Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings

  • Received: 01 November 2012 Revised: 01 July 2013
  • Primary: 78M40, 35J05; Secondary: 35P25.

  • We investigate the transmission properties of a metallic layer with narrow slits. Recent measurements and numerical calculations concerning the light transmission through metallic sub-wavelength structures suggest that an unexpectedly high transmission coefficient is possible. We analyze the time harmonic Maxwell's equations in the $H$-parallel case for a fixed incident wavelength. Denoting by $\eta>0$ the typical size of the complex structure, effective equations describing the limit $\eta\to 0$ are derived. For metallic permittivities with negative real part, plasmonic waves can be excited on the surfaces of the channels. When these waves are in resonance with the height of the layer, the result can be perfect transmission through the layer.

    Citation: Guy Bouchitté, Ben Schweizer. Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings[J]. Networks and Heterogeneous Media, 2013, 8(4): 857-878. doi: 10.3934/nhm.2013.8.857

    Related Papers:

    [1] Guy Bouchitté, Ben Schweizer . Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Networks and Heterogeneous Media, 2013, 8(4): 857-878. doi: 10.3934/nhm.2013.8.857
    [2] Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022
    [3] Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012
    [4] Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529
    [5] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [6] Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056
    [7] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
    [8] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [9] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [10] Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617
  • We investigate the transmission properties of a metallic layer with narrow slits. Recent measurements and numerical calculations concerning the light transmission through metallic sub-wavelength structures suggest that an unexpectedly high transmission coefficient is possible. We analyze the time harmonic Maxwell's equations in the $H$-parallel case for a fixed incident wavelength. Denoting by $\eta>0$ the typical size of the complex structure, effective equations describing the limit $\eta\to 0$ are derived. For metallic permittivities with negative real part, plasmonic waves can be excited on the surfaces of the channels. When these waves are in resonance with the height of the layer, the result can be perfect transmission through the layer.


    [1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084
    [2] G. Bouchitté and C. Bourel, Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. in Comput. Phys., 11 (2012), 489-507. doi: 10.4208/cicp.171209.110810s
    [3] G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576. doi: 10.1016/j.crma.2009.02.027
    [4] G. Bouchitté and D. Felbacq, Negative refraction in periodic and random photonic crystals, New J. Phys., 7 (2005).
    [5] G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084. doi: 10.1137/050633147
    [6] G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., 63 (2010), 437-463. doi: 10.1093/qjmam/hbq008
    [7] G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations with split rings, SIAM Multiscale Modeling and Simulation, 8 (2010), 717-750. doi: 10.1137/09074557X
    [8] Q. Cao and P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits, Phys. Rev. Lett., 88 (2002), 057403. doi: 10.1103/PhysRevLett.88.057403
    [9] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998.
    [10] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Letters to Nature, 391 (1998), 667-669.
    [11] D. Felbacq, Noncommuting limits in homogenization theory of electromagnetic crystals, J. Math. Phys., 43 (2002), 52-55. doi: 10.1063/1.1418013
    [12] Comm. Math. Phys. (accepted).
    [13] P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru and K. D. Möller, One-mode model and airy-like formulae for one-dimensional metallic gratings, Journal of Optics A: Pure and Applied Optics, 2 (2000), 48. doi: 10.1088/1464-4258/2/1/309
    [14] P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier and P. Chavel, Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures, Physical Review B, (2003). doi: 10.1103/PhysRevB.68.125404
    [15] A. Lamacz and B. Schweizer, Effective maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494. doi: 10.1137/120874321
    [16] A. Mary, S. G. Rodrigo, L. Martin-Moreno and F. J. Garcia-Vidal, Holey metal films: From extraordinary transmission to negative-index behavior, Physical Review B, 80 (2009). doi: 10.1103/PhysRevB.80.165431
    [17] G. Milton and N.-A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 3027-3059. doi: 10.1098/rspa.2006.1715
    [18] S. O'Brien and J. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394.
    [19] J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, Transmission resonances on metallic gratings with very narrow slits, Phys. Rev. Lett., 83 (1999), 2845-2848. doi: 10.1103/PhysRevLett.83.2845
    [20] L. Schwartz, Théorie des Distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, Entiérement corrigée, Refondue et Augmentée. Hermann, Paris, 1966.
    [21] T. Vallius, J. Turunen, M. Mansuripur and S. Honkanen, Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons, J. Opt. Soc. Am. A, 21 (2004), 456-463. doi: 10.1364/JOSAA.21.000456
  • This article has been cited by:

    1. Daniel Peterseim, Barbara Verfürth, Computational high frequency scattering from high-contrast heterogeneous media, 2020, 89, 0025-5718, 2649, 10.1090/mcom/3529
    2. Mario Ohlberger, Barbara Verfürth, Localized Orthogonal Decomposition for two-scale Helmholtz-typeproblems, 2017, 2, 2473-6988, 458, 10.3934/Math.2017.2.458
    3. Klaas Hendrik Poelstra, Ben Schweizer, Maik Urban, The geometric average of curl-free fields in periodic geometries, 2021, 41, 2196-6753, 179, 10.1515/anly-2020-0053
    4. Junshan Lin, Hai Zhang, Scattering by a Periodic Array of Subwavelength Slits II: Surface Bound States, Total Transmission, and Field Enhancement in Homogenization Regimes, 2018, 16, 1540-3459, 954, 10.1137/17M1133786
    5. Patrizia Donato, Agnes Lamacz, Ben Schweizer, Sound absorption by perforated walls along boundaries, 2022, 101, 0003-6811, 4397, 10.1080/00036811.2020.1855329
    6. Agnes Lamacz, Ben Schweizer, Effective acoustic properties of a meta-material consisting of small Helmholtz resonators, 2017, 10, 1937-1179, 815, 10.3934/dcdss.2017041
    7. Mario Ohlberger, Barbara Verfurth, A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast, 2018, 16, 1540-3459, 385, 10.1137/16M1108820
    8. B. Schweizer, M. Urban, Effective Maxwell’s equations in general periodic microstructures, 2018, 97, 0003-6811, 2210, 10.1080/00036811.2017.1359563
    9. B. Schweizer, The low-frequency spectrum of small Helmholtz resonators, 2015, 471, 1364-5021, 20140339, 10.1098/rspa.2014.0339
    10. Hari Shankar Mahato, Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials, 2016, 2016, 2356-6140, 1, 10.1155/2016/7436136
    11. A. Lamacz, B. Schweizer, A Negative Index Meta-Material for Maxwell's Equations, 2016, 48, 0036-1410, 4155, 10.1137/16M1064246
    12. Ben Schweizer, Resonance Meets Homogenization, 2017, 119, 0012-0456, 31, 10.1365/s13291-016-0153-2
    13. Robert Lipton, Ben Schweizer, Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators, 2018, 229, 0003-9527, 1197, 10.1007/s00205-018-1237-1
    14. Barbara Verfürth, Numerical Multiscale Methods for Waves in High-Contrast Media, 2024, 126, 0012-0456, 37, 10.1365/s13291-023-00273-z
    15. A. Kirsch, B. Schweizer, Time-Harmonic Maxwell’s Equations in Periodic Waveguides, 2025, 249, 0003-9527, 10.1007/s00205-025-02099-8
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3610) PDF downloads(85) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog