The many facets of internet topology and traffic

  • Received: 01 September 2006
  • Primary: 90B15; Secondary: 90B10.

  • The Internet's layered architecture and organizational structure give rise to a number of different topologies, with the lower layers defining more physical and the higher layers more virtual/logical types of connectivity structures. These structures are very different, and successful Internet topology modeling requires annotating the nodes and edges of the corresponding graphs with information that reflects their network-intrinsic meaning. These structures also give rise to different representations of the traffic that traverses the heterogeneous Internet, and a traffic matrix is a compact and succinct description of the traffic exchanges between the nodes in a given connectivity structure. In this paper, we summarize recent advances in Internet research related to (i) inferring and modeling the router-level topologies of individual service providers (i.e., the physical connectivity structure of an ISP, where nodes are routers/switches and links represent physical connections), (ii) estimating the intra-AS traffic matrix when the AS's router-level topology and routing configuration are known, (iii) inferring and modeling the Internet's AS-level topology, and (iv) estimating the inter-AS traffic matrix. We will also discuss recent work on Internet connectivity structures that arise at the higher layers in the TCP/IP protocol stack and are more virtual and dynamic; e.g., overlay networks like the WWW graph, where nodes are web pages and edges represent existing hyperlinks, or P2P networks like Gnutella, where nodes represent peers and two peers are connected if they have an active network connection.

    Citation: D. Alderson, H. Chang, M. Roughan, S. Uhlig, W. Willinger. The many facets of internet topology and traffic[J]. Networks and Heterogeneous Media, 2006, 1(4): 569-600. doi: 10.3934/nhm.2006.1.569

    Related Papers:

    [1] D. Alderson, H. Chang, M. Roughan, S. Uhlig, W. Willinger . The many facets of internet topology and traffic. Networks and Heterogeneous Media, 2006, 1(4): 569-600. doi: 10.3934/nhm.2006.1.569
    [2] Vinay Aggarwal, Anja Feldmann . Locality-aware P2P query search with ISP collaboration. Networks and Heterogeneous Media, 2008, 3(2): 251-265. doi: 10.3934/nhm.2008.3.251
    [3] Mauro Garavello, Benedetto Piccoli . On fluido-dynamic models for urban traffic. Networks and Heterogeneous Media, 2009, 4(1): 107-126. doi: 10.3934/nhm.2009.4.107
    [4] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [5] Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525
    [6] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [7] Timilehin O. Alakoya, Bidisha Ghosh, Salissou Moutari, Vikram Pakrashi, Ranganatha B. Ramachandra . Traffic network analysis via multidimensional split variational inequality problem with multiple output sets. Networks and Heterogeneous Media, 2024, 19(1): 169-195. doi: 10.3934/nhm.2024008
    [8] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [9] Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012
    [10] Dengfeng Sun, Issam S. Strub, Alexandre M. Bayen . Comparison of the performance of four Eulerian network flow models for strategic air traffic management. Networks and Heterogeneous Media, 2007, 2(4): 569-595. doi: 10.3934/nhm.2007.2.569
  • The Internet's layered architecture and organizational structure give rise to a number of different topologies, with the lower layers defining more physical and the higher layers more virtual/logical types of connectivity structures. These structures are very different, and successful Internet topology modeling requires annotating the nodes and edges of the corresponding graphs with information that reflects their network-intrinsic meaning. These structures also give rise to different representations of the traffic that traverses the heterogeneous Internet, and a traffic matrix is a compact and succinct description of the traffic exchanges between the nodes in a given connectivity structure. In this paper, we summarize recent advances in Internet research related to (i) inferring and modeling the router-level topologies of individual service providers (i.e., the physical connectivity structure of an ISP, where nodes are routers/switches and links represent physical connections), (ii) estimating the intra-AS traffic matrix when the AS's router-level topology and routing configuration are known, (iii) inferring and modeling the Internet's AS-level topology, and (iv) estimating the inter-AS traffic matrix. We will also discuss recent work on Internet connectivity structures that arise at the higher layers in the TCP/IP protocol stack and are more virtual and dynamic; e.g., overlay networks like the WWW graph, where nodes are web pages and edges represent existing hyperlinks, or P2P networks like Gnutella, where nodes represent peers and two peers are connected if they have an active network connection.


  • This article has been cited by:

    1. Fadi Al-Turjman, Information-centric framework for the Internet of Things (IoT): Traffic modeling & optimization, 2018, 80, 0167739X, 63, 10.1016/j.future.2017.08.018
    2. Yang Liu, Jian Yuan, Xiuming Shan, Yong Ren, Zhengxin Ma, Self-determined mechanisms in complex networks, 2008, 387, 03784371, 2145, 10.1016/j.physa.2007.11.035
    3. 2011, New methods for network traffic matrix estimation based on a probability model, 978-1-4577-1826-7, 270, 10.1109/ICON.2011.6168487
    4. Steve Uhlig, Felix Cuadrado Latasa, Recent Changes in the Internet Landscape, 2013, 55, 2196-7032, 133, 10.1524/itit.2013.1004
    5. Paul Tune, Matthew Roughan, Chris Wiren, 2018, Hierarchical Traffic Matrices: Axiomatic Foundations to Practical Traffic Matrix Synthesis, 978-9-8814-7685-2, 1591, 10.23919/APSIPA.2018.8659593
    6. Ruben Torres, Marco Mellia, Maurizio M. Munafo, Sanjay G. Rao, Characterization of community based-P2P systems and implications for traffic localization, 2013, 6, 1936-6442, 118, 10.1007/s12083-012-0132-z
    7. Hui Tian, Binze Zhong, Hong Shen, Diffusion wavelet-based analysis on traffic matrices by different diffusion operators, 2014, 40, 00457906, 1874, 10.1016/j.compeleceng.2014.04.021
    8. Gonca Gürsun, Mark Crovella, 2012, On traffic matrix completion in the internet, 9781450317054, 399, 10.1145/2398776.2398818
    9. Jakub Mikians, Amogh Dhamdhere, Constantine Dovrolis, Pere Barlet-Ros, Josep Solé-Pareta, 2012, Chapter 9, 978-3-642-30053-0, 111, 10.1007/978-3-642-30054-7_9
    10. William Aiello, Andrei Broder, Jeannette Janssen, Evangelos Milios, 2008, Chapter 1, 978-3-540-78807-2, 1, 10.1007/978-3-540-78808-9_1
    11. Matthew Roughan, Yin Zhang, Walter Willinger, Lili Qiu, Spatio-Temporal Compressive Sensing and Internet Traffic Matrices (Extended Version), 2012, 20, 1063-6692, 662, 10.1109/TNET.2011.2169424
    12. Chen Ling, Gaohang Yu, Liqun Qi, Yanwei Xu, T-product factorization method for internet traffic data completion with spatio-temporal regularization, 2021, 80, 0926-6003, 883, 10.1007/s10589-021-00315-1
    13. Ciro D'Apice, Rosanna Manzo, Benedetto Piccoli, A Fluid Dynamic Model for Telecommunication Networks with Sources and Destinations, 2008, 68, 0036-1399, 981, 10.1137/060674132
    14. Qin Wang, Fang Dong, Xin-Li Yang, Rui Yin, 2018, Chapter 37, 978-3-030-00556-6, 370, 10.1007/978-3-030-00557-3_37
    15. David L. Alderson, OR FORUM—Catching the “Network Science” Bug: Insight and Opportunity for the Operations Researcher, 2008, 56, 0030-364X, 1047, 10.1287/opre.1080.0606
    16. J. BARTLETT, M. J. PLANK, EPIDEMIC DYNAMICS ON RANDOM AND SCALE-FREE NETWORKS, 2012, 54, 1446-1811, 3, 10.1017/S1446181112000302
    17. Yin Zhang, Matthew Roughan, Walter Willinger, Lili Qiu, 2009, Spatio-temporal compressive sensing and internet traffic matrices, 9781605585949, 267, 10.1145/1592568.1592600
    18. Xiao Bayi, Real-time visual transmission mechanism of graphics diversity based on mobile 3D graphics matching algorithm, 2021, 43, 1206-212X, 340, 10.1080/1206212X.2018.1550165
    19. Yonggong Wang, Gaogang Xie, Mohamed-Ali Kaafar, Steve Uhlig, 2013, LMD: A local minimum driven and self-organized method to obtain locators, 978-1-4799-3755-4, 000759, 10.1109/ISCC.2013.6755040
    20. 2010, A new systematic analysis and generation technique for the Internet topology, 978-1-4244-5845-5, 185, 10.1109/ICACC.2010.5487255
    21. Yuan Li Wu, Guang Ya Si, Yan Zheng Wang, Pi Luo, Modeling Internet Backbone Traffic Based on Multi-Commodity Flow, 2015, 713-715, 1662-7482, 2261, 10.4028/www.scientific.net/AMM.713-715.2261
    22. REGINALD D. SMITH, THE DYNAMICS OF INTERNET TRAFFIC: SELF-SIMILARITY, SELF-ORGANIZATION, AND COMPLEX PHENOMENA, 2011, 14, 0219-5259, 905, 10.1142/S0219525911003451
    23. David Rincón, Matthew Roughan, Walter Willinger, 2008, Towards a meaningful MRA of traffic matrices, 9781605583341, 331, 10.1145/1452520.1452559
    24. Yuansheng Wu, Bing Guo, Yan Shen, Jihe Wang, Xiaobin Liu, A Cross-Layer Optimization and Design approach under QoS constraints for green IP over WDM networks, 2015, 76, 13891286, 177, 10.1016/j.comnet.2014.10.025
    25. Matthew Roughan, 2010, Chapter 5, 978-1-84882-827-8, 137, 10.1007/978-1-84882-828-5_5
    26. Daniel A. Eisenberg, David L. Alderson, Maksim Kitsak, Alexander Ganin, Igor Linkov, Network Foundation for Command and Control (C2) Systems: Literature Review, 2018, 6, 2169-3536, 68782, 10.1109/ACCESS.2018.2873328
    27. Tian Feng, Dapeng Man, Hao Fu, Unknown Protocol Identification Based on Improved K-Means++ Algorithm, 2020, 1646, 1742-6588, 012023, 10.1088/1742-6596/1646/1/012023
    28. Eugenio Costamagna, Stefano Giordano, Walter Willinger, 2010, Measurement, Analysis and Modeling of Multi-layered Communication Networks, 978-1-4244-5982-7, 73, 10.1109/COMPENG.2010.36
    29. Animashree Anandkumar, Avinatan Hassidim, Jonathan Kelner, Topology discovery of sparse random graphs with few participants, 2013, 43, 10429832, 16, 10.1002/rsa.20420
    30. Matthew Roughan, Yin Zhang, GATEway: symbiotic inter-domain traffic engineering, 2011, 47, 1018-4864, 3, 10.1007/s11235-010-9298-y
    31. Qi Jiang, Le Zhang, Rashid A Saeed, Higher Education Management Analysis of Smart Transportation Big Data Application under the Background of Internet +, 2022, 2022, 1530-8677, 1, 10.1155/2022/5809214
    32. Hui Tian, Matthew Roughan, Yingpeng Sang, Hong Shen, 2011, Diffusion Wavelets-Based Analysis on Traffic Matrices, 978-1-4577-1807-6, 116, 10.1109/PDCAT.2011.35
    33. Tony H. Grubesic, Timothy C. Matisziw, David A.J. Ripley, Approximating the Geographical Characteristics of Internet Activity, 2011, 18, 1063-0732, 51, 10.1080/10630732.2011.578409
    34. Ugo Fiore, Paolo Zanetti, Francesco Palmieri, Francesca Perla, Traffic matrix estimation with software-defined NFV: Challenges and opportunities, 2017, 22, 18777503, 162, 10.1016/j.jocs.2017.03.001
    35. Steven K. Korotky, Kostas N. Oikonomou, Scaling of the most likely traffic patterns of hose- and cost-constrained ring and mesh networks, 2008, 7, 1536-5379, 550, 10.1364/JON.7.000550
    36. Abdullah Yasin Nur, Mehmet Engin Tozal, Cross-AS (X-AS) Internet topology mapping, 2018, 132, 13891286, 53, 10.1016/j.comnet.2018.01.011
    37. Kostas N. Oikonomou, Analytical forms for most likely matrices derived from incomplete information, 2012, 43, 0020-7721, 443, 10.1080/00207721.2010.502600
    38. Dingde Jiang, Xingwei Wang, Zhengzheng Xu, Zhenhua Chen, Hongwei Xu, 2011, An Optimal Estimation of Origin-Destination Traffic in Large-Scale Backbone Network, 978-1-61284-232-5, 1, 10.1109/icc.2011.5962878
    39. Olena Kostylenko, Helena Sofia Rodrigues, Delfim F. M. Torres, The spread of a financial virus through Europe and beyond, 2019, 4, 2473-6988, 86, 10.3934/Math.2019.1.86
    40. Dingde Jiang, Zhengzheng Xu, Zhenhua Chen, Yang Han, Hongwei Xu, Joint time–frequency sparse estimation of large-scale network traffic, 2011, 55, 13891286, 3533, 10.1016/j.comnet.2011.06.027
    41. Yin Zhang, Matthew Roughan, Walter Willinger, Lili Qiu, Spatio-temporal compressive sensing and internet traffic matrices, 2009, 39, 0146-4833, 267, 10.1145/1594977.1592600
    42. Quan Yu, Xinzhen Zhang, Zheng-Hai Huang, Tensor Factorization-Based Method for Tensor Completion with Spatio-temporal Characterization, 2023, 199, 0022-3239, 337, 10.1007/s10957-023-02287-0
    43. Lei Deng, Xiao-Yang Liu, Haifeng Zheng, Xinxin Feng, Zhizhang Chen, Graph-Tensor Neural Networks for Network Traffic Data Imputation, 2023, 31, 1063-6692, 3010, 10.1109/TNET.2023.3268982
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5300) PDF downloads(270) Cited by(43)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog