We address stable synchronization of a network of rotating and translating rigid bodies in three-dimensional space. Motivated by applications that require coordinated spinning spacecraft or diving underwater vehicles, we prove control laws that stably couple and coordinate the dynamics of multiple rigid bodies. We design decentralized, energy shaping control laws for each individual rigid body that depend on the relative orientation and relative position of its neighbors. Energy methods are used to prove stability of the coordinated multi-body dynamical system. To prove exponential stability, we break symmetry and consider a controlled dissipation term that requires each individual to measure its own velocity. The control laws are illustrated in simulation for a network of spinning rigid bodies.
Citation: Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks[J]. Networks and Heterogeneous Media, 2007, 2(4): 597-626. doi: 10.3934/nhm.2007.2.597
Related Papers:
[1]
Sujit Nair, Naomi Ehrich Leonard .
Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2007, 2(4): 597-626.
doi: 10.3934/nhm.2007.2.597
[2]
Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati .
The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks and Heterogeneous Media, 2017, 12(3): 403-416.
doi: 10.3934/nhm.2017018
[3]
Seung-Yeal Ha, Se Eun Noh, Jinyeong Park .
Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807.
doi: 10.3934/nhm.2015.10.787
[4]
Jun Guo, Yanchao Shi, Yanzhao Cheng, Weihua Luo .
Projective synchronization for quaternion-valued memristor-based neural networks under time-varying delays. Networks and Heterogeneous Media, 2024, 19(3): 1156-1181.
doi: 10.3934/nhm.2024051
[5]
Pau Erola, Albert Díaz-Guilera, Sergio Gómez, Alex Arenas .
Modeling international crisis synchronization in the world trade web. Networks and Heterogeneous Media, 2012, 7(3): 385-397.
doi: 10.3934/nhm.2012.7.385
[6]
Lili Jia, Changyou Wang, Zongxin Lei .
Synchronization of nonautonomous neural networks with Caputo derivative and time delay. Networks and Heterogeneous Media, 2023, 18(1): 341-358.
doi: 10.3934/nhm.2023013
[7]
Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li .
Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24.
doi: 10.3934/nhm.2017001
[8]
Chenchen Li, Chunyan Zhang, Lichao Feng, Zhihui Wu .
Note on prescribed-time stability of impulsive piecewise-smooth differential systems and application in networks. Networks and Heterogeneous Media, 2024, 19(3): 970-991.
doi: 10.3934/nhm.2024043
[9]
Grigory Panasenko, Ruxandra Stavre .
Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5(4): 783-812.
doi: 10.3934/nhm.2010.5.783
[10]
Didier Georges .
Infinite-dimensional nonlinear predictive control design for open-channel hydraulic
systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285.
doi: 10.3934/nhm.2009.4.267
Abstract
We address stable synchronization of a network of rotating and translating rigid bodies in three-dimensional space. Motivated by applications that require coordinated spinning spacecraft or diving underwater vehicles, we prove control laws that stably couple and coordinate the dynamics of multiple rigid bodies. We design decentralized, energy shaping control laws for each individual rigid body that depend on the relative orientation and relative position of its neighbors. Energy methods are used to prove stability of the coordinated multi-body dynamical system. To prove exponential stability, we break symmetry and consider a controlled dissipation term that requires each individual to measure its own velocity. The control laws are illustrated in simulation for a network of spinning rigid bodies.
This article has been cited by:
1.
Fan Wu, Zhi-Yong Geng,
Coordinating control of multiple rigid bodies based on motion primitives,
2012,
28,
0567-7718,
482,
10.1007/s10409-012-0050-6
2.
Rakesh R. Warier, Arpita Sinha, Srikant Sukumar,
Relative Attitude Trajectory Tracking Using Line Of Sight Measurements Under Spacecraft Position Dynamics,
2014,
47,
14746670,
455,
10.3182/20140313-3-IN-3024.00236
3.
Jr-Shin Li, Wei Zhang, Liang Wang,
2017,
Computing controllability of systems on SO(n) over graphs,
978-1-5090-2873-3,
5511,
10.1109/CDC.2017.8264476
Yongfang Liu, Zhiyong Geng,
Finite-time optimal formation control of multi-agent systems on the Lie group SE(3),
2013,
86,
0020-7179,
1675,
10.1080/00207179.2013.792006
6.
Y. Igarashi, T. Hatanaka, M. Fujita, M.W. Spong,
Passivity-Based Attitude Synchronization in ,
2009,
17,
1063-6536,
1119,
10.1109/TCST.2009.2014357
7.
Iman Fadakar, Baris Fidan, Jan Huissoon,
2013,
Robust adaptive attitude synchronization of rigid body networks with unknown inertias,
978-1-4673-5769-2,
1,
10.1109/ASCC.2013.6606205
Soumya Ranjan Sahoo, Ravi N Banavar,
2014,
Attitude synchronization of satellites with internal actuation,
978-3-9524269-1-3,
1747,
10.1109/ECC.2014.6862171
10.
T. Hatanaka, Y. Igarashi, M. Fujita, M. W. Spong,
Passivity-Based Pose Synchronization in Three Dimensions,
2012,
57,
0018-9286,
360,
10.1109/TAC.2011.2166668
Tomohisa Hayakawa, Gajamohan Mohanarajah,
2008,
Attitude consensus with fixed rotational axis via energy dissipation,
978-1-4244-3123-6,
2932,
10.1109/CDC.2008.4739478
13.
S Arun Kumar, Rakesh Warier, Srikant Sukumar,
2017,
Adaptive tracking of position and attitude of a underwater rigid-body,
978-1-5090-1795-9,
432,
10.1109/INDIANCC.2017.7846513
14.
Simone Fiori, Luca Bigelli, Federico Polenta,
Lie-Group Type Quadcopter Control Design by Dynamics Replacement and the Virtual Attractive-Repulsive Potentials Theory,
2022,
10,
2227-7390,
1104,
10.3390/math10071104
15.
Victor Solo, Marc J. Piggott,
2018,
Stochastic Attitude Synchronization,
978-1-5386-1395-5,
2956,
10.1109/CDC.2018.8619633
16.
Pedro O. Pereira, Dimos V. Dimarogonas,
Family of controllers for attitude synchronization on the sphere,
2017,
75,
00051098,
271,
10.1016/j.automatica.2016.09.033
17.
Sujit Nair, Naomi Ehrich Leonard,
Stable Synchronization of Mechanical System Networks,
2008,
47,
0363-0129,
661,
10.1137/050646639
18.
Guo-Ping Liu, Shijie Zhang,
A Survey on Formation Control of Small Satellites,
2018,
106,
0018-9219,
440,
10.1109/JPROC.2018.2794879
19.
Tatsuya Ibuki, Takeshi Hatanaka, Masayuki Fujita,
2012,
Passivity-based pose synchronization using only relative pose information under general digraphs,
978-1-4673-2066-5,
4709,
10.1109/CDC.2012.6426631
20.
Juan Deng, Zhixin Liu, Lin Wang, John S. Baras,
2016,
Attitude synchronization of multiple rigid bodies in SE(3) over proximity networks,
978-9-8815-6391-0,
8275,
10.1109/ChiCC.2016.7554674
21.
Rakesh R Warier, Srikant Sukumar,
2017,
Relative attitude tracking control of multiple spacecraft with unknown inertia using line-of-sight measurements,
978-1-5090-1795-9,
105,
10.1109/INDIANCC.2017.7846460
Xiuhui Peng, Junyong Sun, Zhiyong Geng,
The geometric convexity on SE(3) and its application to the formation tracking in multi-vehicle systems,
2019,
92,
0020-7179,
528,
10.1080/00207179.2017.1361043
25.
Dong-yang Xue, Zhi-liang Wu, Er-mai Qi, Yan-hui Wang, Shu-xin Wang,
Attitude coordination of multi-HUG formation based on multibody system theory,
2017,
31,
0890-5487,
248,
10.1007/s13344-017-0029-y
26.
Arun Kumar S, Rakesh R. Warier, Srikant Sukumar,
Attitude & Position Tracking of a Underwater Rigid Body,
2016,
49,
24058963,
606,
10.1016/j.ifacol.2016.10.232
27.
Yao Chen, JinHu Lü, XingHuo Yu,
Robust consensus of multi-agent systems with time-varying delays in noisy environment,
2011,
54,
1674-7321,
2014,
10.1007/s11431-011-4477-y
28.
Yongfang Liu, Zhiyong Geng,
Finite-time optimal formation tracking control of vehicles in horizontal plane,
2014,
76,
0924-090X,
481,
10.1007/s11071-013-1141-z
29.
Tatsuya Ibuki, Takeshi Hatanaka, Zhihua Qu,
2018,
Discrete-time 3-D Attitude Synchronization Based on Passivity Shortage,
978-1-5386-1395-5,
1293,
10.1109/CDC.2018.8618727
30.
Hardeep Bassi, Richard P. Yim, Joshua Vendrow, Rohith Koduluka, Cherlin Zhu, Hanbaek Lyu,
Learning to predict synchronization of coupled oscillators on randomly generated graphs,
2022,
12,
2045-2322,
10.1038/s41598-022-18953-8
31.
M. Ahmed, K. Subbarao,
2012,
Estimation based cooperative guidance controller for 3D target tracking with multiple UAVs,
978-1-4577-1096-4,
6035,
10.1109/ACC.2012.6314634
32.
Rakesh R. Warier, Arpita Sinha, Srikant Sukumar,
Spacecraft Attitude Synchronization And Formation Keeping Using Line Of Sight Measurements,
2014,
47,
14746670,
8311,
10.3182/20140824-6-ZA-1003.02406
33.
Rakesh R. Warier, Arpita Sinha, Srikant Sukumar,
Line-of-sight based spacecraft attitude and position tracking control,
2016,
32,
09473580,
43,
10.1016/j.ejcon.2016.04.001
Ashton Roza, Manfredi Maggiore, Luca Scardovi,
Local and Distributed Rendezvous of Underactuated Rigid Bodies,
2017,
62,
0018-9286,
3835,
10.1109/TAC.2017.2650562
36.
Laura Menini, Corrado Possieri, Antonio Tornambe,
2017,
Synchronization of two gyroscopes with measures affected by an unknown sinusoidal disturbance,
978-1-5090-2873-3,
6720,
10.1109/CDC.2017.8264672
37.
Juan Deng, Wenjun Song, Zhixin Liu, John S. Baras,
2015,
Pose synchronization of rigid body networks with switching topologies,
978-9-8815-6389-7,
7639,
10.1109/ChiCC.2015.7260852
38.
Ashton Roza, Manfredi Maggiore, Luca Scardovi,
2014,
A class of rendezvous controllers for underactuated thrust-propelled rigid bodies,
978-1-4673-6090-6,
1649,
10.1109/CDC.2014.7039636
39.
Christian Lageman, Uwe R. Helmke, Brian D.O. Anderson,
Simultaneous velocity consensus and shape control for a finite number of point agents on the unit circle,
2018,
90,
00051098,
123,
10.1016/j.automatica.2017.12.060
40.
Tatsuya IBUKI, Junya YAMAUCHI, Takeshi HATANAKA,
Discrete-time 3D Pose Synchronization Based on Passivity Shortage,
2023,
59,
0453-4654,
505,
10.9746/sicetr.59.505
41.
Qinbo Huang, Jitao Sun,
Tracking control for a class of fully actuated systems on manifolds with impulsive effects,
2024,
34,
1049-8923,
9536,
10.1002/rnc.7477