In this paper, the pricing of stock loans when the underlying follows a Lˊevy-α-stable process with jumps is considered. Under this complicated model, the stock loan value satisfies a fractional-partial-integro-differential equation (FPIDE) with a free boundary. The difficulties in solving the resulting FPIDE system are caused by the non-localness of the fractional-integro differential operator, together with the nonlinearity resulting from the early exercise opportunity of stock loans. Despite so many difficulties, we have managed to propose a preconditioned conjugate gradient normal residual (PCGNR) method to price efficiently the stock loan under such a complicated model. In the proposed approach, the moving pricing domain is successfully dealt with by introducing a penalty term, however, the semi-globalness of the fractional-integro operator is elegantly handled by the PCGNR method together with the fast Fourier transform (FFT) technique. Remarkably, we show both theoretically and numerically that the solution determined from the fixed domain problem by the current method is always above the intrinsic value of the corresponding option. Numerical experiments suggest the accuracy and advantage of the current approach over other methods that can be compared. Based on the numerical results, a quantitative discussion on the impacts of key parameters is also provided.
Citation: Congyin Fan, Wenting Chen, Bing Feng. Pricing stock loans under the Lˊevy-α-stable process with jumps[J]. Networks and Heterogeneous Media, 2023, 18(1): 191-211. doi: 10.3934/nhm.2023007
[1] | Mashael Maashi, Mohammed Abdullah Al-Hagery, Mohammed Rizwanullah, Azza Elneil Osman . Deep convolutional neural network-based Leveraging Lion Swarm Optimizer for gesture recognition and classification. AIMS Mathematics, 2024, 9(4): 9380-9393. doi: 10.3934/math.2024457 |
[2] | Simone Fiori . Coordinate-free Lie-group-based modeling and simulation of a submersible vehicle. AIMS Mathematics, 2024, 9(4): 10157-10184. doi: 10.3934/math.2024497 |
[3] | Youseef Alotaibi, Veera Ankalu. Vuyyuru . Electroencephalogram based face emotion recognition using multimodal fusion and 1-D convolution neural network (ID-CNN) classifier. AIMS Mathematics, 2023, 8(10): 22984-23002. doi: 10.3934/math.20231169 |
[4] | Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705 |
[5] | Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329 |
[6] | David Delphenich . The role of pseudo-hypersurfaces in non-holonomic motion. AIMS Mathematics, 2020, 5(5): 4793-4829. doi: 10.3934/math.2020307 |
[7] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
[8] | Tamilvizhi Thanarajan, Youseef Alotaibi, Surendran Rajendran, Krishnaraj Nagappan . Improved wolf swarm optimization with deep-learning-based movement analysis and self-regulated human activity recognition. AIMS Mathematics, 2023, 8(5): 12520-12539. doi: 10.3934/math.2023629 |
[9] | He Yuan, Zhuo Liu . Lie n-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[10] | Guangyu An, Xueli Zhang, Jun He, Wenhua Qian . Characterizations of local Lie derivations on von Neumann algebras. AIMS Mathematics, 2022, 7(5): 7519-7527. doi: 10.3934/math.2022422 |
In this paper, the pricing of stock loans when the underlying follows a Lˊevy-α-stable process with jumps is considered. Under this complicated model, the stock loan value satisfies a fractional-partial-integro-differential equation (FPIDE) with a free boundary. The difficulties in solving the resulting FPIDE system are caused by the non-localness of the fractional-integro differential operator, together with the nonlinearity resulting from the early exercise opportunity of stock loans. Despite so many difficulties, we have managed to propose a preconditioned conjugate gradient normal residual (PCGNR) method to price efficiently the stock loan under such a complicated model. In the proposed approach, the moving pricing domain is successfully dealt with by introducing a penalty term, however, the semi-globalness of the fractional-integro operator is elegantly handled by the PCGNR method together with the fast Fourier transform (FFT) technique. Remarkably, we show both theoretically and numerically that the solution determined from the fixed domain problem by the current method is always above the intrinsic value of the corresponding option. Numerical experiments suggest the accuracy and advantage of the current approach over other methods that can be compared. Based on the numerical results, a quantitative discussion on the impacts of key parameters is also provided.
In this paper we compare quenched stochastic two-scale convergence [38] with the notion of stochastic unfolding [30,19], which is equivalent to stochastic two-scale convergence in the mean [6]. In particular, we introduce the concept of stochastic two-scale Young measures to relate quenched stochastic two-scale limits with the mean limit and discuss examples of convex homogenization problems that can be treated with two-scale convergence in the mean, but not conveniently in the quenched setting of two-scale convergence.
Two-scale convergence has been introduced in [32,1,25] for homogenization problems (partial differential equations or variational problems) with periodic coefficients. The essence of two-scale convergence is that the two-scale limit of an oscillatory sequence captures oscillations that emerge along the sequence and that are to leading order periodic on a definite microscale, typically denoted by
In this paper we are interested in stochastic homogenization, i.e. problems with random coefficients with a stationary distribution. The first stochastic homogenization result has been obtained by Papanicolaou and Varadhan in [33] (and independently by Kozlov [23]) for linear, elliptic equations with stationary and ergodic random coefficients on
Eωε(u)=∫QV(τxεω,∇u(x))−f(x)u(x)dx |
where
Ehom(u)=∫QVhom(∇u(x))−f(x)u(x)dx, |
where
● In the mean setting, minimizers
● In the quenched setting, one studies the limiting behavior of a minimizer
Similarly, two variants of stochastic two-scale convergence have been introduced as generalizations of periodic two-scale convergence (for the sake of brevity, we restrict the following review to the Hilbert-space case
● In [6,2] the mean variant has been introduced as follows: We say that a sequence of random fields
limε→0∫Ω×Quε(ω,x)φ(τxεω,x)dP(ω)dx=∫Ω×Qu(ω,x)φ(ω,x)dP(ω)dx, | (1) |
for all admissible test functions
● More recently, Zhikov and Pyatnitskii introduced in [38] a quenched variant: We say that a sequence
limε→0∫Quε(x)φ(τxεω0,x)dx=∫Ω×Qu(ω,x)φ(ω,x)dP(ω)dx, |
for all admissible test functions
Similarly to the periodic case, stochastic two-scale convergence in the mean can be rephrased with help of a transformation operator, see [34,19,30], where the stochastic unfolding operator
Tεu(ω,x)=u(τ−xεω,x), | (2) |
has been introduced. As in the periodic case, it is a linear isometry and it turns out that for a bounded sequence
In the present paper we compare the different notions of stochastic two-scale convergence. Although the mean and quenched notion of two-scale convergence look quite similar, it is non-trivial to relate both. As a main result, we introduce stochastic two-scale Young measures as a tool to compare quenched and mean limits, see Theorem 3.12. The construction invokes a metric characterization of quenched stochastic two-scale convergence, which is a tool of independent interest, see Lemma 3.6. As an application we demonstrate how to lift a mean two-scale homogenization result to a quenched statement, see Section 4.3. Moreover, we present two examples that can only be conveniently treated with the mean notion of two-scale convergence. In the first example, see Section 4.1, the assumption of ergodicity is dropped (as it is natural in the context of periodic representative volume approximation schemes). In the second example we consider a model that invokes a mean field interaction in form of a variance-type regularization of a convex integral functional with degenerate growth, see Section 4.2.
Structure of the paper. In the following section we present the standard setting for stochastic homogenization. In Section 3 we provide the main properties of the stochastic unfolding method, present the most important facts about quenched two-scale convergence and present our results about Young measures. In Section 4 we present examples of stochastic homogenization and applications of the methods developed in this paper.
In the following we briefly recall the standard setting for stochastic homogenization. Throughout the entire paper we assume the following:
Assumption 2.1. Let
(i)(Group property).
(ii)(Measure preservation).
(iii)(Measurability).
We write
Lemma 2.2 (Stationary extension). Let
‖Sφ‖Lp(Ω×Q)=|Q|1p‖φ‖Lp(Ω). |
We say
every shift invariant A∈F (i.e. τxA=A for all x∈Rd) satisfies P(A)∈{0,1}. |
In this case the celebrated Birkhoff's ergodic theorem applies, which we recall in the following form:
Theorem 2.3(Birkhoff's ergodic Theorem [12,Theorem 10.2.II]). Let
limε→0∫QSφ(ω,xε)dx=|Q|⟨φ⟩. | (3) |
Furthermore, if
Stochastic gradient. For
Diφ=limh→0Uheiφ−φh, |
which we refer to as stochastic derivative.
Lppot(Ω):=¯R(D)⊂Lp(Ω)d | (4) |
the closure of the range of
Lpinv(Ω)={φ∈Lp(Ω):Uxφ=φfor all x∈Rd}, |
and denote by
⟨⋅⟩ is ergodic ⇔ Lpinv(Ω)≃R ⇔ Pinvf=⟨f⟩. |
Random fields. We introduce function spaces for functions defined on
Xa⊗Y:={n∑i=1φiηi:φi∈X,ηi∈Y,n∈N} |
in
Xa⊗Y:={n∑i=1φiηi:φi∈X,ηi∈Y,n∈N} |
in
In the following we first discuss two notions of stochastic two-scale convergence and their connection through Young measures. In particular, Section 3.1 is devoted to the introduction of the stochastic unfolding operator and its most important properties. In Section 3.2 we discuss quenched two-scale convergence and its properties. Section 3.3 presents the results about Young measures.
In the following we briefly introduce the stochastic unfolding operator and provide its main properties, for the proofs and detailed studies we refer to [19,30,31,34].
Lemma 3.1([19,Lemma 3.1]). Let
Tε:Lp(Ω×Q)→Lp(Ω×Q) |
such that
∀u∈Lp(Ω)a⊗Lp(Q):(Tεu)(ω,x)=u(τ−xεω,x)a.e.inΩ×Q. |
Moreover, its adjoint is the unique linear isometric isomorphism
Definition 3.2 (Unfolding and two-scale convergence in the mean). The operator
Tεuε→u weakly (strongly) in Lp(Ω×Q). |
In this case we write
Remark 1 (Equivalence to stochastic two-scale convergence in the mean). Stochastic two-scale convergence in the mean was introduced in [6]. In particular, it is said that a sequence of random fields
limε→0⟨∫Quε(ω,x)φ(τxεω,x)dx⟩=⟨∫Qu(ω,x)φ(ω,x)dx⟩, | (5) |
for any
⟨∫Quε(T∗εφ)dx⟩=⟨∫Q(Tεuε)φdx⟩, | (6) |
which proves the equivalence.
We summarize some of the main properties:
Proposition 1 (Main properties). Let
(i)(Compactness, [19,Lemma 3.4].) If
(ii)(Limits of gradients, [19,Proposition 3.7]) Let
uε2⇀uinLp(Ω×Q),∇uε2⇀∇u+χinLp(Ω×Q)d. | (7) |
If, additionally,
(iii)(Recovery sequences, [19,Lemma 4.3]) Let
uε2→u,∇uε2→∇u+χinLp(Ω×Q). |
If additionally
In this section, we recall the concept of quenched stochastic two-scale convergence (see [38,16]). The notion of quenched stochastic two-scale convergence is based on the individual ergodic theorem, see Theorem 2.3. We thus assume throughout this section that
⟨⋅⟩isergodic. |
Moreover, throughout this section we fix exponents
●
●
We denote by
A:={φ(ω,x)=φΩ(ω)φQ(x):φΩ∈DΩ,φQ∈DQ} |
the set of simple tensor products (a countable set), and by
D0:={m∑j=1λjφj:m∈N,λ1,…,λm∈Q,φ1,…,φm∈A}. |
We finally set
D:=spanA=spanD0and¯D:=span(DQ) |
(the span of
Ω0the set of admissible realizations; |
it is a set of full measure determined by the following lemma:
Lemma 3.3. There exists a measurable set
lim supε→0‖(T∗εφ)(ω0,⋅)‖Lr(Q)≤‖φ‖Brandlimε→0∫QT∗ε(φφ′)(ω0,x)dx=⟨∫Q(φφ′)(ω0,x)dx⟩. |
Proof. This is a simple consequence of Theorem 2.3 and the fact that
For the rest of the section
The idea of quenched stochastic two-scale convergence is similar to periodic two-scale convergence: We associate with a bounded sequence
Definition 3.4 (quenched two-scale limit, cf. [38,17]). Let
limε→0∫Quε(x)(T∗εφ)(ω0,x)dx=∫Ω∫Qu(x,ω)φ(ω,x)dxdP(ω). | (8) |
Lemma 3.5 (Compactness). Let
‖u‖Bp≤lim infε→0‖uε‖Lp(Q), | (9) |
and
(For the proof see Section 3.2.1).
For our purpose it is convenient to have a metric characterization of two-scale convergence.
Lemma 3.6 (Metric characterization). (i)Let
d(U,V;Lin(D)):=∑j∈N2−j|U(φj)−V(φj)||U(φj)−V(φj)|+1 |
is complete and separable.
(ii)Let
Jω0ε:Lp(Q)→Lin(D),(Jω0εu)(φ):=∫Qu(x)(T∗εφ)(ω0,x)dx,J0:Bp→Lin(D),(J0u)(φ):=⟨∫Quφ⟩. |
Then for any bounded sequence
(For the proof see Section 3.2.1).
Remark 2. Convergence in the metric space
Lemma 3.7 (Strong convergence implies quenched two-scale convergence). Let
(For the proof see Section 3.2.1).
Definition 3.8 (set of quenched two-scale cluster points). For a bounded sequence
We conclude this section with two elementary results on quenched stochastic two-scale convergence:
Lemma 3.9 (Approximation of two-scale limits). Let
(For the proof see Section 3.2.1).
Similar to the slightly different setting in [17] one can prove the following result:
Lemma 3.10 (Two-scale limits of gradients). Let
uε2⇀ω0uand∇uε2⇀ω0∇u+χasε→0. |
Proof of Lemma 3.5. Set
Uε(φ):=∫Quε(x)(T∗εφ)(ω0,x)dx. |
Note that for all
lim supε→0|uε(φ)|≤lim supε→0‖uε‖Lp(Q)‖T∗εφ(ω0,⋅)‖Lq(Q)≤C0‖φ‖Bq. | (10) |
Since
‖u‖Bp=‖U‖(Bq)∗≤C0=lim infε→0‖uε‖Lp(Q). |
Since
∫Quε(x)φQ(x)dx=uε(1ΩφQ)→U(1ΩφQ)=⟨∫Qu(ω,x)φQ(x)dx⟩=∫Q⟨u(x)⟩φQ(x)dx. |
Since
Proof of Lemma 3.6. We use the following notation in this proof
(i) Argument for completeness: If
Argument for separability: Consider the (injective) map
(ii) Let
Proof of Lemma 3.7. This follows from Hölder's inequality and Lemma 3.3, which imply for all
limsupε→0∫Q|(uε(x)−u(x))T∗εφ(ω0,x)|dx≤limsupε→0(‖uε−u‖Lp(Q)(∫Q|T∗εφ(ω0,x)|qdx)1q)=0. |
Proof of Lemma 3.9. Since
∫Qvδ,εT∗εφ(ω0,x)=∫QT∗ε(vδφ)(ω0,x)→⟨∫Qvδφ⟩. |
By appealing to the metric characterization, we can rephrase the last convergence statement as
d(Jω0εvδ,ε,J0u;Lin(D))≤d(Jω0εvδ,ε,J0vδ;Lin(D))+d(J0vδ,J0u;Lin(D)). |
The second term is bounded by
In this section we establish a relation between quenched two-scale convergence and two-scale convergence in the mean (in the sense of Definition 3.2). The relation is established by Young measures: We show that any bounded sequence
⟨⋅⟩ is ergodic. |
Also, throughout this section we fix exponents
Definition 3.11. We say
where
Theorem 3.12. Let
and
Moreover, we have
Finally, if there exists
(For the proof see Section 3.3.1).
In the opposite direction we observe that quenched two-scale convergence implies two-scale convergence in the mean in the following sense:
Lemma 3.13. Consider a family
(i)There exists
(ii)There exists a sequence
(iii)There exists a bounded sequence
Then
(For the proof see Section 3.3.1).
To compare homogenization of convex integral functionals w.r.t. stochastic two-scale convergence in the mean and in the quenched sense, we appeal to the following result:
Lemma 3.14. Let
(11) |
(For the proof see Section 3.3.1).
Remark 3. In [18,Lemma 5.1] it is shown that
(12) |
We first recall some notions and results of Balder's theory for Young measures [4]. Throughout this section
Definition 3.15. ● We say a function
● A function
● A sequence
● A Young measure in
Theorem 3.16.([4,Theorem I]). Let
(13) |
provided that the negative part
In order to apply the above theorem we require an appropriate metric space in which two-scale convergent sequences and their limits embed:
Lemma 3.17. (i)>We denote by
is a complete, separable metric space.
(ii)For
(14) |
Then
(iii)Let
(15) |
(iv)For
is lower semicontinuous on
(v)For all
(vi)For all
(vii)Let
Proof.(i)This is a direct consequence of Lemma 3.6 (i) and the fact that the product of complete, separable metric spaces remains complete and separable.
(ii)Let
Case 1:
W.l.o.g. we may assume that
(16) |
Moreover,
and thus (by linearity)
Case 2:
In this case there exist a bounded sequence
(17) |
This implies that
Case 3:
There exists a bounded sequence
(18) |
Furthermore, Lemma 3.6 implies that
(iii)We first argue that the representation (14) of
To see (15) let
(iv)Let
(v)This follows from the definition and duality argument (15).
(vi)Let
● Case 1:
● Case 2:
● Case 3:
In all of these cases we deduce that
(vii)This is a direct consequence of (ii) – (vi), and Lemma 3.6.
Now we are in position to prove Theorem 3.12
Proof of Theorem 3.12. Let
Step 1. (Identification of
We claim that
From Lemma 3.17 (iv) and (vi) we deduce that
We conclude that
Step 2. (Compactness and definition of
for all
Step 3. (Lower semicontinuity estimate). Note that
defines a normal integrand, as can be seen as in the proof of Lemma 3.17. Thus Theorem 3.16 implies that
In view of Lemma 3.17 we have
Step 4. (Identification of the two-scale limit in the mean). Let
defines a normal integrand. Since
Set
Since
Step 5. Recovery of quenched two-scale convergence. Suppose that
is a normal integrand and
Thus, there exists a subsequence (not relabeled) such that
Proof of Lemma 3.14. Step 1. Representation of the functional by a lower semicontinuous integrand on
For all
We extend
and
Since
Step 2. Conclusion. As in Step 1 of the proof of Theorem 3.12 we may associate with the sequence
Proof of Lemma 3.13. By (ii) and (iii) the sequence
In this section we revisit a standard model example of stochastic homogenization of integral functionals from the viewpoint of stochastic two-scale convergence and unfolding. In particular, we discuss two examples of convex homogenization problems that can be treated with stochastic two-scale convergence in the mean, but not with the quenched variant. In the first example in Section 4.1 the randomness is nonergodic and thus quenched two-scale convergence does not apply. In the second example, in Section 4.2, we consider a variance-regularization to treat a convex minimization problem with degenerate growth conditions. In these two examples we also demonstrate the simplicity of using the stochastic unfolding operator. Furthermore, in Section 4.3 we use the results of Section 3.3 to further reveal the structure of the previously obtained limits in the classical ergodic case with non-degenerate growth with help of Young measures. In particular, we show how to lift mean homogenization results to quenched statements.
In this section we consider a nonergodic stationary medium. Such random ensembles arise naturally, e.g., in the context of periodic representative volume element (RVE) approximations, see [13]. For example, we may consider a family of i.i.d. random variables
where
In this section we consider the following situation. Let
(A1)
(A2)
(A3)There exists
for a.a.
We consider the functional
(19) |
Under assumptions (A1)-(A3), in the limit
(20) |
Theorem 4.1 (Two-scale homogenization). Let
(i)(Compactness and liminf inequality.) Let
(21) |
(22) |
(ii)(Limsup inequality.) Let
(23) |
(24) |
Proof of Theorem 4.1. (i) The Poincaré inequality and (A3) imply that
(25) |
and thus using the convexity of
(ii) The existence of a sequence
This concludes the claim, in particular, we even show a stronger result stating convergence of the energy.
Remark 4 (Convergence of minimizers). We consider the setting of Theorem 4.1. Let
where
where
Remark 5 (Uniqueness). If
In this section we consider homogenization of convex functionals with degenerate growth. More precisely, we consider an integrand
(A3')There exists
(26) |
and
for a.a.
Moreover, we assume that
for
Recently, in [29,20,21] it shown that
for
(27) |
for
(28) |
One of the difficulties in the proof of the homogenization result for
It is simple to show that the infimum on the right-hand side is attained by a unique minimizer. We also consider the corresponding regularized homogenized integral functional
for
Lemma 4.2. Let
(29) |
Moreover,
(i)If
(ii)For any
Proof. Let
We have
Letting first
We further consider a sequence
The first inequality follows by (29) and the second is a consequence of the fact that
If
This means that (ii) holds.
In the following we introduce a variance regularization of the original functional
(30) |
for
Lemma 4.3. Let
Proof. By Jensen's and Hölder's inequalities we have
where we use the notation
In the end, using the variance-regularization we obtain
This concludes the proof.
The regularization on the
Lemma 4.4. Let
(i)If
(ii)For any
Proof. (i) Let
This means that
(ii) For an arbitrary
Using this and the dominated convergence theorem, we conclude that
This in turn yields
We extract a diagonal sequence
The homogenization of the regularized functional
Theorem 4.5. Let
(i)Let
(ii)If
(iii)For any
Proof. (i) The statement follows analogously to the proof of Theorem 4.1 (i).
(ii) Let
(ii) This part is analogous to Theorem 4.1 and Remark 5.
The results of Lemmas (4.2) and (4.4), Theorem (4.5) and [29, 20,21] can be summarized in the following commutative diagram:
The arrows denote Mosco convergence in the corresponding convergence regimes.
In this section we demonstrate how to lift homogenization results w.r.t. two-scale convergence in the mean to quenched statements at the example of Section 4.1. Throughout this section we assume that
with
Before presenting the main result of this section, we remark that in the ergodic case, the limit functional (20) reduces to a single-scale energy
where the homogenized integrand
(31) |
In particular, we may obtain an analogous statement to Theorem 4.1 where we replace
Theorem 4.6. Let
Remark 6 (Identification of quenched two-scale cluster points). If we combine Theorem 4.6 with the identification of the support of the Young measure in Theorem 3.12 we conclude the following: There exists a subsequence such that
In the proof of Theorem 4.6 we combine homogenization in the mean in form of Theorem 4.1, the connection to quenched two-scale limits via Young measures in form of Theorem 3.12, and a recent result described in Remark 3 by Nesenenko and the first author.
Proof of Theorem 4.6. Step 1. (Identification of the support of
Since
(32) |
In particular, the sequence
In view of (32) and the fact that
Since
Step 2. (The strictly convex case).
The uniqueness of
On the other hand, since
The authors thank Alexander Mielke for fruitful discussions and valuable comments. MH has been funded by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1114 "Scaling Cascades in Complex Systems", Project C05 "Effective models for materials and interfaces with multiple scales". SN and MV acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 405009441.
[1] |
W. Chen, L. Xu, S. P. Zhu, Stock loan valuation under a stochstic interest rate model, Comput. Math. Appl., 70 (2015), 1757–1771. https://doi.org/10.1016/j.camwa.2015.07.019 doi: 10.1016/j.camwa.2015.07.019
![]() |
[2] |
J. Xia, X. Y. Zhou, Stock loans, Math. Financ., 17 (2007), 307–317. https://doi.org/10.1111/j.1467-9965.2006.00305.x doi: 10.1111/j.1467-9965.2006.00305.x
![]() |
[3] |
Z. Liang, W. Wu, S. Jiang, Stock loan with automatic termination clause, cap and margin, Comput. Math. Appl., 60 (2010), 3160–3176. https://doi.org/10.1016/j.camwa.2010.10.021 doi: 10.1016/j.camwa.2010.10.021
![]() |
[4] |
N. Cai, W. Zhang, Regime classification and stock loan valuation, Oper. Res., 68 (2020), 965–983. https://doi.org/10.1287/opre.2019.1934 doi: 10.1287/opre.2019.1934
![]() |
[5] |
M. Dai, Z. Q. Xu, Optimal redeeming strategy of stock loans with finite maturity, Math. Financ., 21 (2011), 775–793. https://doi.org/10.1111/j.1467-9965.2010.00449.x doi: 10.1111/j.1467-9965.2010.00449.x
![]() |
[6] |
X. Lu, E. R. M. Putri, Semi-analytic valuation of stock loans with finite maturity, Commun. Nonlinear. Sci., 27 (2015), 206–215. https://doi.org/10.1016/j.cnsns.2015.03.007 doi: 10.1016/j.cnsns.2015.03.007
![]() |
[7] |
D. Prager, Q. Zhang, Stock loan valuation under a regime-switching model with mean-reverting and finite maturity, J. Syst. Sci. Complex., 23 (2010), 572–583. https://doi.org/10.1007/s11424-010-0146-7 doi: 10.1007/s11424-010-0146-7
![]() |
[8] |
T. W. Wong, H. Y. Wong, Stochastic volatility asymptotics of stock loans: valuation and optimal stopping, J. Math. Anal. Appl., 394 (2012), 337–346. https://doi.org/10.1016/j.jmaa.2012.04.067 doi: 10.1016/j.jmaa.2012.04.067
![]() |
[9] |
Z. Zhou, J. Ma, X. Gao, Convergence of iterative Laplace transform methods for a system of fractional PDEs and PIDEs arising in option pricing, E. Asian. J. Appl. Math., 8 (2018), 782–808. https://doi.org/10.4208/eajam.130218.290618 doi: 10.4208/eajam.130218.290618
![]() |
[10] |
W. Chen, X. Xu, S. P. Zhu, Analytically pricing double barrier options based on a time-fractional Black-Scholes equation, Comput. Math. Appl., 69 (2015), 1407–1419. https://doi.org/10.1016/j.camwa.2015.03.025 doi: 10.1016/j.camwa.2015.03.025
![]() |
[11] |
P. Carr, H. Geman, D. B. Madan, Y. Marc, The fine structure of asset returns: an empirical investigation, J. Bus., 75 (2002), 305–332. https://doi.org/10.1086/338705 doi: 10.1086/338705
![]() |
[12] |
A. Cartea, D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A, 374 (2007), 749–763. https://doi.org/10.1016/j.physa.2006.08.071 doi: 10.1016/j.physa.2006.08.071
![]() |
[13] |
W. Chen, X. Xu, S. P. Zhu, Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative, Q. Appl. Math., 72 (2014), 597–611. https://doi.org/10.1090/S0033-569X-2014-01373-2 doi: 10.1090/S0033-569X-2014-01373-2
![]() |
[14] |
W. Chen, M. Du, X. Xu, An explicit closed-form analytical solution for European options under the CGMY model, Commun. Nonlinear. Sci., 42 (2017), 285–297. https://doi.org/10.1016/j.cnsns.2016.05.026 doi: 10.1016/j.cnsns.2016.05.026
![]() |
[15] |
W. Chen, S. Lin, Option pricing under the KoBol model, Anziam. J., 60 (2018), 175–190. https://doi.org/10.1017/S1446181118000196 doi: 10.1017/S1446181118000196
![]() |
[16] |
W. Chen, X. Xu, S. P. Zhu, A predictor-corrector approach for pricing American options under the finite moment log-stable model, Appl. Numer. Math., 97 (2015), 15–29. https://doi.org/10.1016/j.apnum.2015.06.004 doi: 10.1016/j.apnum.2015.06.004
![]() |
[17] |
X. M. Gu, T. Z. Huang, C. C. Ji, B. Carpentieri, A. A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput., 72 (2017): 957–985. https://doi.org/10.1007/s10915-017-0388-9 doi: 10.1007/s10915-017-0388-9
![]() |
[18] |
X. M. Gu, Y. L. Zhao, X. L. Zhao, B. Carpentieri, Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math-Theory. Me., 14 (2021): 893–919. https://doi.org/10.48550/arXiv.2003.07020 doi: 10.48550/arXiv.2003.07020
![]() |
[19] |
X. Chen, D. Ding, S. L. Lei, W. Wang, A fast preconditioned iterative method for two-dimensional options pricing under fractional differential models. Comput. Math. Appl., 79 (2020): 440–456. https://doi.org/10.1016/j.camwa.2019.07.010 doi: 10.1016/j.camwa.2019.07.010
![]() |
[20] |
S. L. Lei, W. Wang, X. Chen, D. Ding, A fast preconditioned penalty method for American options pricing under regime-switching tempered fractional diffusion models, J. Sci. Comput., 75 (2018): 1633–1655. https://doi.org/10.1007/s10915-017-0602-9 doi: 10.1007/s10915-017-0602-9
![]() |
[21] |
W. Wang, X. Chen, D. Ding, S. L. Lei, Circulant preconditioning technique for barrier options pricing under fractional diffusion models, Int. J. Comput. Math., 92 (2015): 2596–2614. http://dx.doi.org/10.1080/00207160.2015.1077948 doi: 10.1080/00207160.2015.1077948
![]() |
[22] |
X. Chen, W. Wang, D. Ding, S. L. Lei, A fast preconditioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation, Comput. Math. Appl., 73 (2017): 1932–1944. http://dx.doi.org/10.1016/j.camwa.2017.02.040 doi: 10.1016/j.camwa.2017.02.040
![]() |
[23] |
S. G. Kou, A jump-diffusion model for option pricing, Manage. Sci., 48 (2002), 1086–1101. https://doi.org/10.1287/mnsc.48.8.1086.166 doi: 10.1287/mnsc.48.8.1086.166
![]() |
[24] |
B. F. Nielsen, O. Skavhaug, A. Tveito, Penalty and front-fixing methods for the numerical solution of American option problems, J. Comput. Financ., 4 (2002), 69–97. https://doi.org/10.21314/jcf.2002.084 doi: 10.21314/jcf.2002.084
![]() |
[25] |
S. Chen, F. Liu, X. Jiang, I. Turner, V. Anh, A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients, Appl. Math. Comput., 257 (2015), 591–601. https://doi.org/10.1016/j.amc.2014.08.031 doi: 10.1016/j.amc.2014.08.031
![]() |
[26] |
H. Hejazi, T. Moroney, F. Liu, Stability and convergence of a finite volume method for the space fractional advection-dispersion equation, J. Comput. Appl. Math., 255 (2014), 684–697. https://doi.org/10.1016/j.cam.2013.06.039 doi: 10.1016/j.cam.2013.06.039
![]() |
[27] |
O. Marom, E. Momoniat, A comparison of numerical solutions of fractional diffusion models in finance, Nonlinear. Anal-Real., 10 (2009), 3435–3442. https://doi.org/10.1016/j.nonrwa.2008.10.066 doi: 10.1016/j.nonrwa.2008.10.066
![]() |
[28] |
N. Cai, S. G. Kou, Option pricing under a mixed-exponential jump diffusion model, Manage. Sci., 57 (2011), 2067–2081. https://doi.org/10.1287/mnsc.1110.1393 doi: 10.1287/mnsc.1110.1393
![]() |
[29] |
Y. L. Zhao, P. Y. Zhu, X. M. Gu, X. L. Zhao, H. Y. Jian, A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation, J. Sci. Comput., 83 (2020): 10. https://doi.org/10.1007/s10915-020-01193-1 doi: 10.1007/s10915-020-01193-1
![]() |
[30] |
S. L. Lei, H. W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242 (2013), 715–725. https://doi.org/10.1016/j.jcp.2013.02.025 doi: 10.1016/j.jcp.2013.02.025
![]() |
1. | Thuyen Dang, Yuliya Gorb, Silvia Jiménez Bolaños, Homogenization of a NonLinear Strongly Coupled Model of Magnetorheological Fluids, 2023, 55, 0036-1410, 102, 10.1137/22M1476939 | |
2. | S. Yu. Dobrokhotov, V. E. Nazaikinskii, Averaging method for problems on quasiclassical asymptotics, 2024, 70, 2949-0618, 53, 10.22363/2413-3639-2024-70-1-53-76 | |
3. | Patrick Dondl, Yongming Luo, Stefan Neukamm, Steve Wolff-Vorbeck, Efficient Uncertainty Quantification for Mechanical Properties of Randomly Perturbed Elastic Rods, 2024, 22, 1540-3459, 1267, 10.1137/23M1574233 | |
4. | Sabine Haberland, Patrick Jaap, Stefan Neukamm, Oliver Sander, Mario Varga, Representative Volume Element Approximations in Elastoplastic Spring Networks, 2024, 22, 1540-3459, 588, 10.1137/23M156656X | |
5. | S. Yu. Dobrokhotov, V. E. Nazaikinskii, Homogenization Method for Problems on Quasiclassical Asymptotics, 2024, 1072-3374, 10.1007/s10958-024-07490-6 |