202524400049 | |
28. | Ryan Weightman, Benedetto Piccoli, 2024, Chapter 7, 978-3-031-56793-3, 157, 10.1007/978-3-031-56794-0_7 | |
29. | Luca Serena, 2023, Methodological Aspects of Multilevel Modeling and Simulation, 979-8-3503-3784-6, 111, 10.1109/DS-RT58998.2023.00025 | |
30. | Aeshah A. Raezah, A.M. Elaiw, M.A. Alshaikh, Global stability of secondary DENV infection models with non-specific and strain-specific CTLs, 2024, 10, 24058440, e25391, 10.1016/j.heliyon.2024.e25391 | |
31. | Nicola Bellomo, Raluca Eftimie, Guido Forni, What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems, 2024, 19, 1556-1801, 655, 10.3934/nhm.2024029 | |
32. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936 | |
33. | Yunfeng Xiong, Chuntian Wang, Yuan Zhang, Tom Britton, Interacting particle models on the impact of spatially heterogeneous human behavioral factors on dynamics of infectious diseases, 2024, 20, 1553-7358, e1012345, 10.1371/journal.pcbi.1012345 | |
34. | Ahmed M. Elaiw, Ghadeer S. Alsaadi, Aatef D. Hobiny, Global co-dynamics of viral infections with saturated incidence, 2024, 9, 2473-6988, 13770, 10.3934/math.2024671 | |
35. | Matthew O. Adewole, Taye Samuel Faniran, Farah A. Abdullah, Majid K.M. Ali, COVID-19 dynamics and immune response: Linking within-host and between-host dynamics, 2023, 173, 09600779, 113722, 10.1016/j.chaos.2023.113722 | |
36. | Giulia Bertaglia, Andrea Bondesan, Diletta Burini, Raluca Eftimie, Lorenzo Pareschi, Giuseppe Toscani, New trends on the systems approach to modeling SARS-CoV-2 pandemics in a globally connected planet, 2024, 34, 0218-2025, 1995, 10.1142/S0218202524500301 | |
37. | Nicola Bellomo, Seung-Yeal Ha, Jie Liao, Wook Yoon, Behavioral swarms: A mathematical theory toward swarm intelligence, 2024, 34, 0218-2025, 2305, 10.1142/S0218202524500490 | |
38. | Mohamed Zagour, 2024, Chapter 6, 978-3-031-56793-3, 127, 10.1007/978-3-031-56794-0_6 | |
39. | Nisrine Outada, A forward look to perspectives, 2023, 47, 15710645, 133, 10.1016/j.plrev.2023.10.011 | |
40. | Luca Serena, Moreno Marzolla, Gabriele D’Angelo, Stefano Ferretti, A review of multilevel modeling and simulation for human mobility and behavior, 2023, 127, 1569190X, 102780, 10.1016/j.simpat.2023.102780 | |
41. | Christian Parkinson, Weinan Wang, Analysis of a Reaction-Diffusion SIR Epidemic Model with Noncompliant Behavior, 2023, 83, 0036-1399, 1969, 10.1137/23M1556691 | |
42. | D. Burini, N. Chouhad, Cross-diffusion models in complex frameworks from microscopic to macroscopic, 2023, 33, 0218-2025, 1909, 10.1142/S0218202523500458 | |
43. | Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Global properties of SARS‐CoV‐2 and IAV coinfection model with distributed‐time delays and humoral immunity, 2024, 47, 0170-4214, 9340, 10.1002/mma.10074 | |
44. | B. Bellomo, M. Esfahanian, V. Secchini, P. Terna, From a mathematical science of living systems to biology and economics, 2023, 47, 15710645, 264, 10.1016/j.plrev.2023.11.002 | |
45. | Ahmed M. Elaiw, Amani S. Alsulami, Aatef D. Hobiny, Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity, 2024, 9, 2473-6988, 1046, 10.3934/math.2024052 | |
46. | Bishal Chhetri, Krishna Kiran Vamsi Dasu, Stability and bifurcation analysis of a nested multi-scale model for COVID-19 viral infection, 2024, 12, 2544-7297, 10.1515/cmb-2024-0006 | |
47. | Vinicius V. L. Albani, Jorge P. Zubelli, Stochastic transmission in epidemiological models, 2024, 88, 0303-6812, 10.1007/s00285-023-02042-z | |
48. | Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun, Mathematical modeling of trend cycle: Fad, fashion and classic, 2024, 01672789, 134500, 10.1016/j.physd.2024.134500 | |
49. | Juan Pablo Agnelli, Claudio Armas, Damián A. Knopoff, Spatial Kinetic Modeling of Crowd Evacuation: Coupling Social Behavior and Infectious Disease Contagion, 2025, 17, 2073-8994, 123, 10.3390/sym17010123 | |
50. | Gabriel Benedetti, Ryan Weightman, Benedetto Piccoli, Optimizing overlapping non-pharmaceutical interventions with a socio-demographic model, 2025, 1972-6724, 10.1007/s40574-025-00477-4 | |
51. | Jorge P Zubelli, Jennifer Loria, Vinicius V L Albani, On the estimation of the time-dependent transmission rate in epidemiological models, 2025, 41, 0266-5611, 065001, 10.1088/1361-6420/add55b |