Stochastic homogenization of maximal monotone relations and applications

  • We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.

    Citation: Luca Lussardi, Stefano Marini, Marco Veneroni. 2018: Stochastic homogenization of maximal monotone relations and applications, Networks and Heterogeneous Media, 13(1): 27-45. doi: 10.3934/nhm.2018002

    Related Papers:

    [1] Xueqi Sun, Yongqiang Fu, Sihua Liang . Normalized solutions for pseudo-relativistic Schrödinger equations. Communications in Analysis and Mechanics, 2024, 16(1): 217-236. doi: 10.3934/cam.2024010
    [2] Wang Xiao, Xuehua Yang, Ziyi Zhou . Pointwise-in-time $ \alpha $-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients. Communications in Analysis and Mechanics, 2024, 16(1): 53-70. doi: 10.3934/cam.2024003
    [3] Yining Yang, Cao Wen, Yang Liu, Hong Li, Jinfeng Wang . Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model. Communications in Analysis and Mechanics, 2024, 16(1): 24-52. doi: 10.3934/cam.2024002
    [4] Shengbing Deng, Qiaoran Wu . Existence of normalized solutions for the Schrödinger equation. Communications in Analysis and Mechanics, 2023, 15(3): 575-585. doi: 10.3934/cam.2023028
    [5] Enzo Vitillaro . Nontrivial solutions for the Laplace equation with a nonlinear Goldstein-Wentzell boundary condition. Communications in Analysis and Mechanics, 2023, 15(4): 811-830. doi: 10.3934/cam.2023039
    [6] Zhen Wang, Luhan Sun . The Allen-Cahn equation with a time Caputo-Hadamard derivative: Mathematical and Numerical Analysis. Communications in Analysis and Mechanics, 2023, 15(4): 611-637. doi: 10.3934/cam.2023031
    [7] Luhan Sun, Zhen Wang, Yabing Wei . A second–order approximation scheme for Caputo–Hadamard derivative and its application in fractional Allen–Cahn equation. Communications in Analysis and Mechanics, 2025, 17(2): 630-661. doi: 10.3934/cam.2025025
    [8] Ho-Sik Lee, Youchan Kim . Boundary Riesz potential estimates for parabolic equations with measurable nonlinearities. Communications in Analysis and Mechanics, 2025, 17(1): 61-99. doi: 10.3934/cam.2025004
    [9] Mohamed Karim Hamdani, Lamine Mbarki, Mostafa Allaoui . A new class of multiple nonlocal problems with two parameters and variable-order fractional $ p(\cdot) $-Laplacian. Communications in Analysis and Mechanics, 2023, 15(3): 551-574. doi: 10.3934/cam.2023027
    [10] Yan Guo, Lei Wu . $ L^2 $ diffusive expansion for neutron transport equation. Communications in Analysis and Mechanics, 2025, 17(2): 365-386. doi: 10.3934/cam.2025015
  • We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.



    Ostrowski proved the following interesting and useful integral inequality in 1938, see [18] and [15, page:468].

    Theorem 1.1. Let $ f:I\rightarrow\mathbb{R}, $ where $ I\subseteq \mathbb{R} $ is an interval, be a mapping differentiable in the interior $ I^{\circ} $ of $ I $ and let $ a, b \in I^{\circ} $ with $ a < b $. If $ |f'(x)|\leq M $ for all $ x \in [a, b] $, then the following inequality holds:

    $ |f(x)1babaf(t)dt|M(ba)[14+(xa+b2)2(ba)2]
    $
    (1.1)

    for all $ x \in [a, b] $. The constant $ \frac{1}{4} $ is the best possible in sense that it cannot be replaced by a smaller one.

    This inequality gives an upper bound for the approximation of the integral average $ \frac{1}{b-a}\int_{a}^{b}f(t)dt $ by the value of $ f(x) $ at point $ x \in [a, b] $. In recent years, such inequalities were studied extensively by many researchers and numerous generalizations, extensions and variants of them appeared in a number of papers, see [1,2,10,11,19,20,21,22,23].

    A function $ \ f:I\subseteq \mathbb{R}\rightarrow \mathbb{R} $ is said to be convex ($ AA- $convex) if the inequality

    $ f(tx+(1t)y)tf(x)+(1t)f(y)
    $

    holds for all $ x, y\in I\ $ and $ t\in \left[0, 1\right] $.

    In [4], Anderson et al. also defined generalized convexity as follows:

    Definition 1.1. Let $ f:I\rightarrow \left(0, \infty \right) $ be continuous, where $ I $ is subinterval of $ \left(0, \infty \right). $ Let $ M $ and $ N $ be any two Mean functions. We say $ f $ is $ MN $-convex (concave) if

    $ f(M(x,y))()N(f(x),f(y))
    $

    for all $ x, y\in I. $

    Recall the definitions of $ AG- $convex functions, $ GG- $convex functions and $ GA- $ functions that are given in [16] by Niculescu:

    The $ AG- $convex functions (usually known as $ \log - $convex functions) are those functions $ f:I\rightarrow \left(0, \infty \right) $ for which

    $ x,yI and λ[0,1]f(λx+(1λ)y)f(x)1λf(y)λ,
    $
    (1.2)

    i.e., for which $ \log f $ is convex.

    The $ GG- $convex functions (called in what follows multiplicatively convex functions) are those functions $ f:I\rightarrow J $ (acting on subintervals of $ \left(0, \infty \right)) $ such that

    $ x,yI and λ[0,1]f(x1λyλ)f(x)1λf(y)λ.
    $
    (1.3)

    The class of all $ GA- $convex functions is constituted by all functions $ f:I\rightarrow \mathbb{R} $ (defined on subintervals of $ \left(0, \infty \right)) $ for which

    $ x,yI and λ[0,1]f(x1λyλ)(1λ)f(x)+λf(y).
    $
    (1.4)

    The article organized three sections as follows: In the first section, some definitions an preliminaries for Riemann-Liouville and new fractional conformable integral operators are given. Also, some Ostrowski type results involving Riemann-Liouville fractional integrals are in this section. In the second section, an identity involving new fractional conformable integral operator is proved. Further, new Ostrowski type results involving fractional conformable integral operator are obtained by using some inequalities on established lemma and some well-known inequalities such that triangle inequality, Hölder inequality and power mean inequality. After the proof of theorems, it is pointed out that, in special cases, the results reduce the some results involving Riemann-Liouville fractional integrals given by Set in [27]. Finally, in the last chapter, some new results for AG-convex functions has obtained involving new fractional conformable integrals.

    Let $ [a, b] $ $ (-\infty < a < b < \infty) $ be a finite interval on the real axis $ \mathbb{R} $. The Riemann-Liouville fractional integrals $ J_{a+}^{\alpha }f $ and $ J_{b-}^{\alpha }f $ of order $ \alpha \in \mathbb{C} $ $ (\Re(\alpha) > 0) $ with $ a\geq 0 $ and $ b > 0 $ are defined, respectively, by

    $ Jαa+f(x):=1Γ(α)xa(xt)α1f(t)dt(x>a;(α)>0)
    $
    (1.5)

    and

    $ Jαbf(x):=1Γ(α)bx(tx)α1f(t)dt(x<b;(α)>0)
    $
    (1.6)

    where $ \Gamma(t) = \int_{0}^{\infty}e^{-x}x^{t-1}dx $ is an Euler Gamma function.

    We recall Beta function (see, e.g., [28, Section 1.1])

    $B(\alpha ,\beta )=\left\{ 10tα1(1t)β1dt((α)>0;(β)>0)Γ(α)Γ(β)Γ(α+β)             (α,βCZ0).
    \right.$
    (1.7)

    and the incomplete gamma function, defined for real numbers $ a > 0 $ and $ x\geq0 $ by

    $ \Gamma(a, x) = \int_{x}^{\infty}e^{-t}t^{a-1}dt. $

    For more details and properties concerning the fractional integral operators (1.5) and (1.6), we refer the reader, for example, to the works [3,5,6,7,8,9,14,17] and the references therein. Also, several new and recent results of fractional derivatives can be found in the papers [29,30,31,32,33,34,35,36,37,38,39,40,41,42].

    In [27], Set gave some Ostrowski type results involving Riemann-Liouville fractional integrals, as follows:

    Lemma 1.1. Let $ f:[a, b]\rightarrow\mathbb{R} $ be a differentiable mapping on $ (a, b) $ with $ a < b $. If $ f' \in L[a, b] $, then for all $ x\in [a, b] $ and $ \alpha > 0 $ we have:

    $ (xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]=(xa)α+1ba10tαf(tx+(1t)a)dt(bx)α+1ba10tαf(tx+(1t)b)dt
    $

    where $ \Gamma(\alpha) $ is Euler gamma function.

    By using the above lemma, he obtained some new Ostrowski type results involving Riemann-Liouville fractional integral operators, which will generalized via new fractional integral operators in this paper.

    Theorem 1.2. Let $ f:[a, b]\subset[0, \infty)\rightarrow\mathbb{R} $ be a differentiable mapping on $ (a, b) $ with $ a < b $ such that $ f' \in L[a, b] $. If $ |f'| $ is $ s- $convex in the second sense on $ [a, b] $ for some fixed $ s \in (0, 1] $ and $ |f'(x)|\leq M, $ $ x \in [a, b], $ then the following inequality for fractional integrals with $ \alpha > 0 $ holds:

    $ |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|Mba(1+Γ(α+1)Γ(s+1)Γ(α+s+1))[(xa)α+1+(bx)α+1α+s+1]
    $

    where $ \Gamma $ is Euler gamma function.

    Theorem 1.3. Let $ f:[a, b]\subset[0, \infty)\rightarrow\mathbb{R} $ be a differentiable mapping on $ (a, b) $ with $ a < b $ such that $ f' \in L[a, b] $. If $ |f'|^{q} $ is $ s- $convex in the second sense on $ [a, b] $ for some fixed $ s \in (0, 1], \, \, p, q > 1 $ and $ |f'(x)|\leq M, $ $ x \in [a, b], $ then the following inequality for fractional integrals holds:

    $ |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|M(1+pα)1p(2s+1)1q[(xa)α+1+(bx)α+1ba]
    $

    where $ \frac{1}{p}+\frac{1}{q} = 1 $, $ \alpha > 0 $ and $ \Gamma $ is Euler gamma function.

    Theorem 1.4. Let $ f:[a, b]\subset[0, \infty)\rightarrow\mathbb{R} $ be a differentiable mapping on $ (a, b) $ with $ a < b $ such that $ f' \in L[a, b] $. If $ |f'|^{q} $ is $ s- $convex in the second sense on $ [a, b] $ for some fixed $ s \in (0, 1], q\geq1 $ and $ |f'(x)|\leq M, $ $ x \in [a, b], $ then the following inequality for fractional integrals holds:

    $ |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|M(1+α)11q(1+Γ(α+1)Γ(s+1)Γ(α+s+1))1q[(xa)α+1+(bx)α+1ba]
    $

    where $ \alpha > 0 $ and $ \Gamma $ is Euler gamma function.

    Theorem 1.5. Let $ f:[a, b]\subset[0, \infty)\rightarrow\mathbb{R} $ be a differentiable mapping on $ (a, b) $ with $ a < b $ such that $ f' \in L[a, b] $. If $ |f'|^{q} $ is $ s- $concave in the second sense on $ [a, b] $ for some fixed $ s \in (0, 1], \, \, p, q > 1 $, $ x \in [a, b], $ then the following inequality for fractional integrals holds:

    $ |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|2s1q(1+pα)1p(ba)[(xa)α+1|f(x+a2)|+(bx)α+1|f(b+x2)|]
    $

    where $ \frac{1}{p}+\frac{1}{q} = 1 $, $ \alpha > 0 $ and $ \Gamma $ is Euler gamma function.

    Some fractional integral operators generalize the some other fractional integrals, in special cases, as in the following integral operator. Jarad et. al. [13] has defined a new fractional integral operator. Also, they gave some properties and relations between the some other fractional integral operators, as Riemann-Liouville fractional integral, Hadamard fractional integrals, generalized fractional integral operators etc., with this operator.

    Let $ \beta \in \mathbb{C}, \, \, Re(\beta) > 0 $, then the left and right sided fractional conformable integral operators has defined respectively, as follows;

    $ βaJαf(x)=1Γ(β)xa((xa)α(ta)αα)β1f(t)(ta)1αdt;
    $
    (1.8)
    $ βJαbf(x)=1Γ(β)bx((bx)α(bt)αα)β1f(t)(bt)1αdt.
    $
    (1.9)

    The results presented here, being general, can be reduced to yield many relatively simple inequalities and identities for functions associated with certain fractional integral operators. For example, the case $ \alpha = 1 $ in the obtained results are found to yield the same results involving Riemann-Liouville fractional integrals, given before, in literatures. Further, getting more knowledge, see the paper given in [12]. Recently, some studies on this integral operators appeared in literature. Gözpınar [13] obtained Hermite-Hadamard type results for differentiable convex functions. Also, Set et. al. obtained some new results for $ quasi- $convex, some different type convex functions and differentiable convex functions involving this new operator, see [24,25,26]. Motivating the new definition of fractional conformable integral operator and the studies given above, first aim of this study is obtaining new generalizations.

    Lemma 2.1. Let $ f:[a, b]\rightarrow\mathbb{R} $ be a differentiable function on $ (a, b) $ with $ a < b $ and $ f'\in L[a, b] $. Then the following equality for fractional conformable integrals holds:

    $ (xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]=(xa)αβ+1ba10(1(1t)αα)βf(tx+(1t)a)dt+(bx)αβ+1ba10(1(1t)αα)βf(tx+(1t)b)dt.
    $

    where $ \alpha, \beta > 0 $ and $ \Gamma $ is Euler Gamma function.

    Proof. Using the definition as in (1.8) and (1.9), integrating by parts and and changing variables with $ u = tx+(1-t)a $ and $ u = tx+(1-t)b $ in

    $ I1=10(1(1t)αα)βf(tx+(1t)a)dt,I2=10(1(1t)αα)βf(tx+(1t)b)dt
    $

    respectively, then we have

    $ I1=10(1(1t)αα)βf(tx+(1t)a)dt=(1(1t)αα)βf(tx+(1t)a)xa|10β10(1(1t)αα)β1(1t)α1f(tx+(1t)a)xadt=f(x)αβ(xa)βxa(1(xuxa)αα)β1(xuxa)α1f(u)xaduxa=f(x)αβ(xa)β(xa)αβ+1xa((xa)α(xu)αα)β1(xu)α1f(u)du=f(x)αβ(xa)Γ(β+1)(xa)αβ+1βJαxf(a),
    $

    similarly

    $ I2=10(1(1t)αα)βf(tx+(1t)b)dt=f(x)αβ(bx)+Γ(β+1)(bx)αβ+1βxJαf(b)
    $

    By multiplying $ I_1 $ with $ \frac{(x-a)^{\alpha\beta+1}}{b-a} $ and $ I_2 $ with $ \frac{(b-x)^{\alpha\beta+1}}{b-a} $ we get desired result.

    Remark 2.1. Taking $ \alpha = 1 $ in Lemma 2.1 is found to yield the same result as Lemma 1.1.

    Theorem 2.1. Let $ f:[a, b]\rightarrow\mathbb{R} $ be a differentiable function on $ (a, b) $ with $ a < b $ and $ f'\in L[a, b] $. If $ |f'| $ is convex on $ [a, b] $ and $ |f'(x)|\leq M $ with $ x \in [a, b], $ then the following inequality for fractional conformable integrals holds:

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba]
    $
    (2.1)

    where $ \alpha, \beta > 0 $, $ B(x, y) $ and $ \Gamma $ are Euler beta and Euler gamma functions respectively.

    Proof. From Lemma 2.1 we can write

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba10(1(1t)αα)β|f(tx+(1t)a)|dt+(bx)αβ+1ba10(1(1t)αα)β|f(tx+(1t)b)|dt(xa)αβ+1ba[10(1(1t)αα)βt|f(x)|dt+10(1(1t)αα)β(1t)|f(a)|dt]+(bx)αβ+1ba[10(1(1t)αα)βt|f(x)|dt+10(1(1t)αα)β(1t)|f(b)|dt].
    $
    (2.2)

    Notice that

    $ 10(1(1t)αα)βtdt=1αβ+1[B(1α,β+1)B(2α,β+1)],10(1(1t)αα)β(1t)dt=B(2α,β+1)αβ+1.
    $
    (2.3)

    Using the fact that, $ |f'(x)|\leq M $ for $ x\in [a, b] $ and combining (2.3) with (2.2), we get desired result.

    Remark 2.2. Taking $ \alpha = 1 $ in Theorem 3.1 and $ s = 1 $ in Theorem 1.2 are found to yield the same results.

    Theorem 2.2. Let $ f:[a, b]\rightarrow\mathbb{R} $ be a differentiable function on $ (a, b) $ with $ a < b $ and $ f'\in L[a, b] $. If $ |f'|^{q} $ is convex on $ [a, b] $, $ p, q > 1 $ and $ |f'(x)|\leq M $ with $ x \in [a, b], $ then the following inequality for fractional conformable integrals holds:

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|M[B(βp+1,1α)αβ+1]1p[(xa)αβ+1ba+(bx)αβ+1ba]
    $
    (2.4)

    where $ \frac{1}{p}+\frac{1}{q} = 1 $, $ \alpha, \beta > 0 $, $ B(x, y) $ and $ \Gamma $ are Euler beta and Euler gamma functions respectively.

    Proof. By using Lemma 2.1, convexity of $ |f'|^{q} $ and well-known Hölder's inequality, we have

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)a)|qdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)b)|qdt)1q].
    $
    (2.5)

    Notice that, changing variables with $ x = 1-(1-t)^{\alpha} $, we get

    $ 10(1(1t)αα)βp=B(βp+1,1α)αβ+1.
    $
    (2.6)

    Since $ |f'|^{q} $ is convex on $ [a, b] $ and $ |f'|^{q}\leq M^{q} $, we can easily observe that,

    $ 10|f(tx+(1t)a)|qdt10t|f(x)|qdt+10(1t)|f(a)|qdtMq.
    $
    (2.7)

    As a consequence, combining the equality (2.6) and inequality (2.7) with the inequality (2.5), the desired result is obtained.

    Remark 2.3. Taking $ \alpha = 1 $ in Theorem 3.2 and $ s = 1 $ in Theorem 1.3 are found to yield the same results.

    Theorem 2.3. Let $ f:[a, b]\rightarrow\mathbb{R} $ be a differentiable function on $ (a, b) $ with $ a < b $ and $ f'\in L[a, b] $. If $ |f'|^{q} $ is convex on $ [a, b] $, $ q\geq1 $ and $ |f'(x)|\leq M $ with $ x \in [a, b], $ then the following inequality for fractional conformable integrals holds:

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba]
    $
    (2.8)

    where $ \alpha, \beta > 0 $, $ B(x, y) $ and $ \Gamma $ are Euler Beta and Euler Gamma functions respectively.

    Proof. By using Lemma 2.1, convexity of $ |f''|^{q} $ and well-known power-mean inequality, we have

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba(10(1(1t)αα)βdt)11q(10(1(1t)αα)β|f(tx+(1t)a)|qdt)1q+(bx)αβ+1ba(10(1(1t)αα)βdt)11q(10(1(1t)αα)β|f(tx+(1t)b)|qdt)1q.
    $
    (2.9)

    Since $ |f'|^{q} $ is convex and $ |f'|^{q}\leq M^{q} $, by using (2.3) we can easily observe that,

    $ 10(1(1t)αα)β|f(tx+(1t)a)|qdt10(1(1t)αα)β[t|f(x)|q+(1t)|f(a)|q]dtMqαβ+1B(1α,β+1).
    $
    (2.10)

    As a consequence,

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba(1αβ+1B(1α,β+1))11q(Mqαβ+1B(1α,β+1))1q+(bx)αβ+1ba(1αβ+1B(1α,β+1))11q(Mqαβ+1B(1α,β+1))1q=Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba].
    $
    (2.11)

    This means that, the desired result is obtained.

    Remark 2.4. Taking $ \alpha = 1 $ in Theorem 3.2 and $ s = 1 $ in Theorem 1.4 are found to yield the same results.

    Theorem 2.4. Let $ f:[a, b]\rightarrow\mathbb{R} $ be a differentiable function on $ (a, b) $ with $ a < b $ and $ f'\in L[a, b] $. If $ |f'|^{q} $ is concave on $ [a, b] $, $ p, q > 1 $ and $ |f'(x)|\leq M $ with $ x \in [a, b], $ then the following inequality for fractional conformable integrals holds:

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|[B(βp+1,1α)αβ+1]1p[(xa)αβ+1ba|f(x+a2)|+(bx)αβ+1ba|f(x+b2)|]
    $
    (2.12)

    where $ \frac{1}{p}+\frac{1}{q} = 1 $, $ \alpha, \beta > 0 $, $ B(x, y) $ and $ \Gamma $ are Euler Beta and Gamma functions respectively.

    Proof. By using Lemma 2.1 and well-known Hölder's inequality, we have

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)a)|qdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)b)|qdt)1q].
    $
    (2.13)

    Since $ |f''|^{q} $ is concave, it can be easily observe that,

    $ |f(tx+(1t)a)|qdt|f(x+a2)|,|f(tx+(1t)b)|qdt|f(b+x2)|.
    $
    (2.14)

    Notice that, changing variables with $ x = 1-(1-t)^{\alpha} $, as in (2.6), we get,

    $ 10(1(1t)αα)βp=B(βp+1,1α)αβ+1.
    $
    (2.15)

    As a consequence, substituting (2.14) and (2.15) in (2.13), the desired result is obtained.

    Remark 2.5. Taking $ \alpha = 1 $ in Theorem 3.2 and $ s = 1 $ in Theorem 1.5 are found to yield the same results.

    Some new inequalities for AG-convex functions has obtained in this chapter. For the simplicity, we will denote $ \frac{|f^{\prime }(x)|}{|f^{\prime }(a)|} = \omega $ and $ \frac{|f^{\prime }(x)|}{|f^{\prime }(b)|} = \psi. $

    Theorem 3.1. Let $ f:[a, b]\rightarrow \mathbb{R} $ be a differentiable function on $ (a, b) $ with $ a < b $ and $ f^{\prime }\in L[a, b] $. If $ |f^{\prime }| $ is $ AG- $convex on $ [a, b], $ then the following inequality for fractional conformable integrals holds:

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]||f(a)|(xa)αβ+1αβ(ba)[ω1lnω(ωlnαβ1(ω)(Γ(αβ+1)Γ(αβ+1,lnω)))]+|f(b)|(bx)αβ+1αβ(ba)[ψ1lnψ(ψlnαβ1(ψ)(Γ(αβ+1)Γ(αβ+1,lnψ)))]
    $

    where $ \alpha > 0, \beta > 1 $, $ {Re}(\ln \omega) < 0\wedge {Re}(\ln \psi) < 0\wedge {Re}(\alpha \beta) > -1, B(x, y), \Gamma (x, y) $ and $ \Gamma $ are Euler Beta, Euler incomplete Gamma and Euler Gamma functions respectively.

    Proof. From Lemma 2.1 and definition of $ AG- $convexity, we have

    $ (xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)](xa)αβ+1ba10(1(1t)αα)β|f(tx+(1t)a)|dt+(bx)αβ+1ba10(1(1t)αα)β|f(tx+(1t)b)|dt(xa)αβ+1ba[10(1(1t)αα)β|f(a)|(|f(x)||f(a)|)tdt]+(bx)αβ+1ba[10(1(1t)αα)β|f(b)|(|f(x)||f(b)|)tdt].
    $
    (3.1)

    By using the fact that $ \left\vert 1-(1-t)^{\alpha }\right\vert ^{\beta }\leq 1-\left\vert 1-t\right\vert ^{\alpha \beta } $ for $ \alpha > 0, \beta > 1, $ we can write

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1αβ(ba)[10(1|1t|αβ)|f(a)|(|f(x)||f(a)|)tdt]+(bx)αβ+1αβ(ba)[10(1|1t|αβ)|f(b)|(|f(x)||f(b)|)tdt].
    $

    By computing the above integrals, we get the desired result.

    Theorem 3.2. Let $ f:[a, b]\rightarrow \mathbb{R} $ be a differentiable function on $ (a, b) $ with $ a < b $ and $ f^{\prime }\in L[a, b] $. If $ \left\vert f^{\prime }\right\vert ^{q} $ is $ AG- $convex on $ [a, b] $ and $ p, q > 1, $ then the following inequality for fractional conformable integrals holds:

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(B(βp+1,1α)αβ+1)1p[|f(a)|(xa)αβ+1ba(ωq1qlnω)1q+|f(b)|(bx)αβ+1ba(ψq1qlnψ)1q].
    $

    where $ \frac{1}{p}+\frac{1}{q} = 1 $, $ \alpha, \beta > 0 $, $ B(x, y) $ and $ \Gamma $ are Euler beta and Euler gamma functions respectively.

    Proof. By using Lemma 2.1, $ AG- $convexity of $ \left\vert f^{\prime }\right\vert ^{q} $ and well-known Hölder's inequality, we can write

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(|f(a)|q10(|f(x)||f(a)|)qtdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(|f(b)|q10(|f(x)||f(b)|)qtdt)1q].
    $

    By a simple computation, one can obtain

    $ |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(B(βp+1,1α)αβ+1)1p×[|f(a)|(xa)αβ+1ba(ωq1qlnω)1q+|f(b)|(bx)αβ+1ba(ψq1qlnψ)1q].
    $

    This completes the proof.

    Corollary 3.1. In our results, some new Ostrowski type inequalities can be derived by choosing $ \left\vert f^{\prime }\right\vert \leq M. $ We omit the details.

    The authors declare that no conflicts of interest in this paper.

    [1]

    N. W. Ashcroft and N. D. Mermin, Solide State Physics, Holt, Rinehart and Winston, Philadelphia, PA, 1976.

    [2] Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. (1994) 456: 19-51.
    [3]

    H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North Holland, 1973.

    [4]

    P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅰ, In Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1988.

    [5] Nonlinear stochastic homogenization. Ann. Mat. Pura Appl. (1986) 144: 347-389.
    [6] Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. (1986) 386: 28-42.
    [7]

    L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.

    [8]

    S. Fitzpatrick, Representing monotone operators by convex functions, in Workshop/Miniconference on Functional Analysis and Optimization, vol. 20 (eds. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University), Canberra, (1988), 59–65.

    [9]

    M. Heida and S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, preprint, arXiv: 1701.03505.

    [10]

    V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, 1994.

    [11] The averaging of random operators. Math. Sb. (1979) 109: 188-202.
    [12]

    L. Landau and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1960.

    [13]

    K. Messaoudi and G. Michaille, Stochastic homogenization of nonconvex integral functionals. Duality in the convex case, Sém. Anal. Convexe, 21 (1991), Exp. No. 14, 32 pp.

    [14] Stochastic homogenization of nonconvex integral functionals. RAIRO Modél. Math. Anal. Numér. (1994) 28: 329-356.
    [15] Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1978) 5: 489-507.
    [16] Strong $G$ -convergence of nonlinear elliptic operators and homogenization. Constantin Carathéodory: An International Tribute: (In 2 Volumes) (eds. World Scientific) (1991) Ⅰ/Ⅱ: 1075-1099.
    [17]

    A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publisher, Dordrecht, 1997.

    [18] Boundary value problems with rapidly oscillating random coefficients, in Random fields, vol. Ⅰ and Ⅱ. Colloq. Math. Soc. János Bolyai, North Holland, Amsterdam. (1981) 27: 835-873.
    [19] Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe. Math. Ann. (1927) 97: 737-755.
    [20] Stochastic two-scale convergence of an integral functional. Asymptotic Anal. (2011) 73: 97-123.
    [21] Averaging of flows with capillary hysteresis in stochastic porous media. European J. Appl. Math. (2007) 18: 389-415.
    [22]

    R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.

    [23]

    L. Tartar, Cours Peccot au College de France, Partially written by F. Murat in Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, unpublished, 1977.

    [24] Stochastic homogenization of subdifferential inclusions via scale integration. Intl. J. of Struct. Changes in Solids (2011) 3: 83-98.
    [25] Scale-integration and scale-disintegration in nonlinear homogenization. Calc. Var. Partial Differential Equations (2009) 36: 565-590.
    [26] Scale-transformations and homogenization of maximal monotone relations with applications. Asymptotic Anal. (2013) 82: 233-270.
    [27] Variational formulation and structural stability of monotone equations. Calc. Var. Partial Differential Equations. (2013) 47: 273-317.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6915) PDF downloads(316) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog