On the local and global existence of solutions to 1d transport equations with nonlocal velocity

  • Received: 01 June 2018 Revised: 01 February 2019
  • Primary: 35A01; Secondary: 35D30, 35Q35, 35Q86

  • We consider the 1D transport equation with nonlocal velocity field:

    $ θt+uθx+νΛγθ=0,u=N(θ),

    $

    where $ \mathcal{N} $ is a nonlocal operator and $ \Lambda^{\gamma} $ is a Fourier multiplier defined by $ \widehat{\Lambda^{\gamma} f}(\xi) = |\xi|^{\gamma}\widehat{f}(\xi) $. In this paper, we show the existence of solutions of this model locally and globally in time for various types of nonlocal operators.

    Citation: Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity[J]. Networks and Heterogeneous Media, 2019, 14(3): 471-487. doi: 10.3934/nhm.2019019

    Related Papers:

    [1] Yanlin Li, Yuquan Xie, Manish Kumar Gupta, Suman Sharma . On projective Ricci curvature of cubic metrics. AIMS Mathematics, 2025, 10(5): 11305-11315. doi: 10.3934/math.2025513
    [2] Salah G. Elgendi . Parallel one forms on special Finsler manifolds. AIMS Mathematics, 2024, 9(12): 34356-34371. doi: 10.3934/math.20241636
    [3] Fangmin Dong, Benling Li . On a class of weakly Landsberg metrics composed by a Riemannian metric and a conformal 1-form. AIMS Mathematics, 2023, 8(11): 27328-27346. doi: 10.3934/math.20231398
    [4] Yanlin Li, Aydin Gezer, Erkan Karakaş . Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics, 2023, 8(8): 17335-17353. doi: 10.3934/math.2023886
    [5] Rattanasak Hama, Sorin V. Sabau . Randers metrics on two-spheres of revolution with simple cut locus. AIMS Mathematics, 2023, 8(11): 26213-26236. doi: 10.3934/math.20231337
    [6] Yayun Chen, Tongzhu Li . Classification of spacelike conformal Einstein hypersurfaces in Lorentzian space $ \mathbb{R}^{n+1}_1 $. AIMS Mathematics, 2023, 8(10): 23247-23271. doi: 10.3934/math.20231182
    [7] Cagri Karaman . Statistical connections on decomposable Riemann manifold. AIMS Mathematics, 2020, 5(5): 4722-4733. doi: 10.3934/math.2020302
    [8] Derya Sağlam, Cumali Sunar . Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature. AIMS Mathematics, 2023, 8(2): 5036-5048. doi: 10.3934/math.2023252
    [9] Rabia Cakan Akpınar, Esen Kemer Kansu . Metallic deformation on para-Sasaki-like para-Norden manifold. AIMS Mathematics, 2024, 9(7): 19125-19136. doi: 10.3934/math.2024932
    [10] Salah G. Elgendi, Zoltán Muzsnay . The geometry of geodesic invariant functions and applications to Landsberg surfaces. AIMS Mathematics, 2024, 9(9): 23617-23631. doi: 10.3934/math.20241148
  • We consider the 1D transport equation with nonlocal velocity field:

    $ \begin{equation*} \label{intro eq} \begin{split} &\theta_t+u\theta_x+\nu \Lambda^{\gamma}\theta = 0, \\ & u = \mathcal{N}(\theta), \end{split} \end{equation*}

    $

    where $ \mathcal{N} $ is a nonlocal operator and $ \Lambda^{\gamma} $ is a Fourier multiplier defined by $ \widehat{\Lambda^{\gamma} f}(\xi) = |\xi|^{\gamma}\widehat{f}(\xi) $. In this paper, we show the existence of solutions of this model locally and globally in time for various types of nonlocal operators.



    The Ricci curvature in Finsler geometry naturally generalizes the Ricci curvature in Riemannian geometry. However, in Finsler geometry, there are several versions of the definition of scalar curvature because the Ricci curvature tensor is defined in different forms. Here we adopt the definition of scalar curvature, which was introduced by Akbar–Zadeh [1,see (2.1)]. Tayebi [11] characterized general fourth-root metrics with isotropic scalar curvature. Moreover, he studied Bryant metrics with isotropic scalar curvature. Later, a locally conformally flat $ (\alpha, \beta) $-metric with weakly isotropic scalar curvature was studied by Chen–Xia [4]. They proved that its scalar curvature must vanish. Recently, Cheng–Gong [5] proved that if a Randers metric is of weakly isotropic scalar curvature, then it must be of isotropic $ S $-curvature. Furthermore, they concluded that when a locally conformally flat Randers metric is of weakly isotropic scalar curvature, it is Minkowskian or Riemannian. Very recently, Ma–Zhang–Zhang [8] showed that the Kropina metric with isotropic scalar curvature is equivalent to an Einstein Kropina metric according to the navigation data.

    Shimada [9] first developed the theory of $ m $-th root metrics as an interesting example of Finsler metrics, immediately following Matsumoto and Numata's theory of cubic metrics [7]. It is applied to biology as an ecological metric by Antonelli [2]. Later, many scholars studied these metrics ([3,6,10,11,12], etc). In [13], cubic Finsler manifolds in dimensions two or three were studied by Wegener. He only abstracted his PhD thesis and barely did all the calculations in that paper. Kim and Park [6] studied the $ m $-th root Finsler metrics which admit $ (\alpha, \beta)- $types. In [12], Tayebi–Razgordani–Najafi showed that if the locally conformally flat cubic metric is of relatively isotropic mean Landsberg curvature on a manifold $ M $ of dimension $ n(\geq3) $, then it is a Riemannian metric or a locally Minkowski metric. Tripathia–Khanb–Chaubey [10] considered a cubic $ (\alpha, \beta) $-metric which is a special class of $ p $-power Finsler metric, and obtained the conditions under which the Finsler space with such special metric will be projectively flat. Further, they obtained in which case this Finsler space will be a Berwald space or Douglas space.

    In this paper, we mainly focus on $ m $-th root metrics with weakly isotropic scalar curvature and obtain the following results:

    Theorem 1.1. Let the $ m(\geq3) $-th root metric $ F $ be of weakly isotropic scalar curvature. Then its scalar curvature must vanish.

    Let $ A: = a_{i_1 i_2 \cdots i_m}(x) y^{i_1} y^{i_2} \cdots y^{i_m} $. If $ A = F^m $ is irreducible, then the further result is obtained as follows:

    Theorem 1.2. Let $ F = \sqrt[m]{A} $ be the $ m(\geq3) $-th root metric. Assume that $ A $ is irreducible. Then the following are equivalent: (i) $ F $ is of weakly isotropic scalar curvature; (ii) its scalar curvature vanishes; (iii) it is Ricci-flat.

    Based on Theorem 1.1, we obtain the result for locally conformally flat cubic Finsler metrics as following:

    Theorem 1.3. Let $ F $ be a locally conformally flat cubic Finsler metric on a manifold $ M $ of dimension $ n(\geq3) $. If $ F $ is of weakly isotropic scalar curvature, then $ F $ must be locally Minkowskian.

    In this section, we mainly introduce several geometric quantities in Finsler geometry and several results that will be used later.

    Let $ M $ be an $ n(\geq3) $-dimensional smooth manifold. The points in the tangent bundle $ TM $ are denoted by $ (x, y) $, where $ x \in M $ and $ y \in T_{x}M $. Let $ (x^{i}, y^{i}) $ be the local coordinates of $ TM $ with $ y = y^{i} \frac{\partial}{\partial x^{i}} $. A Finsler metric on $ M $ is a function $ F: TM \longrightarrow [0, +\infty) $ such that

    (1) $ F $ is smooth in $ TM \backslash \{0\} $;

    (2) $ F(x, \lambda y) = \lambda F(x, y) $ for any $ \lambda > 0 $;

    (3) The fundamental quadratic form $ g = g_{ij}(x, y) dx^{i} \otimes dx^{j} $, where

    $ g_{ij}(x, y) = [\frac{1}{2} F^2(x, y)]_{y^{i}y^{j}} $

    is positively definite. We use the notations: $ F_{y^i}: = \frac{\partial F}{\partial y^i} $, $ F_{x^i}: = \frac{\partial F}{\partial x^i}, F^{2}_{y^iy^j}: = \frac{\partial^{2} F^{2}}{\partial y^i \partial y^j} $.

    Let $ F $ be a Finsler metric on an $ n $-dimensional manifold $ M $, and let $ G^{i} $ be the geodesic coefficients of $ F $, which are defined by

    $ Gi:=14gij(F2xkyjykF2xj),
    $

    where $ (g^{ij}) = (g_{ij})^{-1}. $ For any $ x \in M $ and $ y \in T_x M \backslash\{0\} $, the Riemann curvature $ R_{y}: = R^{i}_{\, \, \, \, k}(x, y) \frac{\partial}{\partial x^{i}} \otimes dx^{k} $ is defined by

    $ R^{i}_{\, \, \, \, k}: = 2 G^{i}_{x^{k}}-G^{i}_{x^{j}y^{k}} y^{j}+2 G^{j} G^{i}_{y^{j}y^{k}}-G^{i}_{y^{j}} G^{j}_{y^{k}}. $

    The Ricci curvature $ \textbf{Ric} $ is the trace of the Riemann curvature defined by

    $ Ric:=Rkk.
    $

    The Ricci tensor is

    $ \textbf{Ric}_{ij}: = \frac{1}{2} \textbf{Ric}_{y^{i}y^{j}}. $

    By the homogeneity of $ \textbf{Ric} $, we have $ \textbf{Ric} = \textbf{Ric}_{ij} y^{i}y^{j}. $ The scalar curvature $ \textbf{r} $ of $ F $ is defined as

    $ r:=gijRicij.
    $
    (2.1)

    A Finsler metric is said to be of weakly isotropic scalar curvature if there exists a 1-form $ \theta = \theta_{i}(x) y^{i} $ and a scalar function $ \chi = \chi(x) $ such that

    $ r=n(n1)(θF+χ).
    $
    (2.2)

    An $ (\alpha, \beta) $-metric is a Finsler metric of the form

    $ F=αϕ(s),
    $

    where $ \alpha = \sqrt{a_{ij}(x) y^i y^j} $ is a Riemannian metric, $ \beta = b_{i}(x) y^{i} $ is a 1-form, $ s: = \frac{\beta}{\alpha} $ and $ b: = \parallel \beta \parallel_{\alpha} < b_0 $. It has been proved that $ F = \alpha \phi(s) $ is a positive definite Finsler metric if and only if $ \phi = \phi(s) $ is a positive $ C^{\infty} $ function on $ (-b_0, b_0) $ satisfying the following condition:

    $ ϕ(s)sϕ(s)+(Bs2)ϕ(s)>0,|s|b<b0,
    $
    (2.3)

    where $ B: = b^2 $.

    Let $ F = \sqrt[3]{a_{ijk}(x) y^{i} y^{j} y^{k}} $ be a cubic metric on a manifold $ M $ of dimension $ n\geq 3. $ By choosing a suitable non-degenerate quadratic form $ \alpha = \sqrt{a_{ij}(x) y^{i} y^{j}} $ and one-form $ \beta = b_{i}(x) y^{i} $, it can be written in the form

    $ F=3pβα2+qβ3,
    $

    where $ p $ and $ q $ are real constants such that $ p+q B\neq 0 $ (see [6]). The above equation can be rewritten as

    $ F=α(ps+qs3)13,
    $

    which means that $ F $ is also an $ (\alpha, \beta) $-metric with $ \phi(s) = (p s+q s^{3})^{\frac{1}{3}} $. Then, by (2.3), we obtain

    $ p2B+p(4p+3qB)s2>0.
    $
    (2.4)

    Two Finsler metrics $ F $ and $ \widetilde{F} $ on a manifold $ M $ are said to be conformally related if there is a scalar function $ \kappa = \kappa(x) $ on $ M $ such that $ F = e^{\kappa(x)}\widetilde{F}. $ Particularly, an $ (\alpha, \beta) $-metric $ F = \alpha \phi(\frac{\beta}{\alpha}) $ is said to be conformally related to a Finsler metric $ \widetilde{F} $ if $ F = e^{\kappa(x)} \widetilde{F} $ with $ \widetilde{F} = \widetilde{\alpha} \phi(\widetilde{s}) = \widetilde{\alpha} \phi(\frac{\widetilde{\beta}}{\widetilde{\alpha}}). $ In the following, we always use symbols with a tilde to denote the corresponding quantities of the metric $ \widetilde{F}. $ Note that $ \alpha = e^{\kappa(x)}\widetilde{\alpha} $, $ \beta = e^{\kappa(x)}\widetilde{\beta}, $ thus $ \widetilde{s} = s. $

    A Finsler metric that is conformally related to a locally Minkowski metric is said to be locally conformally flat. Thus, a locally conformally flat $ (\alpha, \beta) $-metric $ F $ has the form $ F = e^{\kappa(x)} \widetilde{F} $, where $ \widetilde{F} = \widetilde{\alpha} \phi(\frac{\widetilde{\beta}}{\widetilde{\alpha}}) $ is a locally Minkowski metric.

    Denoting

    $ rij:=12(bi|j+bj|i),sij:=12(bi|jbj|i),rij:=ailrlj,sij:=ailslj,rj:=birij,r:=biri,sj:=bisij,r00:=rijyiyj,si0:=sijyj,s0:=siyi,
    $

    where $ b^{i}: = a^{ij} b_{j} $, $ b_{i|j} $ denotes the covariant differentiation with respect to $ \alpha $.

    Let $ G^{i} $ and $ G^{i}_{\alpha} $ denote the geodesic coefficients of $ F $ and $ \alpha $, respectively. The geodesic coefficients $ G^{i} $ of $ F = \alpha \phi(\frac{\beta}{\alpha}) $ are related to $ G_{\alpha}^{i} $ by

    $ Gi=Giα+αQsi0+(2Qαs0+r00)(Ψbi+Θα1yi),
    $

    where

    $ Q:=ϕϕsϕ,Θ:=ϕϕs(ϕϕ+ϕϕ)2ϕ[(ϕsϕ)+(Bs2)ϕ],Ψ:=ϕ2[(ϕsϕ)+(Bs2)ϕ].
    $

    Assume that $ F = \alpha \phi(\frac{\beta}{\alpha}) $ is conformally related to a Finsler metric $ \widetilde{F} = \widetilde{\alpha} \phi(\frac{\widetilde{\beta}}{\widetilde{\alpha}}) $ on $ M $, i.e., $ F = e^{\kappa(x)} \widetilde{F} $. Then

    $ aij=e2κ(x)˜aij,bi=eκ(x)˜bi,˜b:=∥˜β˜α=˜aij˜bi˜bj=b.
    $

    Further, we have

    $ bi|j=eκ(x)(˜bij˜bjκi+˜blκl˜aij),αΓlij=˜α˜Γlij+κjδli+κiδljκl˜aij,rij=eκ(x)˜rij+12eκ(x)(˜bjκi˜biκj+2˜blκl˜aij),sij=eκ(x)˜sij+12eκ(x)(˜biκj˜bjκi),ri=˜ri+12(˜blκl˜bib2κi),r=eκ(x)˜r,si=˜si+12(b2κi˜blκl˜bi),rii=eκ(x)˜rii+(n1)eκ(x)˜biκi,sji=eκ(x)˜sji+12eκ(x)(˜bjκi˜biκj).
    $

    Here $ \widetilde{b}_{i \parallel j} $ denotes the covariant derivatives of $ \widetilde{b}_{i} $ with respect to $ \widetilde{\alpha} $, $ ^{\alpha}\Gamma^{m}_{\, \, \, \, ij} $ and $ ^{\widetilde{\alpha}}\widetilde{\Gamma}^{m}_{\, \, \, \, ij} $ denote Levi–Civita connections with respect to $ \alpha $ and $ \widetilde{\alpha} $, respectively. In the following, we adopt the notations $ \kappa_{i}: = \frac{\partial \kappa(x)}{\partial x^{i}} $, $ \kappa_{ij}: = \frac{\partial^2\kappa(x)}{\partial x^{i}\partial x^{j}} $, $ \kappa^{i}: = \widetilde{a}^{ij} \kappa_{j} $, $ \widetilde{b}^{i}: = \widetilde{a}^{ij} \widetilde{b}_{j} $, $ f: = \widetilde{b}_{i} \kappa^{i} $, $ f_{1}: = \kappa_{ij} \widetilde{b}^{i} y^{j} $, $ f_{2}: = \kappa_{ij} \widetilde{b}^{i} \widetilde{b}^{j} $, $ \kappa_{0}: = \kappa_{i} y^{i} $, $ \kappa_{00}: = \kappa_{ij} y^{i} y^{j} $ and $ \parallel\triangledown \kappa\parallel^2_{\widetilde{\alpha}}: = \widetilde{a}^{ij} \kappa_{i} \kappa_{j} $.

    Lemma 2.1. ([4]) Let $ F = e^{\kappa(x)} \widetilde{F} $, where $ \widetilde{F} = \widetilde{\alpha} \phi(\frac{\widetilde{\beta}}{\widetilde{\alpha}}) $ is locally Minkowskian. Then the $ Ricci $ curvature of $ F $ is determined by

    $ Ric=D1κ2˜α˜α+D2κ20+D3κ0f˜α+D4f2˜α2+D5f1˜α+D6˜α2+D7κ00,
    $

    where $ D_{k}(k = 1, ..., 7) $ is listed in Lemma 3.2 in [4].

    Lemma 2.2. ([4]) Let $ F = e^{\kappa(x)} \widetilde{F} $, where $ \widetilde{F} = \widetilde{\alpha} \phi (\frac{\widetilde{\beta}}{\widetilde{\alpha}}) $ is locally Minkowskian. Then the scalar curvature of $ F $ is determined by

    $ r=12e2κ(x)ρ1[Σ1(τ+ηλ2)Σ2λη˜αΣ3η˜α2Σ4],
    $

    where

    $ τ:=δ1+δB,η:=μ1+Y2μ,λ:=εδs1+δB,δ:=ρ0ε2ρ2ρ,ε:=ρ1ρ2,μ:=ρ2ρ,Y:=AijYiYj,Aij:=aij+δbibj,ρ:=ϕ(ϕsϕ),ρ0:=ϕϕ+ϕϕ,ρ1:=s(ϕϕ+ϕϕ)+ϕϕ,ρ2:=s[s(ϕϕ+ϕϕ)ϕϕ],
    $

    and $ \Sigma_{i}(i = 1, ..., 4) $ are listed in the proof of Lemma 3.3 in [4].

    Lemma 2.3. ([14]) Let $ m $-th root metric $ F = \sqrt[m]{a_{i_1 i_2 \cdots i_m}(x) y^{i_1} y^{i_2} \cdots y^{i_m}} $ be a Finsler metric on a manifold of dimension $ n $. Then the Ricci curvature of $ F $ is a rational function in $ y $.

    In this section, we will prove the main theorems. Firstly, we give the proof of Theorem 1.1.

    The proof of Theorem 1.1. For an $ m $-th root metric $ F = \sqrt[m]{a_{i_1 i_2 \cdots i_m}(x) y^{i_1} y^{i_2} \cdots y^{i_m}} $ on a manifold $ M $, the inverse of the fundamental tensor of $ F $ is given by (see [14])

    $ gij=1(m1)F2(AAij+(m2)yiyj),
    $
    (3.1)

    where $ A_{ij} = \frac{1}{m (m-1)} \frac{\partial^2 A}{\partial y^i \partial y^j} $ and $ (A^{ij}) = (A_{ij})^{-1} $. Thus, $ F^2 g^{ij} $ are rational functions in $ y $.

    By Lemma 2.3, the Ricci curvature $ \textbf{Ric} $ of $ m $-th root metric is a rational function in $ y $. Thus, $ \textbf{Ric}_{ij}: = \textbf{Ric}_{y^{i}y^{j}} $ are rational functions. According to (2.1), we have

    $ F2r=F2gijRicij.
    $
    (3.2)

    This means that $ F^2 \textbf{r} $ is a rational function in $ y $.

    On the other hand, if $ F $ is of weakly isotropic scalar curvature, according to (2.2), we obtain

    $ F2r=n(n1)(θF+χF2),
    $

    where $ \theta $ is a 1-form and $ \chi $ is a scalar function. The right side of the above equation is an irrational function in $ y $. Comparing it with (3.2), we have $ \textbf{r} = 0 $.

    In the following, the proof of Theorem 1.2 is given.

    The proof of Theorem 1.2. By Theorem 1.1, we conclude that $ F $ is of weakly isotropic scalar curvature if and only if its scalar curvature vanishes. So we just need to prove that (ii) is equivalent to (iii). Assume that the scalar curvature vanishes. Hence, by (3.1), $ 0 = \textbf{r} = g^{ij} \textbf{Ric}_{ij} = \frac{1}{m-1}F^{-2}(AA^{ij}+(m-2)y^iy^j)\textbf{Ric}_{ij} $ holds. It means that

    $ 0 = (AA^{ij}+(m-2)y^iy^j)\textbf{Ric}_{ij} = AA^{ij}\textbf{Ric}_{ij}+(m-2)\textbf{Ric}. $

    Since $ A $ is irreducible, $ \textbf{Ric} $ must be divided by $ A $. Thus, $ \textbf{Ric} = 0 $.

    Conversely, if $ \textbf{Ric} = 0 $, then by the definition of $ \textbf{r} $ we have $ \textbf{r} = 0 $.

    Based on Theorem 1.1, we can prove Theorem 1.3 for locally conformally flat cubic metrics.

    The proof of Theorem 1.3. Assume that the locally conformally flat cubic metric $ F $ is of weakly isotropic scalar curvature. Then, by Lemma 2.2 and Theorem 1.1, we obtain the scalar curvature vanishes, i.e.,

    $ Σ1(τ+ηλ2)Σ2λη˜αΣ3η˜α2Σ4=0.
    $

    Further, by detailed expressions of $ \Sigma_{i} (i = 1, \cdots 4) $, the above equation can be rewritten as

    $ B(4p+3qB)κ204(4p+3qB)˜βκ0f+4p˜α2f2(4p+3qB)8˜α2s2γ7+Tγ6=0,
    $
    (3.3)

    where $ \gamma: = p B \widetilde{\alpha}^{2}-(4 p+3 q B) \widetilde{\beta}^{2} $ and $ T $ has no $ \gamma^{-1} $.

    Thus, the first term of (3.3) can be divided by $ \gamma $. It means that there is a function $ h(x) $ on $ M $ such that

    $ B(4p+3qB)κ204(4p+3qB)˜βκ0f+4p˜α2f2=h(x)γ.
    $

    The above equation can be rewritten as

    $ B(4p+3qB)κ204(4p+3qB)˜βκ0f+4p˜α2f2=h(x)[pB˜α2(4p+3qB)˜β2].
    $
    (3.4)

    Differentiating (3.4) with $ y^{i} $ yields

    $ B(4p+3qB)κ0κi2(4p+3qB)(˜biκ0+˜βκi)f+4p˜ailylf2=h(x)[pB˜ailyl(4p+3qB)˜β˜bi].
    $
    (3.5)

    Differentiating (3.5) with $ y^{j} $ yields

    $ B(4p+3qB)κiκj2(4p+3qB)(˜biκj+˜bjκi)f+4p˜aijf2=h(x)[pB˜aij(4p+3qB)˜bi˜bj].
    $

    Contracting the above with $ \widetilde{b}^{i} \widetilde{b}^{j} $ yields

    $ Bf2(8p+9qB)=3B2h(x)(p+qB).
    $

    Thus, we have

    $ h(x)=(8p+9qB)f23B(p+qB).
    $
    (3.6)

    Substituting (3.6) into (3.5) and contracting (3.5) with $ \widetilde{b}^{i} $ yield

    $ (4p+3qB)f(f˜βBκ0)=0.
    $
    (3.7)

    Furthermore, by (2.4) and $ 4 p+3 q B\neq 0 $, we have $ f (f\widetilde{\beta}-B \kappa_{0}) = 0 $.

    Case I: $ f = 0 $. It means $ h(x) = 0 $ by (3.6). Thus, one has that $ \kappa_{i} = 0 $ by (3.4), which means

    $ κ=constant.
    $

    Case II: $ f\neq 0 $. It implies that $ f\widetilde{\beta}-B \kappa_{0} = 0 $. Substituting it into (3.4), we obtain

    $ ˜β2=B˜α2,
    $

    which does not exist.

    Above all, we have $ \kappa = constant $. Thus we conclude that the conformal transformation must be homothetic.

    X. Zhang: Conceptualization, Validation, Formal analysis, Resources, Software, Investigation, Methodology, Supervision, Writing-original draft, Writing-review and editing, Project administration, Funding acquisition; C. Ma: Formal analysis, Software, Investigation, Supervision, Writing-review and editing; L. Zhao: Resources, Investigation, Supervision. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Xiaoling Zhang's research is supported by National Natural Science Foundation of China (No. 11961061, 11761069).

    The authors declare that they have no conflicts of interest.



    [1] On the well-posedness of various one-dimensional model equations for fluid motion. Nonlinear Anal. (2017) 160: 25-43.
    [2] Global existence for some transport equations with nonlocal velocity. Adv. Math. (2015) 269: 197-219.
    [3]

    H. Bae, R. Granero-Belinchón and O. Lazar, Global existence of weak solutions to dissipative transport equations with nonlocal velocity, Nonlinearity, 31 (2018) 1484–1515.

    [4]

    H. Bahouri, J-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011.

    [5] Analytic structure of 1D transport equations with nonlocal fluxes. Physica D. (1996) 91: 349-375.
    [6] A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity. Adv. Math. (2012) 231: 306-327.
    [7] Global existence, singularities and ill-posedness for a nonlocal flux. Adv. Math. (2008) 219: 1916-1936.
    [8] Self-similar solutions for a transport equation with non-local flux. Chinese Annals of Mathematics, Series B (2009) 30: 505-512.
    [9] Finite time singularities in a 1D model of the quasi-geostrophic equation. Adv. Math. (2005) 194: 203-223.
    [10] A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. (2004) 249: 511-528.
    [11] Formation of singularities for a transport equation with nonlocal velocity. Ann. of Math. (2005) 162: 1-13.
    [12] A unified theory of Hilbert transforms and ergodic theorems. Rev. Mat. Cuyana (1955) 1: 105-167.
    [13] On a one-dimensional model for the 3D vorticity equation. J. Statist. Phys. (1990) 59: 1251-1263.
    [14]

    H. Dong, Well-posedness for a transport equation with nonlocal velocity, J. Funct. Anal., 255, (2008), 3070–3097.

    [15]

    H. Dong, On a multi-dimensional transport equation with nonlocal velocity, Adv. Math., 264 (2014), 747–761.

    [16]

    H. Dong and D. Li, On a one-dimensional $\alpha$-patch model with nonlocal drift and fractional dissipation, Trans. Amer. Math. Soc., 366 (2014), 2041–2061.

    [17]

    J. Duoandikoetxea, Fourier Analysis, Translated and revised from the 1995 Spanish original by David Cruz-Uribe, Graduate Studies in Mathematics, 29, American Mathematical Society, 2000.

    [18] Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. (1988) 41: 891-907.
    [19] Regularity and blow up for active scalars. Math. Model. Math. Phenom. (2010) 5: 225-255.
    [20] On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion. Journal of Diff. Eq. (2016) 261: 4974-4996.
    [21]

    O. Lazar and P.-G. Lemarié-Rieusset, Infinite energy solutions for a 1D transport equation with nonlocal velocity, Dynamics of PDEs, 13 (2016), 107-131.

    [22]

    D. Li, On Kato-Ponce and fractional Leibniz, arXiv: 1609.01780.

    [23] Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation. Adv. Math. (2008) 217: 2563-2568.
    [24] On a one-dimensional nonlocal flux with fractional dissipation. SIAM J. Math. Anal. (2011) 43: 507-526.
    [25] Further properties of a continuum of model equations with globally defined flux. J. Math. Anal. Appl. (1998) 221: 132-160.
    [26] Compact sets in the space $L^{p}(0, T; B)$. Ann. Mat. Pura Appl. (1987) 146: 65-96.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4002) PDF downloads(280) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog