Loading [MathJax]/jax/output/SVG/jax.js

On algebraic graph theory and the dynamics of innovation networks

  • Received: 01 November 2007 Revised: 01 February 2008
  • 37N40, 05C50.

  • We investigate some of the properties and extensions of a dynamic innovation network model recently introduced in [37]. In the model, the set of efficient graphs ranges, depending on the cost for maintaining a link, from the complete graph to the (quasi-) star, varying within a well defined class of graphs. However, the interplay between dynamics on the nodes and topology of the network leads to equilibrium networks which are typically not efficient and are characterized, as observed in empirical studies of R&D networks, by sparseness, presence of clusters and heterogeneity of degree. In this paper, we analyze the relation between the growth rate of the knowledge stock of the agents from R&D collaborations and the properties of the adjacency matrix as- sociated with the network of collaborations. By means of computer simulations we further investigate how the equilibrium network is affected by increasing the evaluation time τ over which agents evaluate whether to maintain a link or not. We show that only if τ is long enough, efficient networks can be obtained by the selfish link formation process of agents, otherwise the equilibrium network is inefficient. This work should assist in building a theoretical framework of R&D networks from which policies can be derived that aim at fostering efficient innovation networks.

    Citation: M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks[J]. Networks and Heterogeneous Media, 2008, 3(2): 201-219. doi: 10.3934/nhm.2008.3.201

    Related Papers:

    [1] M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer . On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3(2): 201-219. doi: 10.3934/nhm.2008.3.201
    [2] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [3] Mahdi Jalili . EEG-based functional brain networks: Hemispheric differences in males and females. Networks and Heterogeneous Media, 2015, 10(1): 223-232. doi: 10.3934/nhm.2015.10.223
    [4] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
    [5] Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477
    [6] Robert Carlson . Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6(2): 257-277. doi: 10.3934/nhm.2011.6.257
    [7] Raúl M. Falcón, Venkitachalam Aparna, Nagaraj Mohanapriya . Optimal secret share distribution in degree splitting communication networks. Networks and Heterogeneous Media, 2023, 18(4): 1713-1746. doi: 10.3934/nhm.2023075
    [8] Yunhua Liao, Mohamed Maama, M. A. Aziz-Alaoui . Consensus dynamics and coherence in hierarchical small-world networks. Networks and Heterogeneous Media, 2025, 20(2): 482-499. doi: 10.3934/nhm.2025022
    [9] Jan Haskovec, Vybíral Jan . Robust network formation with biological applications. Networks and Heterogeneous Media, 2024, 19(2): 771-799. doi: 10.3934/nhm.2024035
    [10] Nathaniel J. Merrill, Zheming An, Sean T. McQuade, Federica Garin, Karim Azer, Ruth E. Abrams, Benedetto Piccoli . Stability of metabolic networks via Linear-in-Flux-Expressions. Networks and Heterogeneous Media, 2019, 14(1): 101-130. doi: 10.3934/nhm.2019006
  • We investigate some of the properties and extensions of a dynamic innovation network model recently introduced in [37]. In the model, the set of efficient graphs ranges, depending on the cost for maintaining a link, from the complete graph to the (quasi-) star, varying within a well defined class of graphs. However, the interplay between dynamics on the nodes and topology of the network leads to equilibrium networks which are typically not efficient and are characterized, as observed in empirical studies of R&D networks, by sparseness, presence of clusters and heterogeneity of degree. In this paper, we analyze the relation between the growth rate of the knowledge stock of the agents from R&D collaborations and the properties of the adjacency matrix as- sociated with the network of collaborations. By means of computer simulations we further investigate how the equilibrium network is affected by increasing the evaluation time τ over which agents evaluate whether to maintain a link or not. We show that only if τ is long enough, efficient networks can be obtained by the selfish link formation process of agents, otherwise the equilibrium network is inefficient. This work should assist in building a theoretical framework of R&D networks from which policies can be derived that aim at fostering efficient innovation networks.


  • This article has been cited by:

    1. Mario Vincenzo Tomasello, Frank Schweitzer, 2018, Chapter 368, 978-1-4939-7130-5, 1103, 10.1007/978-1-4939-7131-2_368
    2. Gurpreet Singh Saini, Sanjay Kumar Dubey, Sunil Kumar Bharti, 2017, Chapter 7, 978-981-10-3152-6, 69, 10.1007/978-981-10-3153-3_7
    3. D. König Michael, Stefano Battiston, 2009, Chapter 2, 978-3-540-68407-7, 23, 10.1007/978-3-540-68409-1_2
    4. Michael D. König, Stefano Battiston, Mauro Napoletano, Frank Schweitzer, The efficiency and stability of R&D networks, 2012, 75, 08998256, 694, 10.1016/j.geb.2011.12.007
    5. Lizhi Xing, Jun Guan, Xianlei Dong, Shan Wu, Understanding the competitive advantage of TPP-related nations from an econophysics perspective: Influence caused by China and the United States, 2018, 502, 03784371, 164, 10.1016/j.physa.2018.02.126
    6. Gurpreet Singh Saini, Vivek Kumar, 2019, Chapter 3, 978-981-10-8970-1, 29, 10.1007/978-981-10-8971-8_3
    7. Mario Vincenzo Tomasello, Moritz Müller, Frank Schweitzer, 2014, Chapter 368, 978-1-4614-6169-2, 737, 10.1007/978-1-4614-6170-8_368
    8. Lizhi Xing, Boris Podobnik, Analysis of inter-country input-output table based on citation network: How to measure the competition and collaboration between industrial sectors on the global value chain, 2017, 12, 1932-6203, e0184055, 10.1371/journal.pone.0184055
    9. Jaime Iranzo, Federico Pablo-Martí, Jacobo Aguirre, Emergence of complex socioeconomic networks driven by individual and collective interests, 2020, 2, 2643-1564, 10.1103/PhysRevResearch.2.043352
    10. Michael D. König, Stefano Battiston, Frank Schweitzer, 2009, Chapter 8, 978-3-540-92266-7, 187, 10.1007/978-3-540-92267-4_8
    11. Jaime Iranzo, Javier M. Buldú, Jacobo Aguirre, Competition among networks highlights the power of the weak, 2016, 7, 2041-1723, 10.1038/ncomms13273
    12. Lizhi Xing, 2022, Chapter 1, 978-981-16-9263-5, 3, 10.1007/978-981-16-9264-2_1
    13. J. Lorenz, S. Battiston, F. Schweitzer, Systemic risk in a unifying framework for cascading processes on networks, 2009, 71, 1434-6028, 441, 10.1140/epjb/e2009-00347-4
    14. Sergi Lozano, 2009, Chapter 8, 978-0-8176-4750-6, 133, 10.1007/978-0-8176-4751-3_8
    15. FRANK SCHWEITZER, GIORGIO FAGIOLO, DIDIER SORNETTE, FERNANDO VEGA-REDONDO, DOUGLAS R. WHITE, ECONOMIC NETWORKS: WHAT DO WE KNOW AND WHAT DO WE NEED TO KNOW?, 2009, 12, 0219-5259, 407, 10.1142/S0219525909002337
    16. Dragoš Cvetković, Slobodan Simić, Graph spectra in Computer Science, 2011, 434, 00243795, 1545, 10.1016/j.laa.2010.11.035
    17. Frank Schweitzer, Giorgio Fagiolo, Didier Sornette, Fernando Vega-Redondo, Alessandro Vespignani, Douglas R. White, Economic Networks: The New Challenges, 2009, 325, 0036-8075, 422, 10.1126/science.1173644
    18. Frank Schweitzer, 2020, Chapter 8, 978-981-15-4805-5, 145, 10.1007/978-981-15-4806-2_8
    19. Hadi Esmaeilpour Moghadam, Teymour Mohammadi, Mohammad Feghhi Kashani, Abbas Shakeri, Complex networks analysis in Iran stock market: The application of centrality, 2019, 531, 03784371, 121800, 10.1016/j.physa.2019.121800
    20. Javier M. Buldú, Federico Pablo-Martí, Jacobo Aguirre, Taming out-of-equilibrium dynamics on interconnected networks, 2019, 10, 2041-1723, 10.1038/s41467-019-13291-2
    21. K. Anand, T. Galla, Stability and dynamical properties of material flow systems on random networks, 2009, 68, 1434-6028, 587, 10.1140/epjb/e2009-00106-7
    22. Mario Vincenzo Tomasello, Frank Schweitzer, 2017, Chapter 368-1, 978-1-4614-7163-9, 1, 10.1007/978-1-4614-7163-9_368-1
    23. Florian Blöchl, Fabian J. Theis, Fernando Vega-Redondo, Eric O’N. Fisher, Vertex centralities in input-output networks reveal the structure of modern economies, 2011, 83, 1539-3755, 10.1103/PhysRevE.83.046127
    24. Michael Koenig, Stefano Battiston, M. Napoletano, Frank Schweitzer, The Efficiency and Evolution of R&D Networks, 2008, 1556-5068, 10.2139/ssrn.1271877
    25. James McNerney, Brian D. Fath, Gerald Silverberg, Network structure of inter-industry flows, 2013, 392, 03784371, 6427, 10.1016/j.physa.2013.07.063
    26. Julio César Alonso Cifuentes, María Paula Ocampo Arango, Evolución de la estructura de la economía colombiana a partir de la teoría de redes y detección de comunidades para el periodo 2005-2021, 2024, 16, 2011-7663, 401, 10.14718/revfinanzpolitecon.v16.n2.2024.4
    27. Grzegorz Chrobak, Rengin Aslanoğlu, Aleksandra Lubańska, Tomasz Kowalczyk, Katarzyna Tokarczyk-Dorociak, Szymon Szewrański, Jan K. Kazak, Graph Enhanced Co-Occurrence: Deep dive into urban park soundscape, 2024, 165, 1470160X, 112172, 10.1016/j.ecolind.2024.112172
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5957) PDF downloads(580) Cited by(27)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog