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Abstract: This paper considers the work of combining the proper orthogonal decomposition (POD) 
reduced-order method with the discontinuous Galerkin (DG) method to solve three-dimensional time-
domain Euler equations. The POD-DG formulation is established by constructing the POD base vector 
space, based on POD technology one can apply the Galerkin projection of the DG scheme to this 
dimension reduction space for calculation. Its overall goal is to overcome the disadvantages of high 
computational cost and memory requirement in the DG algorithm, reduce the degrees of freedom 
(DOFs) of the calculation model, and save the calculation time while ensuring acceptable accuracy. 
Numerical experiments verify these advantages of the proposed POD-DG method. 
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1. Introduction  

With the emergence of high-performance computers and the development of numerical 
algorithms for solving physical problems accurately, computational fluid dynamics (CFD) has been 
developed, which is a more economical and effective method to simulate and analyze hydrodynamics 
problems. In the process of solving practical problems with CFD, we set up corresponding 
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mathematical models to describe the practical problems. The discontinuous Galerkin (DG) method, 
also known as the discontinuous finite element method [1–5], uses completely discontinuous piecewise 
polynomial space as the approximate solution. At present, this method is widely used in many fields, 
such as computational aerodynamics, computational acoustics, computational electromagnetics [6], 
and so on. DG method not only has the characteristics of local conservation and stability, but also can 
improve the accuracy by increasing the order of interpolation function, so it is easy to deal with 
complex geometry and irregular meshes with suspended nodes and has different degrees of 
approximation polynomials in different elements. These attributes make it better to combine with the 
HP adaptive method. DG method not only maintains the advantages of the finite element method [7,8], 
finite volume method [9,10], and finite difference method [11,12] but also overcomes their 
shortcomings.  

However, compared with the finite volume method, the number of variables needed to be solved 
by the DG method in each element increases and the increase is non-linear with the improvement of 
accuracy. It will derive a large set of partial differential equations (PDEs) when simulating the 
numerical system, which leads to too many degrees of freedom in the calculation, along with a lot of 
calculation time and memory capacity. Besides, because of its high dimension or complexity, it is 
relatively difficult to simulate directly. In this context, it is particularly important to reduce the scale 
or order of the model effectively.  

The model order reduction (MOR) method [13–17] is an effective approximation method that can 
greatly reduce the dimension of the model by reducing the DOFs of numerical simulation. It is a 
practical way for deduction of high even infinite dimensional alternative models related to Galerkin 
projection. Research shows that some numerical methods combined with model reduction in solving 
PDEs can be very efficient as they can reduce computational load and memory requirements [18]. In 
recent years, more and more model reduction methods have been developed rapidly, such as the Krylov 
subspace method based on Padé approximation, proper orthogonal decomposition method (POD), and 
balanced truncation method. Among these reduced-order techniques, the POD method [19–23] is the 
most commonly used and effective reduced-order method in simulating the physical process controlled 
by PDEs. This is an effective data analysis method, whose goal is to approximate the multi-
dimensional physical process in a low-dimensional way and then greatly reduce the amount of needed 
data. The purpose is to improve computing efficiency by approaching the original model with a 
reduced-order model. Loeve and Karhunen first introduced the POD method in 1945 and 1946. It starts 
with extracting a group of instantaneous image vectors from high fidelity numerical simulation 
experiments and then obtains POD basis by generating the characteristic system of correlation matrix 
from snapshot matrix, in which snapshot matrix is listed as snapshot vector. It finds the optimal low-
dimensional approximation from the given data. The POD method has been extensively and 
successfully employed in many fields such as optimal control, signal analysis, and so on. Recently, 
some POD-based reduced-order numerical methods, such as the POD Galerkin reduced-order    
model [24], POD finite element reduced-order model [25], POD finite volume element        
reduced-order model [26], POD reduced-order models based on isogeometric analysis [27], smooth B-
splines [28] and NURBS basis functions [29] have been developed to calculate PDEs to reduce 
computational costs. The experimental data shows that the DOFs become very little with the POD 
method, so the calculation time and the accumulation of truncation errors can be reduced. At the same 
time, the theoretical and numerical errors are also very close to the original method, so it still ensures 
the accuracy of the calculation.  

To overcome the large amount of computational cost caused by the DG method and improve 
computational efficiency, this paper studies the DG method based on the POD dimension reduction 
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model to solve three-dimensional Euler equations [30–32]. Combining with POD technology, the 
dimension reduction model of the original problem is reconstructed, and then we can calculate in a 
low dimensional space. In this paper, by constructing POD base vector space (also known as the 
optimal orthogonal basis functions) through transient solution with DG formula, which is a data set 
achieved by eigenorthogonal decomposition or singular value decomposition (SVD) [33], the model 
is projected to dimension reduction space for calculation. Compared with the original DG formulation, 
the proposed POD-DG formulation reduces the degree of freedom of the calculation model and 
truncation error accumulation, as well as calculation cost and calculation time while maintaining the 
original DG accuracy of the numerical solution, thus improving the computational efficiency.  

The rest of the paper is organized as follows. In Section 2, we present the three-dimensional Euler 
equations and introduce the formulation of the DG method. In Section 3, we propose the POD method 
and deduce its implementation combined with the DG method. Section 4 shows some numerical results 
for the comparison between the proposed POD-DG method and the traditional DG method to verify 
the greater computational performance of the POD-DG method. Finally, we conclude Section 5. 

2. Problem statement and discontinuous Galerkin formulation 

To illustrate the proposed POD-DG formulation conveniently, we introduce the governing 
equations and briefly derive the traditional DG method's derivation. 

2.1. Flow control equation 

In Cartesian coordinates, the conservative form of three-dimensional Euler equations is as follows: 

( ) 0
t


   



U
F U , (2.1) 

which is defined in the computational domain Ω with domain boundary ∂Ω; where U is the 
conservative variable, ( ) ( , , )x y z


F U F F F  is inviscid flux and its form is as follows:  
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where ρ, p are density and pressure respectively; , ,u v w  are velocity components in Cartesian 

coordinates; e, E are inner energy and total energy separately; 
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where R is gas constants, cp, cv, γ are specific heat at constant pressure, constant volume and specific 
heat ratio, respectively.  

2.2. Discretization in space via DG method 

Before spatial discretization, the solution region Ω is divided into a finite number of non-
overlapping unstructured elements Ωk. For three-dimensional problems, Ωk can be a triangular prism, 
tetrahedron, hexahedron and pyramid. In this paper, we dispose of a partition of Ω ⸦ ℝ3 into a set of 
tetrahedron Ωk, 

1

kN

k
k 

   ,  

where kN  is the number of tetrahedral elements, and each element has four faces k . We introduce 

virtual elements on the solution domain boundary   to take into account the boundary conditions. 
Assume that there is a virtual element v adjacent to the boundary element b by the boundary face 

b  (shown in Figure 1), then the boundary   can be defined based on boundary conditions 

through virtual elements. 

 

Figure 1. Boundary element and virtual element. 

The purpose of DG algorithm is to look for an approximate solution U to satisfy the generalized 
system. We multiply Eq (2.1) by the test function ( , , )i x y z  on the element k  and take an integral: 

0  1....
k k

i k i kd d i N
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where N is the number of test function ( , , )i x y z . Apply the Green-Gauss formula to the second terms, 

we have: 

0  1....
k k k
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t
  

  


        

  
 U

F n F , (2.6) 

where 

n  is the outward unit normal vector on the surface of the tetrahedral element k , k  is 

surface of k . 
 
F n  is the numerical flux on the interface shared by two neighboring elements kl  

and kr . It depends on l


F  and


rF , which are the conservative states at the left and right sides of the 

element interface. Because the values between two sides of the element boundary are different, they 
can be obtained by calculating the boundary flux in the DG method. There are some popular numerical 
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fluxes such as Roe flux, Lax–Friedrichs flux, and HLLC flux. In this paper, we take the HLLC flux 
[34–36] in our experiments. 

Assuming that variables have piecewise polynomial distribution in elements: 

1

( ) ( , , )
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i

N
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k i
i
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  , (2.7) 

where ( )
i

ku t  ( abbreviated as 
iu ) is the DOFs of element, ( , , )p

i x y z  (abbreviated as p
i ) is the basis 

function of element, Np = (p+1)(p+2)(p+3)/6 is the number of basis functions in three-dimensional 
case and p is the polynomial of degree. In this paper we employ the second order hierarchical scalar 

basis functions [37] to interpolate the field variables in the tetrahedral element to favorably carry out 
the higher order accuracy. Replacing the variables in Eq (2.6) with definitions from Eq (2.7) we have: 
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Take Gauss integral to two terms of the right side in Eq (2.8), we get volume integral and area 
integral respectively: 
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where  
k

w j  and  
k

w l  are Gaussian integral weights of volume and area, k  is the area of 

the integral surface, k  is the volume of the element. Let 
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the generalized system is simplified as follows: 

   n t
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where ( , , ) ( , , )mn m nx y z x y z d 


 M is the mass matrix only related to element and coordinates types,

 R u  is right hand side,  0, Ft T  and  , , , ,
T

u v w E    u is solution vector solved by time 

progression. 

2.3. Discretization in time via TVD-RK scheme 

After space discretization, the system (2.11) becomes first order ordinary differential equations 
of time. These equations can be time advanced implicitly or explicitly, the steady solution can be 
obtained after iterative convergence. Here we propose to use the second-order explicit TVD-RK 
scheme [38,39] for time discretization, which has less computation and storage per time step. Divide 
the time span  0, FT  into tN  equal subintervals defined by 
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0 10 tN
ft t t T     , 

where   0,1, ,n
tt n t n N    . t  is the time step size in reference [40].  
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where kV is the element volume, p is the order of basis function, ,l r indicate the left and right sides of 

the element surface, kc is the sound velocity at the center point of the element, V


is the velocity at the 

interface of the element, eS is the area of the four faces of the element, and n is the outer normal 

direction of the element boundary interface. Then the fully discrete scheme is given by 
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3. DG formulations based on POD 

In this part, first we introduce the POD algorithm, and then combine it with the DG method. POD 
method uses the transient solution calculated by DG format to form data set, and then obtains the 
optimal orthogonal basis function by characteristic orthogonal decomposition. The DG formulation 
based on POD is established by constructing the POD base space. 

3.1. Definition of snapshot matrix 

Let   0
( ) D o fN

i n i
u t


 denote the set of NDof observations (also called snapshots) of some physical 

process (we take transient solution of DG scheme here) taken at time tn. Choose  tl l N  distributed 

snapshot vectors from the Nt transient solution   0
( ) tN

t i n n
N u t


with DG scheme (2.11), we can establish 

five snapshot matrices: 
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Remark 3.1. The selection of snapshot vectors is very important to the numerical simulation results. 
In the calculation of actual problems, one can get samples with experiments data or interpolation, 

which means obtain snapshot set from actual physical processes. So   0
( ) tN

i n n
u t


 could be the 

experimental or previous results. 
 



92 

Networks and Heterogeneous Media  Volume 19, Issue 1, 89-105. 

3.2. Construction of eigenvalue problem 

Let 

( )

( ) ( ) ( )d o f d o f
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where r is the rank of uW , 1 2( , ,..., )r r rdiag      are the singular values of uW  with reduced-order

1 2 ... 0r      , 1 2( , ,..., )
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where 1,2,...,i r ，then we get:  
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To construct POD basis vectors, we need to solve eigenvalue problem of Eq (3.4). Since the 
dimension DofN  of ( )

dof dof

T
u u N NW W  is far greater than that of l selected snapshots, it will cost a lot to 

solve the eigenvalues and eigenvectors of T
u uW W  . Besides, it is usually infeasible to solve this 

eigenvalue problem directly. So we can transform it into a l l  eigenvalue problem here, in other 
words, we can use the space-time transformation technique to find the eigenvalues and eigenvectors 
of the correlation matrix ( )T

u u l lC  W W , thus obtaining the POD basis from it.  

As T
u uC W W  is symmetric positive semidefinite, we can get a set of positive eigenvalues in 

descending order λ1>λ2>···>λr>0 of C  and φ1, φ2,…,φr is the corresponding eigenvectors. The matrix 
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V


F = W  ( 1 2( , ,..., )r r  V ) is not standard orthogonal, so every column of the matrix F   is 

divided by , 1,i i r    to become a standard orthogonal matrix, define the POD basis as 
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In order to simplify the POD basis model, we define the relevant energy information to ignore modals 
corresponding to small eigenvalues, and choose a low POD basis vector space with dimension 

 u ud d r , we define the POD energy or error bound [41] as 
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Choose ud  to make     arg min :ud I d I d   , where 0 1 1t      is the percentage of the total 

energy captured by the reduced dimension space. In order to capture most of the energy of the POD 
basis,   must be selected near 1. 

3.3. POD-DG formulation 

We can use the above POD basis vectors to expand a reduced dimensional space 

  1 2, , , , , , ,
uu dD span u u v w E         and construct a reduced dimensional DG model to solve. 

Using Galerkin approximation, we project the model equation into the reduced dimensional space 
expanded by POD basis vectors, and then obtain the solving coefficient, which is general time varying 
solution. 

Before applying the POD method to the DG formula Euler equation, we need to solve problem 
(2.11) at tN  time steps and obtain the solutions  , , , ,l l l l l

n n n n nu v w E      at first. Then we choose l  

snapshots from tN  group of solutions (discrete data) and construct POD basis vectors through 

Section 3.1 and 3.2 such that 
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the dimension reduction model of three-dimensional flow field adopts the form with Galerkin 
approximation as 

       

       

   

1 1

1 1

1

,

,

u

v w

E

d d
u u

i i i i
i i

d d
v v w w

i i i i
i i

d
E E

i i
i

t t u t t

v t t w t t

E t t

 

 



   

   

 

     

     

  

 

 




 


  


 


 

 



. (3.9) 

Unifying the reduced-basis approximation of original variables above, the approximation of the 
solution can be represented as 

    
1 1 1 1

( )
p p p u

N N N d
POD POD p p u u p

nn n n i i n
n n n i

u u t u t t    
   

     , (3.10) 

With 

    
1

( ) , , , ,
ud

POD u u
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   ， , (3.11) 

where  ( )nu t  is the reduced-order solution and ( )u
i t  is coefficient to be found. 

Take Eq (3.11) into the global system (2.11), the reduced dimension model equation can be 
expressed as 
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After simplification, we get 
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where Ψ  is POD basis vector and ( )tα  is coefficient vector. Applying the Galerkin projection on 

it, we get the POD-DG formulation 
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Thus, we transform system (2.11) into reduced-order system (3.14), and solve ( )tα  instead of nu . 
Remark 3.2. During each time step, the DG formulation (2.11) contains k pN N  unknowns, while the 

POD-DG formulation (3.16) only contains ∑ 𝑑, , , , 𝑁 𝑁  𝑑 𝑟 ≪ 𝑁  unknowns. 

4. Numerical experiments 

In this section, we show some numerical experimental results to evaluate DG formula based on 
POD dimension reduction model for solving three-dimensional Euler equations. We choose l2 = O(Nt) 
equidistantly distributed snapshots vectors, you also can get other choice for l from ref. [42,43]. We 
both test the POD-DG method and traditional DG method for comparison, in all tests the order p of 
the interpolation polynomials in both two methods is the same. All the simulations are implemented 
with C++ programming language on Microsoft Visual Studio 2010 in a Windows 10 64-bit Intel Core 
i5-4590 3.3-GHz and 8-GB RAM small workstation. 

4.1. Isentropic vortex for inviscid flow 

As the isentropic vortex test case for inviscid flow is easy to get exact value, we consider it to 
analyze the accuracy of the POD-DG method developed in this paper at first, it also provides a more 
reliable basis for the results of the following tests. The initial average flow is ( , , , , ) (1,1,1,0,1)u v w p  , 

and the vortex is given by 
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,  

and  

, / , / 1r rp T p S p      , 

where ɛ = 5.0, x0 = y0 = 5.0 and γ = 1.4, (x0,y0), is vortex center position. The whole computational 
domain is cube, its size is [0,10] × [0,10] × [0,10]. We employ three successively refined meshes of 
tetrahedral elements to study the convergence of the POD-DG method. The boundary conditions is 
taken as the exact solution. We take global time step as Δt = 0.0001, both test the POD-DG method 
and traditional DG method till time Tf = 1.0. The exact solution of temperature T of isentropic vortex 
at any time is as follows 

𝑇 1 𝑒 .  

The exact solution of density ρ = p1/r is used to verify the accuracy of the proposed method. We define 
the L2-error in the norm as 

Table 1. L2-Error and convergence orders of traditional DG method and POD-DG method 
on three meshes: (M0) initial mesh, (M1) refined mesh, (M2) twice refined mesh. 

P-order Mesh traditional DG POD-DG 

L2 Error convergence order L2 Error convergence order 

1 (M0) 7.42e−2 - 7.76e−2 - 

(M1) 5.29e−2 2.110 5.58e−2 2.049 

(M2) 1.93e−2 2.355 2.37e−2 2.003 

(M3) 1.04e−2 2.362 1.39e−2 2.0533 

2 (M0) 2.42e−2 - 2.56e−2 - 

(M1) 1.54e−2 2.829 1.66e−2 2.709 

(M2) 4.06e−3 3.119 4.57e−3 3.017 

(M3) 1.78e−3 3.124 9.01 e−3 3.055 

 
 

1/ 2
2

e ee
e

u u u u


    
 
 .  
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Figure 2. Sequences of the four successively globally refined tetrahedral meshes. 

We give four successively refined meshes of tetrahedral elements as shown in Figure 2 to test the 
POD-DG method and traditional DG method respectively to compare, the numbers of elements, points, 
and faces for the coarse grids (M0), medium grids (M1), fine grids (M2) and finest grids (M3) 
are 929, 4311, 10802 and 21417 respectively. Under POD-DG method, the POD modes used in the 
meshes M0, M1 and M2 are 12, 12 and 18 with order p = 1, 17, 17 and 18 with order p = 2 respectively. 
Convergence results and the errors of the density for both two methods are presented in Table 1. We 
observe that under four successively refined meshes of tetrahedral elements, although POD-DG 
method lost a little bit of precision compared with traditional DG method, it’s still within the acceptable 
range, the calculation results are not affected. Besides, both two methods converge at about 2 in order 
p = 1 and 3 in order p = 2. Figure 3 shows the density distribution of POD-DG method, Figure 3a is 
the initial density distribution at starting time T0 = 0 and Figure 3b is the final density distribution at 
final time Tf = 1.0. It can be seen from Figure 2 that the vortex moves from (5,5,0) at T0 = 0 to (6,6,0) 
at Tf = 1.0. Note that this example only does the accuracy verification of the POD-DG algorithm 
because the computing time is stationary from T0 = 0 to final time Tf = 1.0. 

(M2)  (M3) 

(M1)  (M0) 
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Figure 3. Density distribution of POD-DG method. 

4.2. Subsonic flow 

Then we give the numerical results of an experiment about a subsonic flow at March number   
M∞ = 0.2 and adopt solid wall boundary condition and far field boundary condition. We also give three 
successively refined meshes of tetrahedral elements as shown in Figure 4 to test the POD-DG method 
and traditional DG method respectively for comparison, the numbers of elements for the coarse grids 
(M0), medium grids (M1), fine grids (M2) and finest grids (M3) are 7893, 37551, 51640 and 100483 
respectively, and the global time steps take as Δt = 10−5, 10−6, 10−6, 10−7 respectively. 
In order to prove that POD-DG method doesn’t influence the accuracy of the original DG method, we 
define the L2-errors in entropy ɛent as: 

where P∞ and ρ∞ are the pressure and density of the free stream respectively. And the convergence rate 
r  is obtained as follows 

where h is the grid size of α and β.  
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Figure 4. Sequences of the four successively globally refined tetrahedral meshes. 

 

Figure 5. Pressure distribution of DG method and POD-DG method. 

Convergence results of both POD-DG and traditional DG methods and the L2-errors in entropy 
are presented in Table 2. We observe that both POD-DG and traditional DG methods converge at the 
optimal order, which indicates POD-DG method maintains accuracy of original DG method. Besides, 
the comparison in terms of CPU time and the number of DOFs of two types of methods using different 
refined meshes are reported in Table 3, from it we can see that with the coarse meshes in (M0), the 

(M0)  (M1) 

(M2)  (M3) 

(a) DG method  (b) POD-DG method 
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proposed POD-DG method can speed 1.9 times compared with the traditional DG scheme for whole 
simulation time due to smaller number of DOFs, which means it accelerates the convergence rate. And 
with meshes refined the POD-DG method speed faster, in (M1), the speed-up ratio reaches 2.5, in (M2) 
and (M3), the speed-up ratio can reach 2.9. This presents that with the refinement of the mesh, the 
acceleration effect of proposed method is more obvious. Figure 5 shows the pressure distribution maps 
of stable flow under POD-DG and traditional DG methods, respectively. It can be seen from the figure 
that the result of POD-DG method is consistent with DG method, it conforms to the distribution of 
inviscid flow. 

Table 2. L2-error and convergence results between POD-DG method and traditional DG method. 

Mesh traditional DG POD-DG 

ɛent convergence rate ɛent convergence rate 

(M0) 1.11e−2 - 1.22e−2 - 

(M1) 5.12e−3 1.12515 5.26e−3 1.22189 

(M2) 2.09e−3 1.29081 1.91e−3 1.45718 

(M3) 7.91e-4 1.4018 6.87e-4 1.4752 

Table 3. Calculation results comparison between POD-DG method and traditional DG method. 

Mesh traditional DG POD-DG Speed up 

DOFs Computing Time (s) DOFs Computing Time (s) 

(M0) 31572 7822 38 4114 1.901 

(M1) 150204 17073 35 6789 2.515 

(M2) 206560 251076 68 84854 2.959 

(M3) 401932 364640 68 123023 2.964 

4.3. ONERA-M6 

Finally, we consider a numerical simulation of inviscid subsonic flow around ONERA-M6 wing 
with March number M∞ = 0.4 and angle of attack α = 00 to test the efficiency of the developed POD-
DG method. The ONERA-M6 wing [44] is a swept back wing with a root chord of about 0.8 m and a 
half span of about 1.2 m, and its profile shape is NACA0012. The geometric layout is shown in Figure 6 
and its tetrahedral meshes is shown in Figure 7. 
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Figure 6. Geometric layout of ONERA-M6 wing. 

 

Figure 7. Meshes of ONERA-M6 wing. 

As early as 1972, the National Space Research Institute of France had completed the wind tunnel 
of ONERA-M6 on the ONERA S2MA wind tunnel, and obtained quite abundant experimental data. 
At the same time, the experiment calculation results are numerous, so the data are accurate and reliable. 
We here give two successively refined meshes of tetrahedral elements to test the POD-DG method and 
traditional DG method respectively for comparison, the numbers of elements for the coarse grids (M0) 
and fine grids (M1) are 29992 and 95270 respectively, and the global time steps both take as 610t   . 
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Figure 8. Pressure distribution of DG method and POD-DG method. 

Table 4. Calculation results comparison between POD-DG method and traditional DG method. 

traditional DG POD-DG Speed up 

DOFs Computing Time (s) DOFs Computing Time (s) 

119968 15664 19 8855 1.769 

381080 118881 21 48418 2.455 

Figure 8 shows the pressure distribution of both POD-DG and traditional DG methods. It can be 
seen from the figure that the result of POD-DG method are consistent with DG method, it conforms to 
the distribution of inviscid flow. The comparison in terms of CPU time and the number of DOFs of 
two types of methods are presented in Table 4, from which we can see that compared with the 
traditional DG scheme, the proposed POD-DG method can speed up 1.769 times for whole simulation 
time under coarse grids and speed up 2.455 times under fine grids, again we find that the proposed 
POD-DG method speeds up the convergence rate and can save CPU time due to smaller number of 
DOFs. 

5. Conclusion 

In order to overcome the disadvantages of too many DOFs in DG algorithm, which leads to high 
computational cost and memory requirement, in this paper, we employ a proposed DG method based 
on POD model reduction (the POD-DG method) to improve the computational efficiency of DG 
algorithm when solving three-dimensional Euler equations. Combining with POD technology, one can 
construct snapshot matrixes which consist of transient solution with DG formula, build the POD base 
vector space and project the model to dimension reduction space via eigenorthogonal decomposition 
or SVD for calculation, thus DG algorithm can reduce the DOFs of calculation model, speed up 
convergence and save calculation time while maintaining acceptable accuracy. Some numerical tests 
are presented to validate its computational efficiency, by using POD-DG method, one can speed up 
the convergence rate and save CPU time because of the reduction in global dimension. It turns out that 
this proposed method is almost twice as fast as the original DG method, and with the refinement of the 
mesh, the acceleration effect is more obvious. Furthermore, the theoretical and numerical errors are 

(a) DG method  (b) POD-DG method 
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still within acceptable range with POD-DG method, it converges at almost same rate as traditional DG 
method, which indicates the proposed method ensures the accuracy of original method. 

In the near future, we will consider the POD-DG method on CFD problems with unsteady flow 
and combine nonlinear hyperreduction techniques to further reduce the global calculation time. 
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