Citation: Guy Bouchitté, Ben Schweizer. Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings[J]. Networks and Heterogeneous Media, 2013, 8(4): 857-878. doi: 10.3934/nhm.2013.8.857
[1] | Guy Bouchitté, Ben Schweizer . Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Networks and Heterogeneous Media, 2013, 8(4): 857-878. doi: 10.3934/nhm.2013.8.857 |
[2] | Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022 |
[3] | Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012 |
[4] | Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529 |
[5] | Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026 |
[6] | Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056 |
[7] | Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89 |
[8] | Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025 |
[9] | Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537 |
[10] | Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617 |
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084
![]() |
[2] |
G. Bouchitté and C. Bourel, Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. in Comput. Phys., 11 (2012), 489-507. doi: 10.4208/cicp.171209.110810s
![]() |
[3] |
G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576. doi: 10.1016/j.crma.2009.02.027
![]() |
[4] | G. Bouchitté and D. Felbacq, Negative refraction in periodic and random photonic crystals, New J. Phys., 7 (2005). |
[5] |
G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084. doi: 10.1137/050633147
![]() |
[6] |
G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., 63 (2010), 437-463. doi: 10.1093/qjmam/hbq008
![]() |
[7] |
G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations with split rings, SIAM Multiscale Modeling and Simulation, 8 (2010), 717-750. doi: 10.1137/09074557X
![]() |
[8] |
Q. Cao and P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits, Phys. Rev. Lett., 88 (2002), 057403. doi: 10.1103/PhysRevLett.88.057403
![]() |
[9] | D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998. |
[10] | T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Letters to Nature, 391 (1998), 667-669. |
[11] |
D. Felbacq, Noncommuting limits in homogenization theory of electromagnetic crystals, J. Math. Phys., 43 (2002), 52-55. doi: 10.1063/1.1418013
![]() |
[12] | Comm. Math. Phys. (accepted). |
[13] |
P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru and K. D. Möller, One-mode model and airy-like formulae for one-dimensional metallic gratings, Journal of Optics A: Pure and Applied Optics, 2 (2000), 48. doi: 10.1088/1464-4258/2/1/309
![]() |
[14] |
P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier and P. Chavel, Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures, Physical Review B, (2003). doi: 10.1103/PhysRevB.68.125404
![]() |
[15] |
A. Lamacz and B. Schweizer, Effective maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494. doi: 10.1137/120874321
![]() |
[16] |
A. Mary, S. G. Rodrigo, L. Martin-Moreno and F. J. Garcia-Vidal, Holey metal films: From extraordinary transmission to negative-index behavior, Physical Review B, 80 (2009). doi: 10.1103/PhysRevB.80.165431
![]() |
[17] |
G. Milton and N.-A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 3027-3059. doi: 10.1098/rspa.2006.1715
![]() |
[18] | S. O'Brien and J. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394. |
[19] |
J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, Transmission resonances on metallic gratings with very narrow slits, Phys. Rev. Lett., 83 (1999), 2845-2848. doi: 10.1103/PhysRevLett.83.2845
![]() |
[20] | L. Schwartz, Théorie des Distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, Entiérement corrigée, Refondue et Augmentée. Hermann, Paris, 1966. |
[21] |
T. Vallius, J. Turunen, M. Mansuripur and S. Honkanen, Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons, J. Opt. Soc. Am. A, 21 (2004), 456-463. doi: 10.1364/JOSAA.21.000456
![]() |
1. | Daniel Peterseim, Barbara Verfürth, Computational high frequency scattering from high-contrast heterogeneous media, 2020, 89, 0025-5718, 2649, 10.1090/mcom/3529 | |
2. | Mario Ohlberger, Barbara Verfürth, Localized Orthogonal Decomposition for two-scale Helmholtz-typeproblems, 2017, 2, 2473-6988, 458, 10.3934/Math.2017.2.458 | |
3. | Klaas Hendrik Poelstra, Ben Schweizer, Maik Urban, The geometric average of curl-free fields in periodic geometries, 2021, 41, 2196-6753, 179, 10.1515/anly-2020-0053 | |
4. | Junshan Lin, Hai Zhang, Scattering by a Periodic Array of Subwavelength Slits II: Surface Bound States, Total Transmission, and Field Enhancement in Homogenization Regimes, 2018, 16, 1540-3459, 954, 10.1137/17M1133786 | |
5. | Patrizia Donato, Agnes Lamacz, Ben Schweizer, Sound absorption by perforated walls along boundaries, 2022, 101, 0003-6811, 4397, 10.1080/00036811.2020.1855329 | |
6. | Agnes Lamacz, Ben Schweizer, Effective acoustic properties of a meta-material consisting of small Helmholtz resonators, 2017, 10, 1937-1179, 815, 10.3934/dcdss.2017041 | |
7. | Mario Ohlberger, Barbara Verfurth, A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast, 2018, 16, 1540-3459, 385, 10.1137/16M1108820 | |
8. | B. Schweizer, M. Urban, Effective Maxwell’s equations in general periodic microstructures, 2018, 97, 0003-6811, 2210, 10.1080/00036811.2017.1359563 | |
9. | B. Schweizer, The low-frequency spectrum of small Helmholtz resonators, 2015, 471, 1364-5021, 20140339, 10.1098/rspa.2014.0339 | |
10. | Hari Shankar Mahato, Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials, 2016, 2016, 2356-6140, 1, 10.1155/2016/7436136 | |
11. | A. Lamacz, B. Schweizer, A Negative Index Meta-Material for Maxwell's Equations, 2016, 48, 0036-1410, 4155, 10.1137/16M1064246 | |
12. | Ben Schweizer, Resonance Meets Homogenization, 2017, 119, 0012-0456, 31, 10.1365/s13291-016-0153-2 | |
13. | Robert Lipton, Ben Schweizer, Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators, 2018, 229, 0003-9527, 1197, 10.1007/s00205-018-1237-1 | |
14. | Barbara Verfürth, Numerical Multiscale Methods for Waves in High-Contrast Media, 2024, 126, 0012-0456, 37, 10.1365/s13291-023-00273-z | |
15. | A. Kirsch, B. Schweizer, Time-Harmonic Maxwell’s Equations in Periodic Waveguides, 2025, 249, 0003-9527, 10.1007/s00205-025-02099-8 |