Loading [MathJax]/jax/output/SVG/jax.js

Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population

  • Received: 01 January 2022 Revised: 01 May 2022 Published: 17 June 2022
  • 35Q92, 49Q22, 92C17

  • We study the extension of the macroscopic crowd motion model with congestion to a population divided into two types. As the set of pairs of density whose sum is bounded is not geodesically convex in the product of Wasserstein spaces, the generic splitting scheme may be ill-posed. We thus analyze precisely the projection operator on the set of admissible densities, and link it to the projection on the set of measures of bounded density in the mono-type case. We then derive a numerical scheme to adapt the one-typed population splitting scheme.

    Citation: Félicien BOURDIN. Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population[J]. Networks and Heterogeneous Media, 2022, 17(5): 783-801. doi: 10.3934/nhm.2022026

    Related Papers:

    [1] Sherven Sharma, Pournima Kadam, Ram P Singh, Michael Davoodi, Maie St John, Jay M Lee . CCL21-DC tumor antigen vaccine augments anti-PD-1 therapy in lung cancer. AIMS Medical Science, 2021, 8(4): 269-275. doi: 10.3934/medsci.2021022
    [2] Payal A. Shah, John Goldberg . Novel Approaches to Pediatric Cancer: Immunotherapy. AIMS Medical Science, 2015, 2(2): 104-117. doi: 10.3934/medsci.2015.2.104
    [3] Anuj A. Shukla, Shreya Podder, Sana R. Chaudry, Bryan S. Benn, Jonathan S. Kurman . Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. AIMS Medical Science, 2022, 9(2): 348-361. doi: 10.3934/medsci.2022016
    [4] Elif Basaran, Gulali Aktas . The relationship of vitamin D levels with hemogram indices and metabolic parameters in patients with type 2 diabetes mellitus. AIMS Medical Science, 2024, 11(1): 47-57. doi: 10.3934/medsci.2024004
    [5] Kwon Yong, Martin Brechbiel . Application of 212Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation. AIMS Medical Science, 2015, 2(3): 228-245. doi: 10.3934/medsci.2015.3.228
    [6] Anne A. Adeyanju, Wonderful B. Adebagbo, Olorunfemi R. Molehin, Omolola R. Oyenihi . Exploring the multi-drug resistance (MDR) inhibition property of Sildenafil: phosphodiesterase 5 as a therapeutic target and a potential player in reversing MDR for a successful breast cancer treatment. AIMS Medical Science, 2025, 12(2): 145-170. doi: 10.3934/medsci.2025010
    [7] Snigdha Misra, Yang Wai Yew, Tan Seok Shin . Maternal dietary patterns, diet quality and micronutrient status in gestational diabetes mellitus across different economies: A review. AIMS Medical Science, 2019, 6(1): 76-114. doi: 10.3934/medsci.2019.1.76
    [8] Marcus Martin, Reinand Thompson, Nikhil Tirupathi . Does vitamin D level have effect on COVID-19 outcomes?. AIMS Medical Science, 2023, 10(2): 141-150. doi: 10.3934/medsci.2023012
    [9] Ray Marks . Narrative Review of Vitamin D and Its Specific Impact on Balance Capacity in Older Adults. AIMS Medical Science, 2016, 3(4): 345-358. doi: 10.3934/medsci.2016.4.345
    [10] Ahlam Al-Zahrani, Shorooq Al-Marwani . The effectiveness of an educational session about folic acid on pregnant women's knowledge in Yanbu City, Kingdom of Saudi Arabia. AIMS Medical Science, 2022, 9(3): 394-413. doi: 10.3934/medsci.2022019
  • We study the extension of the macroscopic crowd motion model with congestion to a population divided into two types. As the set of pairs of density whose sum is bounded is not geodesically convex in the product of Wasserstein spaces, the generic splitting scheme may be ill-posed. We thus analyze precisely the projection operator on the set of admissible densities, and link it to the projection on the set of measures of bounded density in the mono-type case. We then derive a numerical scheme to adapt the one-typed population splitting scheme.





    [1]

    L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metricspaces and in the Space of Proba-bility Measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005.

    [2]

    T. M. Blackwell and P. Bentley, Don't push me! Collision-avoiding swarms, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), IEEE, 2 (2002).

    [3] Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transportation Research Part B: Methodological (2001) 35: 293-312.
    [4]

    C. E. Brennen, Fundamentals of Multiphase flow, 2005.

    [5]

    C. Burstedde, et al., Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A: Statistical Mechanics and its Applications, 295 (2001), 507–525.

    [6] Incompressible immiscible multiphase flows in porous media: A variational approach. Anal. PDE (2017) 10: 1845-1876.
    [7] Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal. (2017) 49: 1385-1418.
    [8] Finite speed of propagation in porous media by mass transportation methods. C. R. Math. (2004) 338: 815-818.
    [9] (2005) Multiphase Flow Handbook. CRC press.
    [10] Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural Information Processing Systems (2013) 26: 2292-2300.
    [11] Social force model for pedestrian dynamics. Physical review E (1995) 51: 4282.
    [12] The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. (1998) 29: 1-17.
    [13] On nonlinear cross-diffusion systems: An optimal transport approach. Calc. Var. Partial Differential Equations (2018) 57: 1-40.
    [14] A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. (2010) 20: 1787-1821.
    [15] Handling congestion in crowd motion modeling. Netw. Heterog. Media (2011) 6: 485-519.
    [16] A non-local model for a swarm. J. Math. Biol. (1999) 38: 534-570.
    [17] An interacting particle system modelling aggregation behavior: From individuals to populations. J. Math. Biol. (2005) 50: 49-66.
    [18] Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations (1977) 26: 347-374.
    [19] The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations (2001) 26: 101-174.
    [20] Entropic approximation of Wasserstein gradient flows. SIAM J. Imaging Sci. (2015) 8: 2323-2351.
    [21]

    A. Roudneff-Chupin, Modélisation macroscopique de mouvements de foule, Phdthesis, PhD Thesis, Université Paris-Sud XI, 2011.

    [22]

    F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkhäuser/Springer, Cham, 2015.

    [23] Focusing in collision problems in solids. J. Appl. Physics (1957) 28: 1246-1250.
    [24] Macroscopic dynamics of multilane traffic. Physical Review E (1999) 29: 6328.
  • This article has been cited by:

    1. Giacomo Albi, Young-Pil Choi, Massimo Fornasier, Dante Kalise, Mean Field Control Hierarchy, 2017, 76, 0095-4616, 93, 10.1007/s00245-017-9429-x
    2. Ertug Olcay, Boris Lohmann, 2019, Extension of the Cucker-Dong Flocking with a Virtual Leader and a Reactive Control Law, 978-3-907144-00-8, 101, 10.23919/ECC.2019.8796225
    3. Giacomo Albi, Mattia Bongini, Emiliano Cristiani, Dante Kalise, Invisible Control of Self-Organizing Agents Leaving Unknown Environments, 2016, 76, 0036-1399, 1683, 10.1137/15M1017016
    4. Mattia Bongini, Giuseppe Buttazzo, Optimal control problems in transport dynamics, 2017, 27, 0218-2025, 427, 10.1142/S0218202517500063
    5. Massimo Fornasier, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, 2014, Mean-field optimal control by leaders, 978-1-4673-6090-6, 6957, 10.1109/CDC.2014.7040482
    6. Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat, Sparse stabilization and control of alignment models, 2015, 25, 0218-2025, 521, 10.1142/S0218202515400059
    7. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Sparse Jurdjevic–Quinn stabilization of dissipative systems, 2017, 86, 00051098, 110, 10.1016/j.automatica.2017.08.012
    8. Mattia Bongini, Massimo Fornasier, Francesco Rossi, Francesco Solombrino, Mean-Field Pontryagin Maximum Principle, 2017, 175, 0022-3239, 1, 10.1007/s10957-017-1149-5
    9. M. FORNASIER, S. LISINI, C. ORRIERI, G. SAVARÉ, Mean-field optimal control as Gamma-limit of finite agent controls, 2019, 30, 0956-7925, 1153, 10.1017/S0956792519000044
    10. Jong-Ho Kim, Jea-Hyun Park, Fully nonlinear Cucker–Smale model for pattern formation and damped oscillation control, 2023, 120, 10075704, 107159, 10.1016/j.cnsns.2023.107159
    11. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trelat, 2016, Sparse feedback stabilization of multi-agent dynamics, 978-1-5090-1837-6, 4278, 10.1109/CDC.2016.7798917
    12. Rafael Bailo, Mattia Bongini, José A. Carrillo, Dante Kalise, Optimal consensus control of the Cucker-Smale model, 2018, 51, 24058963, 1, 10.1016/j.ifacol.2018.07.245
    13. Massimo Fornasier, Benedetto Piccoli, Francesco Rossi, Mean-field sparse optimal control, 2014, 372, 1364-503X, 20130400, 10.1098/rsta.2013.0400
    14. Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf, Sparse control of alignment models in high dimension, 2015, 10, 1556-181X, 647, 10.3934/nhm.2015.10.647
    15. Mattia Bongini, Massimo Fornasier, 2017, Chapter 5, 978-3-319-49994-9, 173, 10.1007/978-3-319-49996-3_5
    16. Giacomo Albi, Lorenzo Pareschi, Selective model-predictive control for flocking systems, 2018, 9, 2038-0909, 4, 10.2478/caim-2018-0009
    17. Young-Pil Choi, Dante Kalise, Jan Peszek, Andrés A. Peters, A Collisionless Singular Cucker--Smale Model with Decentralized Formation Control, 2019, 18, 1536-0040, 1954, 10.1137/19M1241799
    18. Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, 2016, Chapter 4, 978-3-319-55794-6, 58, 10.1007/978-3-319-55795-3_4
    19. Mattia Bongini, Francesco Salvarani, Mean field games of controls with Dirichlet boundary conditions, 2024, 30, 1292-8119, 32, 10.1051/cocv/2024020
    20. Emiliano Cristiani, Nadia Loy, Marta Menci, Andrea Tosin, Kinetic description and macroscopic limit of swarming dynamics with continuous leader–follower transitions, 2025, 228, 03784754, 362, 10.1016/j.matcom.2024.09.006
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(992) PDF downloads(166) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog