Existence and approximation of probability measure solutions to models of collective behaviors

  • Received: 01 December 2010 Revised: 01 February 2011
  • Primary: 35L65, 35Q70; Secondary: 35Q91.

  • In this paper we consider first order differential models of collective behaviors of groups of agents, based on the mass conservation equation. Models are formulated taking the spatial distribution of the agents as the main unknown, expressed in terms of a probability measure evolving in time. We develop an existence and approximation theory of the solutions to such models and we show that some recently proposed models of crowd and swarm dynamics fit our theoretic paradigm.

    Citation: Andrea Tosin, Paolo Frasca. Existence and approximation of probability measure solutions to models of collective behaviors[J]. Networks and Heterogeneous Media, 2011, 6(3): 561-596. doi: 10.3934/nhm.2011.6.561

    Related Papers:

    [1] Andrea Tosin, Paolo Frasca . Existence and approximation of probability measure solutions to models of collective behaviors. Networks and Heterogeneous Media, 2011, 6(3): 561-596. doi: 10.3934/nhm.2011.6.561
    [2] Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001
    [3] Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029
    [4] Jan Friedrich, Sanjibanee Sudha, Samala Rathan . Numerical schemes for a class of nonlocal conservation laws: a general approach. Networks and Heterogeneous Media, 2023, 18(3): 1335-1354. doi: 10.3934/nhm.2023058
    [5] Sabrina Bonandin, Mattia Zanella . Effects of heterogeneous opinion interactions in many-agent systems for epidemic dynamics. Networks and Heterogeneous Media, 2024, 19(1): 235-261. doi: 10.3934/nhm.2024011
    [6] François James, Nicolas Vauchelet . One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation. Networks and Heterogeneous Media, 2016, 11(1): 163-180. doi: 10.3934/nhm.2016.11.163
    [7] José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska . Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15(3): 369-387. doi: 10.3934/nhm.2020023
    [8] Young-Pil Choi, Cristina Pignotti . Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks and Heterogeneous Media, 2019, 14(4): 789-804. doi: 10.3934/nhm.2019032
    [9] Martin Burger, Marco Di Francesco . Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks and Heterogeneous Media, 2008, 3(4): 749-785. doi: 10.3934/nhm.2008.3.749
    [10] Elisabeth Logak, Isabelle Passat . An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11(4): 693-719. doi: 10.3934/nhm.2016014
  • In this paper we consider first order differential models of collective behaviors of groups of agents, based on the mass conservation equation. Models are formulated taking the spatial distribution of the agents as the main unknown, expressed in terms of a probability measure evolving in time. We develop an existence and approximation theory of the solutions to such models and we show that some recently proposed models of crowd and swarm dynamics fit our theoretic paradigm.


    [1] L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," 2nd edition, Birkhäuser Verlag, Basel, 2008.
    [2] N. Bellomo, "Modeling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach," Birkhäuser, Boston, 2008.
    [3] J. A. Cañizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539. doi: 10.1142/S0218202511005131
    [4] C. Canuto, F. Fagnani and P. Tilli, A Eulerian approach to the analysis of rendez-vous algorithms, in "Proceedings of the 17th IFAC World Congress", (2008), 9039-9044.
    [5] E. Cristiani, P. Frasca and B. Piccoli, Effects of anisotropic interactions on the structure of animal groups, J. Math. Biol., 62 (2011), 569-588. doi: 10.1007/s00285-010-0347-7
    [6] E. Cristiani, B. Piccoli and A. Tosin, Modeling self-organization in pedestrian and animal groups from macroscopic and microscopic viewpoints, in "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences" (eds. G. Naldi, L. Pareschi and G. Toscani), Birkhäuser, Boston, (2010), 337-364.
    [7] R. J. LeVeque, "Numerical Methods for Conservation Laws," 2nd edition, Birkhäuser Verlag, Basel, 1992.
    [8] B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x
    [9] B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y
  • This article has been cited by:

    1. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 3, 978-3-319-06619-6, 53, 10.1007/978-3-319-06620-2_3
    2. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 2, 978-3-319-06619-6, 29, 10.1007/978-3-319-06620-2_2
    3. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 6, 978-3-319-06619-6, 137, 10.1007/978-3-319-06620-2_6
    4. A. Colombi, M. Scianna, L. Preziosi, A. Stephanou, V. Volpert, A Measure-Theoretic Model for Collective Cell Migration and Aggregation, 2015, 10, 0973-5348, 4, 10.1051/mmnp/201510101
    5. Benedetto Piccoli, Francesco Rossi, Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes, 2013, 124, 0167-8019, 73, 10.1007/s10440-012-9771-6
    6. E. Carlini, F. J. Silva, A Fully Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem, 2014, 52, 0036-1429, 45, 10.1137/120902987
    7. Emiliano Cristiani, Fabio S. Priuli, Andrea Tosin, Modeling Rationality to Control Self-Organization of Crowds: An Environmental Approach, 2015, 75, 0036-1399, 605, 10.1137/140962413
    8. Nadia Loy, Luigi Preziosi, Kinetic models with non-local sensing determining cell polarization and speed according to independent cues, 2020, 80, 0303-6812, 373, 10.1007/s00285-019-01411-x
    9. Andrea Tosin, 2014, Chapter 6, 978-3-7091-1784-2, 157, 10.1007/978-3-7091-1785-9_6
    10. Luca Bruno, Alessandro Corbetta, Andrea Tosin, From individual behaviour to an evaluation of the collective evolution of crowds along footbridges, 2016, 101, 0022-0833, 153, 10.1007/s10665-016-9852-z
    11. Annachiara Colombi, Marco Scianna, Andrea Tosin, Differentiated cell behavior: a multiscale approach using measure theory, 2015, 71, 0303-6812, 1049, 10.1007/s00285-014-0846-z
    12. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 4, 978-3-319-06619-6, 73, 10.1007/978-3-319-06620-2_4
    13. Julien M. Hendrickx, Alex Olshevsky, On Symmetric Continuum Opinion Dynamics, 2016, 54, 0363-0129, 2893, 10.1137/130943923
    14. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 5, 978-3-319-06619-6, 109, 10.1007/978-3-319-06620-2_5
    15. Emiliano Cristiani, Daniele Peri, Handling obstacles in pedestrian simulations: Models and optimization, 2017, 45, 0307904X, 285, 10.1016/j.apm.2016.12.020
    16. Joep H. M. Evers, Sander C. Hille, Adrian Muntean, Measure-Valued Mass Evolution Problems with Flux Boundary Conditions and Solution-Dependent Velocities, 2016, 48, 0036-1410, 1929, 10.1137/15M1031655
    17. Marco Scianna, Annachiara Colombi, Extension of tumor fingers: A comparison between an individual-cell based model and a measure theoretic approach, 2019, 10, 2038-0909, 54, 10.2478/caim-2019-0007
    18. Nadia Loy, Luigi Preziosi, Modelling physical limits of migration by a kinetic model with non-local sensing, 2020, 80, 0303-6812, 1759, 10.1007/s00285-020-01479-w
    19. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 1, 978-3-319-06619-6, 3, 10.1007/978-3-319-06620-2_1
    20. Alessandro Corbetta, Andrea Tosin, Comparing First-Order Microscopic and Macroscopic Crowd Models for an Increasing Number of Massive Agents, 2016, 2016, 1687-9120, 1, 10.1155/2016/6902086
    21. Benedetto Piccoli, Francesco Rossi, Generalized Wasserstein Distance and its Application to Transport Equations with Source, 2014, 211, 0003-9527, 335, 10.1007/s00205-013-0669-x
    22. Elisabetta Carlini, Francisco J. Silva, Ahmad Zorkot, A Lagrange–Galerkin Scheme for First Order Mean Field Game Systems, 2024, 62, 0036-1429, 167, 10.1137/23M1561762
    23. NICOLA BELLOMO, BENEDETTO PICCOLI, ANDREA TOSIN, MODELING CROWD DYNAMICS FROM A COMPLEX SYSTEM VIEWPOINT, 2012, 22, 0218-2025, 10.1142/S0218202512300049
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4331) PDF downloads(104) Cited by(23)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog