The aim of this paper is to address the following questions: which models,
among fluido-dynamic ones, are more appropriate to describe urban traffic?
While a rich debate was developed for the complicate
dynamics of highway traffic, some
basic problems of urban traffic are not always appropriately discussed.
We analyze many recent, and less recent, models focusing on three
basic properties.
The latter are necessary to reproduce correctly queue formation at lights and
junctions, and their backward propagation on an urban network.
Citation: Mauro Garavello, Benedetto Piccoli. On fluido-dynamic models for urban traffic[J]. Networks and Heterogeneous Media, 2009, 4(1): 107-126. doi: 10.3934/nhm.2009.4.107
Related Papers:
[1]
Rinaldo M. Colombo, Mauro Garavello .
A Well Posed Riemann Problem for the p--System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511.
doi: 10.3934/nhm.2006.1.495
[2]
Yannick Holle, Michael Herty, Michael Westdickenberg .
New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631.
doi: 10.3934/nhm.2020016
[3]
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli .
Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84.
doi: 10.3934/nhm.2006.1.57
[4]
Jens Lang, Pascal Mindt .
Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190.
doi: 10.3934/nhm.2018008
[5]
Michael Herty, Niklas Kolbe, Siegfried Müller .
Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340.
doi: 10.3934/nhm.2023012
[6]
Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen .
A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145.
doi: 10.3934/nhm.2017005
[7]
Jan Friedrich, Simone Göttlich, Annika Uphoff .
Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28.
doi: 10.3934/nhm.2023001
[8]
Caterina Balzotti, Maya Briani, Benedetto Piccoli .
Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722.
doi: 10.3934/nhm.2023030
[9]
Michael Herty, J.-P. Lebacque, S. Moutari .
A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826.
doi: 10.3934/nhm.2009.4.813
[10]
Gunhild A. Reigstad .
Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95.
doi: 10.3934/nhm.2014.9.65
Abstract
The aim of this paper is to address the following questions: which models,
among fluido-dynamic ones, are more appropriate to describe urban traffic?
While a rich debate was developed for the complicate
dynamics of highway traffic, some
basic problems of urban traffic are not always appropriately discussed.
We analyze many recent, and less recent, models focusing on three
basic properties.
The latter are necessary to reproduce correctly queue formation at lights and
junctions, and their backward propagation on an urban network.
This article has been cited by:
1.
R. M. Colombo, M. Herty, V. Sachers,
On 2×2 Conservation Laws at a Junction,
2008,
40,
0036-1410,
605,
10.1137/070690298
2.
BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART,
EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA,
2010,
20,
0218-2025,
1859,
10.1142/S0218202510004817
3.
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Reprint of: Finite volume methods for multi-component Euler equations with source terms,
2018,
169,
00457930,
40,
10.1016/j.compfluid.2018.03.057
4.
M. Herty, J. Mohring, V. Sachers,
A new model for gas flow in pipe networks,
2010,
33,
01704214,
845,
10.1002/mma.1197
5.
RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI,
ROAD NETWORKS WITH PHASE TRANSITIONS,
2010,
07,
0219-8916,
85,
10.1142/S0219891610002025
6.
Jochen Kall, Rukhsana Kausar, Stephan Trenn,
Modeling water hammers via PDEs and switched DAEs with numerical justification,
2017,
50,
24058963,
5349,
10.1016/j.ifacol.2017.08.927
7.
Michael Herty,
Coupling Conditions for Networked Systems of Euler Equations,
2008,
30,
1064-8275,
1596,
10.1137/070688535
8.
Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao,
Blood Flow in the Circle of Willis: Modeling and Calibration,
2008,
7,
1540-3459,
888,
10.1137/07070231X
9.
CIRO D'APICE, BENEDETTO PICCOLI,
VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS,
2008,
18,
0218-2025,
1299,
10.1142/S0218202508003042
10.
Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik,
2019,
Chapter 8,
978-3-030-27549-5,
59,
10.1007/978-3-030-27550-1_8
11.
Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper,
2012,
Chapter 7,
978-3-0348-0132-4,
123,
10.1007/978-3-0348-0133-1_7
12.
Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye,
Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks,
2010,
31,
1064-8275,
4633,
10.1137/080722138
13.
Jeroen J. Stolwijk, Volker Mehrmann,
Error Analysis and Model Adaptivity for Flows in Gas Networks,
2018,
26,
1844-0835,
231,
10.2478/auom-2018-0027
14.
Mapundi K. Banda, Axel-Stefan Häck, Michael Herty,
Numerical Discretization of Coupling Conditions by High-Order Schemes,
2016,
69,
0885-7474,
122,
10.1007/s10915-016-0185-x
15.
Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko,
Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results,
2021,
13,
2073-8994,
1300,
10.3390/sym13071300
16.
Rinaldo M. Colombo, Mauro Garavello,
On the Cauchy Problem for the p-System at a Junction,
2008,
39,
0036-1410,
1456,
10.1137/060665841
17.
J.B. Collins, P.A. Gremaud,
Analysis of a domain decomposition method for linear transport problems on networks,
2016,
109,
01689274,
61,
10.1016/j.apnum.2016.06.004
18.
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Treating network junctions in finite volume solution of transient gas flow models,
2017,
344,
00219991,
187,
10.1016/j.jcp.2017.04.066
19.
Martin Gugat, Michael Herty, Siegfried Müller,
Coupling conditions for the transition from supersonic to subsonic fluid states,
2017,
12,
1556-181X,
371,
10.3934/nhm.2017016
20.
H. Egger,
A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks,
2018,
40,
1064-8275,
A108,
10.1137/16M1094373
21.
Yannick Holle,
Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks,
2020,
269,
00220396,
1192,
10.1016/j.jde.2020.01.005
22.
Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi,
Numerical modelling of open channel junctions using the Riemann problem approach,
2019,
57,
0022-1686,
662,
10.1080/00221686.2018.1534283
23.
Mapundi K. Banda, Michael Herty,
Towards a space mapping approach to dynamic compressor optimization of gas networks,
2011,
32,
01432087,
253,
10.1002/oca.929
Seok Woo Hong, Chongam Kim,
A new finite volume method on junction coupling and boundary treatment for flow network system analyses,
2011,
65,
02712091,
707,
10.1002/fld.2212
26.
Michael Herty, Mohammed Seaïd,
Assessment of coupling conditions in water way intersections,
2013,
71,
02712091,
1438,
10.1002/fld.3719
27.
Gunhild A. Reigstad,
Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow,
2015,
75,
0036-1399,
679,
10.1137/140962759
28.
R. Borsche, A. Klar,
Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow,
2014,
76,
02712091,
789,
10.1002/fld.3957
29.
Pascal Mindt, Jens Lang, Pia Domschke,
Entropy-Preserving Coupling of Hierarchical Gas Models,
2019,
51,
0036-1410,
4754,
10.1137/19M1240034
30.
Alexandre Morin, Gunhild A. Reigstad,
Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations,
2015,
64,
18766102,
140,
10.1016/j.egypro.2015.01.017
Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke,
A multiscale approach to liquid flows in pipes I: The single pipe,
2012,
219,
00963003,
856,
10.1016/j.amc.2012.06.054
36.
Raul Borsche, Jochen Kall,
ADER schemes and high order coupling on networks of hyperbolic conservation laws,
2014,
273,
00219991,
658,
10.1016/j.jcp.2014.05.042
37.
Mapundi K. Banda, Michael Herty,
Multiscale modeling for gas flow in pipe networks,
2008,
31,
01704214,
915,
10.1002/mma.948
38.
Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus,
Coupling constants and the generalized Riemann problem for isothermal junction flow,
2015,
12,
0219-8916,
37,
10.1142/S0219891615500022
39.
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Finite volume methods for multi-component Euler equations with source terms,
2017,
156,
00457930,
113,
10.1016/j.compfluid.2017.07.004
40.
Raul Borsche,
Numerical schemes for networks of hyperbolic conservation laws,
2016,
108,
01689274,
157,
10.1016/j.apnum.2016.01.006
41.
Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli,
2022,
Chapter 3,
978-3-030-93014-1,
39,
10.1007/978-3-030-93015-8_3
42.
Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall,
Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes,
2016,
315,
00219991,
409,
10.1016/j.jcp.2016.03.049
43.
Michael Herty, Nouh Izem, Mohammed Seaid,
Fast and accurate simulations of shallow water equations in large networks,
2019,
78,
08981221,
2107,
10.1016/j.camwa.2019.03.049
44.
F. Daude, P. Galon,
A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction,
2018,
362,
00219991,
375,
10.1016/j.jcp.2018.01.055
F. Daude, R.A. Berry, P. Galon,
A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model,
2019,
354,
00457825,
820,
10.1016/j.cma.2019.06.010
Mouhamadou Samsidy Goudiaby, Gunilla Kreiss,
Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data,
2020,
17,
0219-8916,
185,
10.1142/S021989162050006X
50.
Michael Herty, Mohammed Seaïd,
Simulation of transient gas flow at pipe-to-pipe intersections,
2008,
56,
02712091,
485,
10.1002/fld.1531
51.
RINALDO M. COLOMBO, CRISTINA MAURI,
EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION,
2008,
05,
0219-8916,
547,
10.1142/S0219891608001593
52.
Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye,
On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections,
2015,
276,
03770427,
81,
10.1016/j.cam.2014.08.021
53.
Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin,
The interface coupling of the gas dynamics equations,
2008,
66,
0033-569X,
659,
10.1090/S0033-569X-08-01087-X
54.
Sara Grundel, Michael Herty,
Hyperbolic discretization of simplified Euler equation via Riemann invariants,
2022,
106,
0307904X,
60,
10.1016/j.apm.2022.01.006
55.
Zlatinka Dimitrova,
Flows of Substances in Networks and Network Channels: Selected Results and Applications,
2022,
24,
1099-4300,
1485,
10.3390/e24101485
Jens Brouwer, Ingenuin Gasser, Michael Herty,
Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks,
2011,
9,
1540-3459,
601,
10.1137/100813580
58.
Raul Borsche, Jochen Kall,
High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models,
2016,
327,
00219991,
678,
10.1016/j.jcp.2016.10.003
59.
MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS,
A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS,
2013,
10,
0219-8916,
431,
10.1142/S021989161350015X
Gunhild A. Reigstad,
Numerical network models and entropy principles for isothermal junction flow,
2014,
9,
1556-181X,
65,
10.3934/nhm.2014.9.65
63.
Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison,
2024,
Mathematical Modeling of Chattering and the Optimal Design of a Valve*,
979-8-3503-1633-9,
76,
10.1109/CDC56724.2024.10886245
64.
Michael T. Redle, Michael Herty,
An asymptotic-preserving scheme for isentropic flow in pipe networks,
2025,
20,
1556-1801,
254,
10.3934/nhm.2025013
65.
Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini,
Coherence of Coupling Conditions for the Isothermal Euler System,
2025,
0170-4214,
10.1002/mma.10847