Loading [MathJax]/jax/output/SVG/jax.js
Review

The impact of p38 MAPK, 5-HT/DA/E signaling pathways in the development and progression of cardiovascular diseases and heart failure in type 1 diabetes

  • Serotonin or 5-HT, DA and E, all monoamine neurotransmitters, work also as hormones, plays crucial role in the brain and body. This 5-HT, DA and E increased significantly, and regulated by activated p38 MAPK in type I diabetes mellitus (T1DM), and that has been shown to involve in metabolic disorders as well as cardiovascular diseases, leading to heart failure. Even though these molecules are being considered for clinical trials in the treatments of various cardiovascular diseases, the synergistic-pathophysiological mechanisms of these p38 MAPK and neurotransmitters on target molecules, cells and tissues in heart failure are not completely understood in T1DM. However, T1DM results in metabolic dysregulation, impairment/loss of insulin secretion, hyperglycemia and acidosis. These changes are widely reported to be involved in abnormal functions of receptors, which provide binding site for signaling molecules. We are constantly focusing on the mechanisms of alloxan-induced-diabetes, glucose-induced-hyperglycemia and ammonium chloride-induced-acidosis (non-diabetic hyperglycemia (NDH) and non-diabetic acidosis (NDA), respectively) on the levels and functions of neurotransmitters and p38 MAPK. Here, in this review, we are proposing the mechanisms of insulin and/or some of the pharmacological agents on the level and functions of p38 MAPK and neurotransmitters in various areas of rat brain under diabetic or its associated conditions, which leads to cardiovascular dysfunctions. Targeting these molecules/pathways may be useful in the treatment of cardiovascular diseases and diabetes mediated heart failure.

    Citation: Ramakrishnan Ramugounder. The impact of p38 MAPK, 5-HT/DA/E signaling pathways in the development and progression of cardiovascular diseases and heart failure in type 1 diabetes[J]. AIMS Molecular Science, 2020, 7(4): 349-373. doi: 10.3934/molsci.2020017

    Related Papers:

    [1] Imad Khan, Muhammad Noor-ul-Amin, Narjes Turki Khalifa, Asma Arshad . EWMA control chart using Bayesian approach under paired ranked set sampling schemes: An application to reliability engineering. AIMS Mathematics, 2023, 8(9): 20324-20350. doi: 10.3934/math.20231036
    [2] Mediha Maqsood, Aamir Sanaullah, Yasar Mahmood, Afrah Yahya Al-Rezami, Manal Z. M. Abdalla . Efficient control chart-based monitoring of scale parameter for a process with heavy-tailed non-normal distribution. AIMS Mathematics, 2023, 8(12): 30075-30101. doi: 10.3934/math.20231538
    [3] Khanittha Talordphop, Yupaporn Areepong, Saowanit Sukparungsee . An empirical assessment of Tukey combined extended exponentially weighted moving average control chart. AIMS Mathematics, 2025, 10(2): 3945-3960. doi: 10.3934/math.2025184
    [4] Muhammad Aslam, Khushnoor Khan, Mohammed Albassam, Liaquat Ahmad . Moving average control chart under neutrosophic statistics. AIMS Mathematics, 2023, 8(3): 7083-7096. doi: 10.3934/math.2023357
    [5] Dongmei Cui, Michael B. C. Khoo, Huay Woon You, Sajal Saha, Zhi Lin Chong . A proposed non-parametric triple generally weighted moving average sign chart. AIMS Mathematics, 2025, 10(3): 5928-5959. doi: 10.3934/math.2025271
    [6] Youseef Alotaibi, R Deepa, K Shankar, Surendran Rajendran . Inverse chi-square-based flamingo search optimization with machine learning-based security solution for Internet of Things edge devices. AIMS Mathematics, 2024, 9(1): 22-37. doi: 10.3934/math.2024002
    [7] Chong Wang, Xinxing Chen, Xin Qiang, Haoran Fan, Shaohua Li . Recent advances in mechanism/data-driven fault diagnosis of complex engineering systems with uncertainties. AIMS Mathematics, 2024, 9(11): 29736-29772. doi: 10.3934/math.20241441
    [8] Fahad F. Alruwaili . Ensuring data integrity in deep learning-assisted IoT-Cloud environments: Blockchain-assisted data edge verification with consensus algorithms. AIMS Mathematics, 2024, 9(4): 8868-8884. doi: 10.3934/math.2024432
    [9] Ce Shi, Tatsuhiro Tsuchiya, Chengmin Wang . Separable detecting arrays. AIMS Mathematics, 2024, 9(12): 34806-34826. doi: 10.3934/math.20241657
    [10] Thavavel Vaiyapuri, M. Sivakumar, Shridevi S, Velmurugan Subbiah Parvathy, Janjhyam Venkata Naga Ramesh, Khasim Syed, Sachi Nandan Mohanty . An intelligent water drop algorithm with deep learning driven vehicle detection and classification. AIMS Mathematics, 2024, 9(5): 11352-11371. doi: 10.3934/math.2024557
  • Serotonin or 5-HT, DA and E, all monoamine neurotransmitters, work also as hormones, plays crucial role in the brain and body. This 5-HT, DA and E increased significantly, and regulated by activated p38 MAPK in type I diabetes mellitus (T1DM), and that has been shown to involve in metabolic disorders as well as cardiovascular diseases, leading to heart failure. Even though these molecules are being considered for clinical trials in the treatments of various cardiovascular diseases, the synergistic-pathophysiological mechanisms of these p38 MAPK and neurotransmitters on target molecules, cells and tissues in heart failure are not completely understood in T1DM. However, T1DM results in metabolic dysregulation, impairment/loss of insulin secretion, hyperglycemia and acidosis. These changes are widely reported to be involved in abnormal functions of receptors, which provide binding site for signaling molecules. We are constantly focusing on the mechanisms of alloxan-induced-diabetes, glucose-induced-hyperglycemia and ammonium chloride-induced-acidosis (non-diabetic hyperglycemia (NDH) and non-diabetic acidosis (NDA), respectively) on the levels and functions of neurotransmitters and p38 MAPK. Here, in this review, we are proposing the mechanisms of insulin and/or some of the pharmacological agents on the level and functions of p38 MAPK and neurotransmitters in various areas of rat brain under diabetic or its associated conditions, which leads to cardiovascular dysfunctions. Targeting these molecules/pathways may be useful in the treatment of cardiovascular diseases and diabetes mediated heart failure.


    Statistical process monitoring (SPM) tools are a set of instruments utilized for monitoring the quality of products in manufacturing and production processes. In these instruments, the charts are more vital tools that detect changes in process parameter(s). Shewhart [1] introduced the basic charts, which are referred to as the Shewhart charts. The Shewhart charts for attribute data, such as c, p and u charts, are used to monitor the nonconforming events. Despite being user-friendly, the Shewhart attribute charts tend to be insensitive in monitoring nonconforming events, particularly in high-quality processes. High-quality processes consistently produce products or services that meet or exceed customer expectations while minimizing waste and maximizing efficiency and have very low numbers of nonconforming events. In such processes, apart from monitoring nonconforming events, an alternate strategy is to utilize a chart to monitor the inter-arrival time of nonconforming events, which may follow a skewed distribution such as the gamma distribution. Time between events (TBE) charts are typically preferred over the Shewhart charts for high-quality processes where nonconforming events rarely occur [2,3].

    In literature, many studies have been conducted that investigate TBE charts. For example, Lucas [4] proposed the cumulative sum (CUSUM) chart for exponentially distributed TBE data. Later, Vardeman and Ray [5] used integral equations to compute the average run length (ARL) for the exponential CUSUM chart. Gan [6] introduced the exponentially weighted moving average (EWMA) chart based on the exponential distribution. Chan et al. [7] designed the Shewhart-type chart, i.e., the cumulative quantity control (CQC) chart, or t-chart, to monitor the exponentially distributed TBE. Xie et al. [8] designed the Shewhart‐type chart, i.e., the tr-chart for monitoring the rth (r1) failures in the gamma distribution. Pehlivan and Testik [9] investigated the robustness of the exponential EWMA chart, where the TBE mean is assumed to be known; but, TBE observations are modeled by Weibull or lognormal distribution. Chakraborty et al. [10] proposed the gamma distribution-based lower-sided generally weighted moving average (GWMA) chart, called the GWMA TBE chart, that monitors downward changes in TBE data. Alevizakos et al. [2] improved the performance of the GWMA TBE chart and proposed the lower-sided double GWMA chart, referred to as the DGWMA TBE chart. Alevizakos and Koukouvinos [11] designed the double EWMA chart, referred to as the DEWMA TBE chart, that outperforms the EWMA TBE chart in monitoring downward changes in the process. Alevizakos et al. [12] developed one- and two-sided triple EWMA chart to monitor the TBE data, referred to as the TEWMA TBE chart.

    Roberts [13] introduced the traditional EWMA chart, which monitors the mean level of the process. In general, the EWMA chart is more sensitive than the Shewhart-type chart in identifying small changes in the process as it uses both current and previous process observations. However, the EWMA chart allocates relatively more weight to recent process observations than previous observations [14]. As a result, Abbas [15] proposed the homogeneously weighted moving average (HWMA) chart for monitoring process mean, which outperforms the EWMA chart. Abid et al. [16] extended the concept of the HWMA chart and proposed the double HWMA (DHWMA) chart. Riaz et al. [17] introduced the triple HWMA (THWMA) chart for the mean level of the process that improves the detection ability of the HWMA and DHWMA charts. Other charts based on the HWMA statistic are proposed in the studies of Rasheed et al. [18], Rasheed et al. [19] and Rasheed et al. [20].

    As stated previously, Chakraborty et al. [10], Alevizakos et al. [2] and Alevizakos and Koukouvinos [11] introduced the one-sided GWMA TBE, DGWMA TBE and DEWMA TBE charts, respectively, for monitoring TBE observations following the gamma distribution. Aslam et al. [3] proposed the HWMA chart to monitor the TBE, referred to as the HWMA TBE chart. These charts are lower-sided charts that effectively monitor only the process's downward shifts (i.e., process deterioration). In practice, however, both downward shifts and upward shifts (i.e., process improvement) in the process must be monitored because corrective actions must be taken in both cases, either to diagnose and remove the causes of the process deterioration or to detect and maintain the reasons of the process improvements. As a result, in high-quality processes, a two-sided chart that monitors both downward and upward shifts at the same time is required. In this regard, Alevizakos et al. [12], Alevizakos and Koukouvinos [21] and Alevizakos and Koukouvinos [22] suggested the gamma distribution-based two-sided TEWMA TBE, provisional mean TBE (PM TBE) and double PM TBE (DPM TBE) charts, which monitor both the process's downward and upward shifts. These charts may indicate that the process performance needs to be improved further. To enhance the performance of TBE charts, this study proposes the design structures of one-sided (upper and lower) and two-sided THWMA charts with time-varying control limits that efficiently monitor the gamma-distributed TBE observations. The proposed charts are referred toas THWMA TBE charts. The lower-sided THWMA TBE chart is designed to detect downward shifts in the process, while the upper-sided THWMA TBE chart is constructed to monitor upwards changes in the process. Similarly, the two-sided THWMA TBE chart is developed to detect both downwards and upwards shifts in the process. Extensive Monte Carlo simulations are used to compute the numerical finding associated with the THWMA TBE charts. In parallel to THWMA TBE charts, the one- and two-sided competing TBE charts, such as the DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts, are also constructed for comparison purposes. The proposed charts are compared to competing charts. The comparison of the THWMA TBE charts to the competing TBE charts suggests that the competing TBE charts perform better than the competing TBE charts in detecting changes in the process. Lastly, two applications, i.e., boring machine failure data and traumatic brain injury patients' hospital stay time data applications are provided to assess the THWMA TBE charts practically.

    The layout for the rest of the article is as follows: Section 2 describes the methodologies of the gamma-distributed THWMA TBE charts, along with several competing charts. Section 3 offers the design and implementation of the THWMA TBE charts. Performance and comparison analysis of the THWMA TBE charts are provided in Section 4. Section 5 presents the two real-life applications of the THWMA TBE chart. The last section addresses the overall summary, conclusions and recommendations of the study.

    In this section, an introduction to gamma-distributed TBE observations is provided in Subsection 2.1. The construction of the one- and two-sided TBE, DEWMA TBE, TEWMA TBE, HWMA TBE and DHWMA TBE charts is outlined in Subsections 2.2 to 2.6, respectively. Likewise, Subsection 2.7 explains the methodology and formulation of the proposed one- and two-sided THWMA TBE charts.

    Let T1,T2,,Tk represent the interarrival times between two successive occurrences in a homogeneous Poisson process having a rate of θ1(θ>0). In this case, each Ti is known as an independently and identically distributed (iid) exponential random variable with scale parameter θ, i.e., TiiidExponential(θ) for i=1,2,k. If T denotes the sum of interarrival times until the first k failures occur, i.e., T=ki=1Ti, then T follows the gamma distribution, i.e., T Gamma(k,θ). The probability density function (pdf) of T, is given as follows:

    fT(r;k,θ)=rk1Γ(k)θkexp(rθ);r,k,θ>0, (1)

    where Γ() is called the gamma function, k (assumed known) is a shape parameter and θ is a scale parameter of the gamma distribution. The mean and variance of the gamma distribution are kθ and kθ2, respectively. The gamma distribution defined by Eq (1) is also referred to as the Erlang distribution. It is important to note that if k=1, then gamma(k,θ) reduces to exponential(θ). In this case, the interest only lies in monitoring the time until one failure occurs.

    Let TtiidGamma(k,θ) at time t=1,2, having mean and variance kθ and kθ2, respectively. The process is deemed to be in control (IC) when θ=θ0; otherwise, if θ=θ1 then the process is said to be out-of-control (OOC). In the OOC process, if θ1<θ0 then the process is considered to have deteriorated; however, if θ1>θ0 then the process may have improved. In both scenarios, corrective action should be taken to diagnose (if any θ1<θ0) or preserve (if any θ1>θ0) the reasons for change.

    The EWMA TBE chart is defined by the charting statistic, Xt and can be defined as follows:

    Xt=φTt+(1φ)Xt1,t=1,2,, (2)

    where φ is a smoothing or sensitivity parameter, such that 0<φ1. The starting value of Xt is assumed to be kθ0, i.e., X0=kθ0. The mean and variance of Xt for the IC process, respectively, are given as follows:

    E(Xt)=kθ0,andVar(Xt)=φ2φ{1(1φ)2t}kθ20. (3)

    To detect the two-sided changes in the process, the control limits UCLt and LCLt for the two-sided EWMA TBE chart are given as follows:

    UCLt=kθ0+Lφ2φ{1(1φ)2t}kθ20,LCLt=max(0,kθ0Lφ2φ{1(1φ)2t}kθ20).}, (4)

    where L denotes the width coefficient for the EWMA TBE chart. The two-sided EWMA TBE chart and statistic Xt is plotted versus time t, and the process is declared to be OOC if XtUCLt or XtLCLt; otherwise, the process is declared to be IC.

    The DEWMA TBE chart introduced by Alevizakos and Koukouvinos [11], can be defined by the plotting statistic Yt, defined as follows:

    Yt=φXt+(1φ)Yt1,t=1,2,, (5)

    where the starting value Y0=kθ0. Based on Eq (5), the mean and variance of Zt for the IC process, respectively, are defined as follows:

    E(Yt)=kθ0, and Var(Yt)=φ4[1+(1φ)2(t+1)2(1φ)2t+(2t2+t1)(1φ)2t+2t2(1φ)2t+4]kθ20[1(1φ)2]3. (6)

    Based on E(Yt) and Var(Yt), the two-sided DEWMA TBE hart control limits UCLt and LCLt are given as follows:

    UCLt=kθ0+Lφ4[1+(1φ)2(t+1)2(1φ)2t+(2t2+t1)(1φ)2t+2t2(1φ)2t+4]kθ20[1(1φ)2]3kθ20,LCLt=max(0,kθ0Lφ4[1+(1φ)2(t+1)2(1φ)2t+(2t2+t1)(1φ)2t+2t2(1φ)2t+4]kθ20[1(1φ)2]3kθ20).} (7)

    To monitor the decreasing or increasing shifts in the process, the two-sided DEWMA TBE chart is constructed by plotting the statistic Yt against time t and if YtUCLt or YtLCLt, then the process is deemed to be OOC; otherwise, the process is considered to be IC.

    Alevizakos et al. [12] proposed the TEWMA TBE chart, which has the charting statistic Zt, defined as follows:

    Zt=φYt+(1φ)Zt1,t=1,2,. (8)

    The initial value of Zt is equal to kθ0, i.e., Z0=kθ0. The IC mean of the statistic Zt is E(Zt)=kθ0, while its variance is given as follows:

    Var(Zt)=[τ3φ64{t(t21)(t2)γt31τ4t(t21)τt2(1τ)212t(t+1)τt1(1τ)324(t+1)τt(1τ)4+24(1τt+1)(1τ)5}+2τ2φ6{t(t21)τt21τ3t(t+1)τt1(1τ)26(t+1)τt(1τ)3+6(1τt+1)(1τ)4}+7τφ62{t(t+1)τt11τ2(t+1)τt(1τ)2+2(1τt+1)(1τ)3}+φ6{1τt+1(1τ)2(t+1)τt1τ}]kθ20. (9)

    where τ=(1φ)2. To detect the decreasing or increasing changes in the process, via TEWMA TBE chart, the control limits, i.e., UCLt and LCLt are defined as follows:

    UCLt=kθ0+LVar(Zt),LCLt=max(0,kθ0LVar(Zt))}. (10)

    In this case, the TEWMA TBE statistic Zt is plotted versus time t, and if ZtUCLt or ZtLCLt then the process is regarded as OOC; otherwise, the process is considered to be IC.

    The HWMA chart for TBE introduced by Aslam et al. [3]is referred to as the HWMA TBE chart. Let Ut be the charting statistic, then it can be defined as follows:

    Ut=φTt+(1φ)Tt1,t=1,2,, (11)

    where Tt1=t1j=1Tjt1 is the mean of previous t1 observations. The starting values U0 and T0 are set to kθ0, i.e., U0=T0=kθ0. The IC mean and variance of Ut (cf. Appendices A, and B) are provided as follows:

    E(Ut)=kθ0,Var(Ut)=φ2kθ20,ift=1,andVar(Ut)={φ2+(1φ)2t1}kθ20,ift>1. (12)

    The two-sided HWMA TBE chart control limits, i.e., UCLt and LCLt can be given as follows:

    UCLt=[kθ0+Lφ2kθ20ift=1,kθ0+L{φ2+(1φ)2t1}kθ20ift>1,LCLt=[max(0,kθ0Lφ2kθ20)ift=1,max(0,kθ0L{φ2+(1φ)2t1}kθ20)ift>1.}. (13)

    For monitoring the downward or upward shifts in the process, the two-sided HWMA TBE chart is formulated and the statistic Ut is plotted versus time t. Whenever UtUCLt or UtLCLt, the process is considered to be OOC; otherwise, the process is deemed to be IC.

    The gamma distribution-based DHWMA charts for monitoring TBE may is referred to as the DHWMA TBE charts. The DHWMA TBE statistic is symbolized by Vt, and is defined as follows:

    Vt=φUt+(1φ)Tt1,t=1,2,. (14)

    The starting value of the statistic Vt is equal to the IC TBE mean, i.e., V0=kθ0. The IC process mean and variance of the statistic Vt, (cf. Appendices A, B and C), are given as follows:

    E(Vt)=kθ0,Var(Vt)=φ4kθ20,ift=1,andVar(Vt)={φ4+(1φ2)2t1}kθ20,ift>1. (15)

    The control limits UCLt and LCLt of the two-sided DHWMA TBE chart to identify the downward or upward shifts, are given as follows:

    UCLt=[kθ0+Lφ4kθ20ift=1,kθ0+L{φ4+(1φ2)2t1}kθ20ift>1.LCLt=[max(0,kθ0Lφ4kθ20)ift=1,max(0,kθ0L{φ4+(1φ2)2t1}kθ20)ift>1.}. (16)

    The statistic Vt is plotted against time t, and the process is said to be OOC it VtUCLt or VtLCLt; otherwise, the process is said to be IC.

    Riaz et al. [17] designed the THEMA chart for monitoring the mean level of the process. The methodology of the THWMA chart can be extended to design the develop one- and two-sided THWMA charts to monitor the gamma-distributed TBE observations. The proposed charts are called the THWMA TBE charts. If W_t is the charting statistic for the THWMA TBE chart, then it can be expressed by linear equations, defined as follows:

    Wt=φVt+(1φ)Tt1,t=1,2,, (17)

    with starting value W0=kθ0. The IC mean and variance of the statistic Wt, (cf. Appendices A, B, C and D) are given as follows:

    E(Wt)=kθ0,Var(Wt)=φ6kθ20,ift=1,andVar(Wt)={φ6+(1φ3)2t1}kθ20,ift>1. (18)

    To identify the decrease in interarrival time, the limit LCLt of the lower-sided THWMA TBE chart is defined as follows:

    LCLt=[kθ0Lφ6kθ20ift=1,kθ0L{φ6+(1φ3)2t1}kθ20ift>1. (19)

    The statistic Wt is plotted against time t, and if WtLCLt, the THWMA TBE chart states the process is OOC; otherwise, the process is IC. Similarly, to monitor the increase in interarrival time, the limit UCLt of the upper-sided THWMA TBE chart is given as follows:

    UCLt=[kθ0+Lφ6kθ20ift=1,kθ0+L{φ6+(1φ3)2t1}kθ20ift>1. (20)

    The charting statistic Wt is plotted against time t, and if WtUCLt the process under the THWMA TBE chart is OOC; otherwise, the process is IC. Likewise, to monitor the decrease or increase in interarrival time, the two-sided THWMA TBE chart control limits, i.e., UCLt and LCLt, are presented as follows:

    UCLt=[kθ0+Lφ6kθ20ift=1,kθ0+L{φ6+(1φ3)2t1}kθ20ift>1.LCLt=[max(0,kθ0Lφ6kθ20)ift=1,max(0,kθ0L{φ6+(1φ3)2t1}kθ20)ift>1.}. (21)

    In this case, the charting statistic Wt is plotted against t, and the process under the two-sided THWMA TBE chart is considered to be OOC when WtUCLt or WtLCLt; otherwise, the process is deemed to be IC.

    The design structure of the THWMA TBE chart is based on the smoothing parameters φ and chart width L. The combinations of φ and L are chosen so that the ARL0 is close to the desired value. The ARL0 is set to 370 in this study. Furthermore, THWMA TBE charts are used with time-varying control limits.

    The performance of the chart is often evaluated using run-length metrics such as ARL, SDRL, percentile points, etc. The ARL is referred to as the average number of sample points depicted on the chart until a point reveals an OOC signal [23]. ARLs are classified into two types: IC ARL (ARL0) and OOC ARL (ARL1). When a process is operating in an IC state, then the ARL0 is anticipated to be large enough in order to avert false alarms, whereas when a process is functioning in an OOC state, then ARL1 should remain small to identify the process change quickly [24]. To compare the efficiency of two or more charts, it is advisable to set the common ARL0 for these charts. For a particular shift, the chart with the smaller ARL1 value is deemed to be sensitive and may detect a specific shift faster than the other charts.

    The ARL measures assess the performance of the chart for a single specified shift in the process parameters. Extra quadratic loss (EQL), relative average run length (RARL) and performance comparison index (PCI) are additional performance measures that evaluate a chart's overall performance over a certain range of shifts.

    The EQL is the weighted ARL over the range of shifts, i.e., δmin to δmax, using the square of the shift as a weight [25]. Mathematically, EQL can be defined as follows:

    EQL=1δmaxδminδmaxδminδ2ARL(δ)dδ, (22)

    where ARL (δ) is the ARL of a particular chart at a shift δ. A chart with a lower EQL value is regarded as more efficient.

    The RARL is referred to as the ratio of the ARL of a certain chart, i.e., ARL (δ) to the ARL benchmark chart, i.e., ARLbmk(δ) [26]. The RARL may be defined mathematically, as follows:

    RARL=1δmaxδminδmaxδminARL(δ)ARLbmk(δ)dδ. (23)

    A benchmark chart might be considered as a chart with a minimum EQL or as one of the current standard charts.

    According to Ou et al. [27], PCI is defined as the ratio of a chart's EQL to the EQL of the benchmark chart. It is mathematically given as follows:

    PCI=EQLEQLbmk. (24)

    The PCI value is equal to one for the benchmark chart and it is more than one for the other charts.

    To implement the THWMA TBE chart, a simulation study is carried out. A computational methodology of Monte Carlo simulations is used as the design structure of the THWMA TBE chart and is more complicated than that of other charts. Furthermore, when time-varying control limits are considered, computational techniques such as the Markov chain and integral equations have been used limitedly.

    To execute the simulation study, various combinations of k=1,2,3 and φ=0.05,0.1,0.2 are used to compute the chart coefficients values, i.e., L, so that ARL0 is close to 370. For the sake of convenience, if the process is IC, then it is assumed that θ=θ0=1; however, if the process is OOC, then θ=θ1=δθ0, where δ= 0.975, 0.95, 0.925, 0.9, 0.85, 0.8, 0.7, 0.5, 0.25 for the downward changes and δ= 1.025, 1.05, 1.08, 1.11, 1.18, 1.25, 1.43, 2, 4 for upward shifts. A simulation algorithm is developed in R software and can be described in the steps given as follows:

    (ⅰ) Generate Tt from gamma(k,θ), i.e., Tt gamma(k,θ0),t=1,2, for each k=1,2,3.

    (ⅱ) Compute the statistic Ut from Eq (11) using Tt.

    (ⅲ) Using the statistic Ut as input, compute the statistic Vt in Eq (14).

    (ⅳ) Using the statistic Vt as input, compute the 𝑇𝐻𝑊𝑀𝐴 TBE statistic Wt in Eq (17)

    (ⅴ) Choose the design parameters (φ,L) for the desired ARL0.

    (ⅵ) Calculate UCLt and LCLt in Eq (21) based on L and φ.

    (ⅶ) Plot the 𝑇𝐻𝑊𝑀𝐴 TBE statistic Wt along UCLt and LCLt.

    (ⅷ) When WtUCLt or WtLCLt, the sequence order called run length (RL) is recorded.

    (ⅸ) Replicate steps (ⅰ)-(ⅷ) 106 times and record RLs.

    (ⅹ) Calculate the average and standard deviation of 106 RL, i.e., ARL0 and SDRL0. Check whether the calculated ARL0 is the desired ARL0; otherwise, adjust L and repeat steps (i)-(ⅸ) until the desired ARL0 is achieved.

    (ⅹⅰ) Compute ARL1 and SDRL1 (OOC SDRL) values by considering Tt gamma(k,θ1),t=1,2,3,, where θ1=δθ0 with δ1 and replicate steps (ⅱ)-(ⅸ).

    It should be noted that the ARL and SDRL values may be determined using their respective expressions, which are given as follows:

    ARL=Nt=1RLtN, (25)
    SDRL=Nt=1(RLtARL)2N1. (26)

    where N is the number of simulation runs, which is specified to be in this study as N=106.

    The above simulation algorithm is developed to compute the ARL and SDRL values for the two-sided THWMA TBE chart. However, to calculate the ARL and SDRL values for the one-sided chart, the control limit is specified in Eqs (19) and (20) are, respectively, required for lower- and upper-sided THWMA TBE charts. Moreover, a similar algorithm can also be used to determine the ARL and SDRL findings for the competing charts. The simulation results, i.e., the ARL and SDRL (specified in the parenthesis) values for the THWMA TBE charts, along with the competing charts, are shown in Tables 16. For each shift, the smallest ARL1 values are shown in bold print.

    Table 1.  ARL and SDRL values for the one-sided THWMA TBE chart and one-sided competing charts when 𝑘 = 1 and ARL0370.
    THWMA TBE DHWMA TBE HWMA TBE TEWMA TBE DEWMA TBE EWMA TBE
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
    δ L = 0.272 0.266 0.365 0.279 0.407 0.727 0.775 0.89 0.9537 1.2457 1.547 1.7765 1.458 1.722 1.8724 1.864 1.9097 1.813
    1 370.75 370.94 370.47 370.61 370.72 369.59 369.89 369.04 370.33 370.79 370.38 370.13 370.24 369.38 370.64 370.19 370.29 370.32
    (3815.50) (3739.56) (3174.29) (3652.89) (2992.97) (1804.33) (1730.96) (1667.67) (1777.22) (411.21) (374.71) (365.78) (396.92) (369.53) (365.48) (371.28) (366.80) (365.86)
    0.975 49.03 48.61 58.14 49.15 63.87 102.78 106.97 110.23 105.69 261.35 278.88 295.66 264.61 282.72 301.34 279.50 296.22 312.23
    (328.91) (323.89) (296.60) (307.98) (303.60) (325.42) (324.43) (314.11) (312.94) (287.31) (280.62) (289.27) (280.45) (279.94) (296.07) (277.63) (289.72) (307.18)
    0.95 22.07 21.54 27.88 22.29 30.26 54.92 57.75 60.90 58.09 188.61 212.24 237.56 194.57 220.00 246.28 213.82 237.58 262.98
    (105.27) (102.71) (115.68) (106.93) (119.27) (144.50) (143.98) (139.07) (136.41) (203.17) (210.35) (230.09) (200.97) (216.67) (240.30) (208.45) (230.15) (255.52)
    0.925 13.81 13.54 17.31 14.15 19.40 35.67 38.31 41.58 39.37 141.50 164.29 191.86 147.64 173.60 202.15 167.47 192.26 222.08
    (54.93) (54.13) (61.52) (56.39) (65.96) (82.91) (84.25) (82.78) (79.04) (148.27) (160.24) (184.79) (150.71) (168.07) (196.46) (160.18) (184.79) (215.06)
    0.9 9.82 9.90 12.49 10.40 13.69 26.20 27.88 30.61 29.31 108.30 129.44 156.75 114.17 137.19 166.74 131.85 156.81 186.59
    (33.15) (33.76) (38.77) (34.99) (41.09) (55.67) (55.98) (55.25) (52.48) (110.50) (122.41) (149.43) (114.02) (130.01) (158.84) (123.61) (148.87) (180.44)
    0.85 6.19 6.18 7.67 6.36 8.34 15.88 17.40 19.55 18.97 69.04 83.85 105.19 72.47 89.67 114.14 86.35 105.48 134.26
    (15.97) (16.15) (19.11) (16.52) (20.33) (29.37) (30.44) (29.96) (28.45) (66.08) (74.61) (96.89) (67.79) (81.37) (106.82) (76.56) (96.36) (127.21)
    0.8 4.52 4.49 5.43 4.68 5.93 11.09 12.04 13.78 13.61 47.48 57.88 73.18 48.94 61.68 80.39 59.09 73.64 96.99
    (9.78) (9.66) (11.49) (10.20) (12.38) (18.21) (18.59) (18.76) (17.67) (42.80) (47.92) (64.21) (43.04) (52.57) (72.33) (48.82) (64.23) (89.59)
    0.7 2.95 2.93 3.40 3.02 3.61 6.49 7.06 8.28 8.33 26.06 31.89 38.44 26.70 32.88 42.18 32.47 39.11 51.93
    (4.52) (4.53) (5.25) (4.73) (5.53) (8.62) (8.98) (9.20) (8.62) (21.47) (22.34) (29.45) (20.55) (23.89) (34.05) (22.57) (29.82) (44.83)
    0.5 1.74 1.73 1.92 1.75 2.01 3.19 3.45 4.14 4.31 10.63 13.77 15.23 11.03 13.67 15.61 13.91 15.52 18.15
    (1.64) (1.62) (1.85) (1.66) (1.94) (2.84) (2.97) (3.14) (3.00) (7.37) (7.10) (7.54) (6.54) (6.82) (8.54) (6.67) (7.90) (11.68)
    0.25 1.11 1.10 1.17 1.12 1.20 1.72 1.86 2.27 2.43 4.53 6.50 7.43 5.01 6.51 7.08 6.76 7.22 7.25
    (0.50) (0.49) (0.59) (0.51) (0.64) (1.09) (1.14) (1.15) (0.99) (1.87) (1.98) (1.78) (1.66) (1.72) (1.72) (1.66) (1.78) (2.18)
    EQL 10.24 10.17 11.06 10.27 11.52 15.52 16.09 16.87 16.53 38.32 43.29 49.24 39.36 44.82 51.67 43.81 49.41 57.07
    RARL 1.00 1.00 1.00 1.00 1.13 1.40 1.57 1.66 1.49 3.74 4.26 4.45 3.85 4.41 4.67 4.28 4.86 5.16
    PCI 1.00 1.00 1.00 1.02 1.22 1.78 2.21 2.59 2.27 7.44 9.33 9.43 7.75 9.60 9.94 9.44 11.08 11.56
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
    δ L = 0.0895 0.131 0.878 0.377 1.024 2.608 2.983 4.023 4.601 1.313 1.759 2.258 1.572 2.021 2.548 2.461 2.935 3.498
    1 370.43 370.20 370.70 370.72 370.39 370.02 370.67 370.34 369.00 369.73 370.99 369.29 369.55 370.78 370.27 369.68 370.33 370.94
    (3629.03) (2879.28) (739.58) (1565.41) (640.23) (282.30) (265.69) (273.91) (320.31) (435.92) (404.70) (386.18) (425.14) (399.15) (383.93) (398.42) (383.86) (375.63)
    1.025 54.62 59.52 185.03 104.23 200.93 283.24 289.72 299.61 303.53 253.00 269.89 282.16 258.37 273.17 289.81 270.56 284.64 298.52
    (322.76) (305.20) (366.21) (381.58) (347.10) (215.45) (206.22) (218.64) (261.52) (296.01) (293.58) (295.59) (296.34) (294.88) (299.29) (293.22) (296.16) (302.19)
    1.05 26.32 30.42 110.58 53.37 126.11 222.73 232.43 248.00 255.87 184.11 202.94 221.63 188.02 207.12 227.69 204.66 223.95 243.73
    (107.20) (120.79) (216.51) (172.24) (217.45) (171.23) (165.67) (177.14) (216.91) (213.37) (220.48) (231.40) (215.37) (223.58) (236.28) (221.38) (232.08) (246.53)
    1.08 16.89 19.00 68.42 32.03 80.34 172.19 183.14 200.52 207.91 132.12 150.49 168.79 135.42 154.15 176.19 151.36 172.27 194.53
    (55.12) (62.05) (130.75) (89.88) (138.24) (132.57) (129.75) (139.30) (172.46) (152.00) (162.01) (175.79) (154.10) (165.47) (183.26) (162.65) (177.63) (196.56)
    1.11 12.83 13.70 47.71 21.96 56.66 137.48 148.75 166.95 174.48 100.21 114.70 133.24 102.14 119.19 139.15 116.05 135.25 157.42
    (36.10) (37.85) (89.49) (56.06) (96.02) (107.68) (106.25) (114.98) (143.98) (112.69) (121.54) (138.27) (115.41) (127.21) (143.68) (124.59) (139.93) (159.74)
    1.18 8.19 8.81 26.02 12.89 30.82 87.77 97.75 114.13 120.03 60.13 69.24 82.43 60.22 72.20 86.62 69.36 84.33 103.42
    (17.87) (19.16) (45.04) (26.65) (50.16) (70.91) (71.14) (76.88) (95.53) (66.03) (71.93) (84.12) (66.59) (75.81) (89.20) (73.46) (87.25) (103.95)
    1.25 6.31 6.72 16.98 9.27 19.97 60.62 69.06 83.31 87.62 41.33 47.56 55.43 40.25 48.44 58.88 46.81 57.60 71.50
    (11.48) (12.42) (27.49) (16.63) (30.94) (50.80) (52.08) (55.88) (68.44) (44.35) (47.96) (55.72) (43.85) (50.16) (60.16) (49.28) (58.41) (71.88)
    1.43 4.20 4.37 9.02 5.66 10.27 30.39 35.34 45.26 47.06 21.30 24.22 27.63 20.17 23.66 28.45 22.78 27.70 35.17
    (5.88) (6.09) (12.24) (7.90) (13.70) (27.17) (28.37) (30.64) (35.10) (22.93) (23.45) (26.66) (21.51) (23.61) (28.17) (23.10) (27.30) (34.70)
    2 2.52 2.61 4.06 3.04 4.40 9.59 11.11 15.08 15.77 7.53 8.68 9.31 6.95 8.02 9.08 7.53 8.80 10.59
    (2.48) (2.58) (4.09) (3.03) (4.44) (8.76) (9.76) (11.24) (11.51) (8.37) (8.52) (8.44) (7.33) (7.80) (8.41) (7.33) (8.16) (9.77)
    4 1.60 1.63 2.07 1.77 2.14 3.16 3.42 4.13 4.33 2.40 2.70 2.93 2.30 2.57 2.82 2.52 2.77 3.10
    (1.19) (1.21) (1.61) (1.35) (1.67) (2.45) (2.64) (3.13) (3.21) (2.36) (2.58) (2.61) (2.06) (2.25) (2.36) (2.04) (2.23) (2.49)
    EQL 17.35 17.88 28.31 20.94 30.56 58.95 65.60 81.00 84.53 45.01 50.88 55.88 43.29 49.27 55.81 47.59 54.51 63.81
    RARL 1.00 1.00 1.00 1.21 1.71 2.08 3.78 4.53 2.99 2.59 2.85 1.97 2.49 2.76 1.97 2.74 3.05 2.25
    PCI 1.00 1.00 1.00 1.24 1.84 2.28 4.82 5.86 3.47 3.17 3.47 2.15 3.02 3.34 2.14 3.35 3.75 2.49

     | Show Table
    DownLoad: CSV
    Table 2.  ARL and SDRL values for the two-sided THWMA TBE chart and two-sided competing charts when 𝑘 = 1 and ARL0370.
    THWMA TBE DHWMA TBE HWMA TBE TEWMA TBE DEWMA TBE EWMA TBE
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1
    δ L = 1.196 1.2458 1.579 1.342 1.658 2.65 2.998 4.021 1.724 2.022 2.342 1.9264 2.213 2.566 2.536 2.936
    0.25 4.06 4.27 5.91 4.75 6.35 13.31 16.59 33.21 8.51 10.53 11.78 8.39 10.17 13.23 12.26 20.68
    (1.10) (1.15) (1.40) (1.19) (1.45) (2.28) (2.61) (4.70) (2.40) (2.28) (2.17) (2.05) (2.07) (3.19) (2.37) (5.27)
    0.5 6.90 7.38 11.11 8.41 12.10 28.13 35.94 104.24 18.46 21.29 28.21 17.93 21.81 50.10 27.61 130.33
    (4.11) (4.34) (5.79) (4.76) (6.11) (9.90) (11.63) (36.50) (9.08) (8.66) (15.37) (8.12) (9.57) (36.46) (11.49) (105.44)
    0.7 12.93 14.18 24.77 16.93 27.61 72.14 97.81 34813.70 42.78 52.59 115.74 43.55 62.58 357.81 85.67 2715.52
    (13.15) (14.10) (20.91) (16.15) (22.12) (38.31) (48.82) (27821.70) (28.05) (36.08) (101.77) (28.90) (47.18) (344.96) (62.43) (2698.51)
    0.8 20.07 22.76 45.74 28.94 51.72 156.40 241.71 5637.85 78.94 110.20 299.86 85.54 141.53 1010.60 218.07 5322.82
    (28.01) (31.02) (48.98) (36.76) (52.34) (104.11) (160.01) (5150.32) (63.63) (95.49) (292.55) (71.13) (128.76) (1013.33) (197.14) (5364.62)
    0.85 27.14 31.65 69.52 41.40 80.07 275.98 507.35 2301.59 120.05 174.44 465.51 133.02 229.46 1239.78 373.65 2780.64
    (45.70) (51.31) (85.04) (62.30) (92.35) (206.65) (397.45) (2073.44) (109.00) (163.08) (466.10) (123.64) (221.28) (1259.40) (363.73) (2835.25)
    0.9 40.01 48.88 123.12 67.82 143.95 520.46 939.10 1078.09 196.26 279.15 596.50 220.07 357.97 995.94 570.68 1304.68
    (86.24) (100.39) (177.57) (126.40) (192.70) (405.96) (768.30) (893.55) (197.91) (279.40) (608.42) (221.88) (362.06) (1018.96) (583.34) (1336.25)
    0.925 52.68 65.78 178.95 95.64 207.51 606.29 842.40 796.03 255.68 341.34 593.22 282.42 414.75 795.40 610.60 917.44
    (135.28) (161.43) (279.78) (204.39) (296.78) (464.18) (652.87) (613.88) (268.74) (349.14) (607.49) (295.06) (425.01) (818.34) (637.37) (941.46)
    0.95 75.65 98.83 271.79 148.51 304.00 576.76 645.49 602.49 317.98 390.61 533.11 342.00 440.07 620.25 562.31 658.23
    (247.17) (293.61) (451.60) (376.25) (448.09) (436.78) (483.19) (474.74) (345.91) (405.25) (548.32) (365.08) (455.87) (638.05) (587.29) (678.05)
    0.975 137.75 186.93 373.03 276.95 385.61 469.00 485.22 470.07 366.96 400.83 453.56 378.57 422.42 475.68 471.63 487.44
    (660.63) (787.71) (620.58) (865.85) (562.59) (355.24) (351.94) (329.00) (407.57) (420.35) (468.97) (412.32) (445.72) (492.88) (498.19) (504.08)
    1 370.83 370.37 370.66 370.16 370.81 369.47 371.57 369.80 370.47 369.57 370.74 370.12 369.80 369.62 370.56 370.72
    (3407.25) (2101.21) (608.74) (1201.00) (538.00) (277.37) (267.51) (273.54) (417.93) (392.42) (383.12) (408.78) (391.29) (381.49) (395.69) (384.16)
    1.025 135.95 176.81 279.98 229.53 289.88 285.36 291.52 299.23 325.67 315.84 296.33 323.47 308.79 291.88 285.86 283.33
    (676.18) (711.54) (454.23) (659.57) (416.51) (216.02) (206.80) (218.42) (366.08) (337.43) (307.98) (356.64) (325.72) (301.30) (305.63) (294.46)
    1.05 75.25 96.58 197.17 138.70 209.81 227.21 234.86 247.72 262.45 256.72 238.15 257.89 247.21 231.81 221.02 224.09
    (265.52) (306.37) (313.87) (344.39) (296.39) (172.50) (165.36) (176.95) (294.58) (272.91) (248.81) (285.97) (261.29) (241.36) (236.76) (232.60)
    1.08 48.68 60.39 133.83 85.09 145.83 176.82 185.21 200.31 197.61 196.84 185.07 195.15 189.95 179.16 163.65 173.10
    (134.61) (156.90) (205.13) (189.95) (200.82) (135.09) (131.37) (139.15) (218.49) (208.43) (192.20) (213.58) (201.33) (186.42) (175.17) (178.67)
    1.11 36.03 43.49 96.01 59.63 104.04 140.75 150.17 166.68 149.32 151.72 145.06 147.91 146.49 141.31 126.18 134.96
    (84.17) (97.37) (143.66) (121.32) (142.78) (108.83) (107.57) (114.83) (161.63) (159.10) (149.35) (160.91) (154.09) (146.63) (134.52) (140.03)
    1.18 22.43 26.23 52.04 32.96 56.72 90.20 98.19 114.03 85.99 89.70 89.77 84.16 86.56 88.39 74.68 85.02
    (42.00) (48.06) (74.25) (56.81) (75.62) (72.04) (71.68) (76.89) (89.04) (91.46) (92.18) (88.80) (90.12) (91.38) (78.78) (87.18)
    1.25 16.54 18.28 32.95 22.31 36.35 62.76 69.45 83.22 57.38 59.23 60.36 54.72 57.28 60.11 50.19 57.39
    (26.76) (29.19) (44.90) (34.36) (47.66) (51.93) (52.22) (55.80) (56.95) (58.64) (60.70) (56.43) (58.20) (61.33) (52.02) (58.57)
    1.43 9.66 10.36 15.74 11.98 17.12 31.17 35.58 45.23 28.51 29.03 29.15 26.04 27.13 28.80 23.98 27.85
    (12.64) (13.43) (19.39) (15.40) (20.73) (27.61) (28.64) (30.64) (27.70) (27.12) (27.94) (25.85) (26.50) (28.63) (24.35) (27.48)
    2 4.59 4.78 5.87 5.10 6.16 9.71 11.20 15.05 9.55 9.85 9.70 8.38 8.80 9.12 7.78 8.88
    (4.50) (4.73) (5.82) (5.02) (6.11) (8.91) (9.75) (11.23) (9.84) (9.32) (8.72) (8.44) (8.34) (8.45) (7.51) (8.25)
    4 2.26 2.29 2.51 2.36 2.56 3.19 3.43 4.12 2.77 2.96 3.01 2.56 2.71 2.84 2.58 2.80
    (1.75) (1.79) (1.96) (1.85) (2.01) (2.47) (2.64) (3.13) (2.76) (2.84) (2.68) (2.31) (2.37) (2.40) (2.09) (2.25)
    EQL 27.27 29.39 41.83 33.48 44.30 69.81 83.89 864.12 57.72 62.13 73.49 55.21 61.40 98.33 63.98 218.10
    RARL 1.00 1.00 1.00 1.23 1.51 1.67 3.08 29.41 2.12 2.11 1.76 2.02 2.09 2.35 2.35 7.42
    PCI 1.00 1.00 1.00 1.19 1.49 1.80 3.62 107.94 2.29 2.32 1.94 2.16 2.30 2.90 2.71 16.65

     | Show Table
    DownLoad: CSV
    Table 3.  ARL and SDRL values for the one-sided THWMA TBE chart and one-sided competing charts when 𝑘 = 2 and ARL0370.
    THWMA TBE DHWMA TBE HWMA TBE TEWMA TBE DEWMA TBE EWMA TBE
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
    δ L = 0.2648 0.2486 0.425 0.26 0.482 0.923 0.996 1.182 1.292 1.274 1.5867 1.851 1.484 1.772 1.979 1.956 2.05 2.019
    1 370.04 370.62 370.59 370.50 369.81 371.16 371.47 369.90 369.42 370.56 370.73 370.06 370.85 370.56 369.36 370.92 370.90 370.50
    (3663.81) (3664.86) (2634.21) (3522.26) (2352.97) (1172.64) (1099.43) (976.50) (926.19) (424.16) (382.36) (367.65) (405.37) (376.01) (367.81) (375.94) (368.62) (364.07)
    0.975 34.92 33.96 51.40 35.12 58.03 108.62 115.61 124.45 128.47 225.65 247.29 267.39 231.12 253.49 275.64 250.28 269.24 288.14
    (191.92) (185.23) (217.46) (183.92) (227.55) (248.28) (248.15) (240.14) (247.24) (253.76) (251.08) (264.01) (249.66) (253.53) (271.10) (250.63) (264.29) (283.75)
    0.95 15.53 15.38 23.36 15.63 26.52 57.24 61.66 69.21 71.04 148.05 171.65 197.61 153.53 178.04 206.07 174.35 197.99 226.38
    (61.76) (61.59) (77.66) (60.76) (83.00) (111.45) (112.40) (111.90) (114.95) (162.06) (170.39) (193.62) (162.03) (175.61) (201.72) (169.99) (192.49) (221.20)
    0.925 10.09 9.81 14.61 10.24 16.67 36.32 39.72 45.52 46.63 101.69 121.52 145.96 106.61 128.34 157.04 124.97 147.54 177.85
    (32.21) (31.37) (41.36) (33.21) (45.13) (64.42) (65.71) (65.51) (66.88) (106.81) (117.40) (139.90) (109.26) (124.14) (152.35) (119.93) (141.71) (172.87)
    0.9 7.27 7.28 10.33 7.29 11.52 25.66 28.21 33.18 34.09 73.41 90.11 111.64 77.47 95.84 120.81 92.84 113.54 141.06
    (19.26) (20.11) (25.80) (19.52) (27.80) (41.88) (43.09) (43.80) (44.45) (74.90) (84.31) (104.72) (76.77) (89.60) (115.22) (86.07) (106.79) (135.89)
    0.85 4.67 4.61 6.38 4.71 7.01 15.15 16.91 20.27 20.83 43.97 53.95 67.38 45.73 56.49 73.91 55.59 68.73 90.10
    (9.86) (9.40) (12.81) (9.67) (13.66) (21.95) (22.90) (23.46) (23.34) (41.95) (46.27) (60.26) (42.03) (49.60) (67.88) (47.22) (60.89) (84.32)
    0.8 3.53 3.46 4.50 3.54 4.96 10.23 11.41 13.99 14.65 29.10 35.67 43.71 29.64 36.87 47.58 36.50 44.82 59.37
    (5.83) (5.79) (7.58) (5.99) (8.11) (13.23) (13.85) (14.48) (14.58) (26.69) (27.82) (36.24) (25.42) (29.66) (40.97) (28.44) (36.83) (53.23)
    0.7 2.33 2.32 2.85 2.33 3.09 5.84 6.47 8.11 8.53 15.21 19.02 21.90 15.40 19.04 23.17 19.14 22.40 28.54
    (2.84) (2.80) (3.42) (2.80) (3.77) (6.12) (6.43) (6.93) (6.82) (13.19) (12.74) (14.78) (11.79) (12.79) (16.81) (12.35) (15.31) (22.69)
    0.5 1.42 1.41 1.61 1.42 1.71 2.85 3.12 3.90 4.15 5.73 7.88 8.98 6.06 7.81 8.85 8.06 8.99 9.88
    (1.05) (1.04) (1.27) (1.05) (1.35) (2.04) (2.12) (2.25) (2.19) (4.24) (4.29) (3.97) (3.62) (3.8) (4.02) (3.6) (4.00) (5.18)
    0.25 1.02 1.02 1.05 1.02 1.06 1.45 1.59 2.10 2.32 2.29 3.47 4.33 2.73 3.67 4.23 3.94 4.31 4.35
    (0.22) (0.21) (0.31) (0.21) (0.36) (0.85) (0.92) (0.98) (0.80) (1.05) (1.15) (1.1) (0.88) (0.96) (0.98) (0.91) (0.98) (1.07)
    EQL 9.13 9.08 10.35 9.14 10.84 15.61 16.41 17.81 18.19 29.58 33.67 38.18 30.39 34.68 40.04 34.22 38.57 44.62
    RARL 1.00 1.00 1.00 1.00 1.19 1.51 1.80 1.96 1.76 3.24 3.71 3.69 3.33 3.82 3.87 3.75 4.25 4.31
    PCI 1.00 1.00 1.00 1.00 1.32 1.93 2.61 3.24 2.76 5.71 7.36 6.92 5.97 7.53 7.21 7.47 8.83 8.41
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
    δ L = 0.113 0.127 0.817 0.348 0.955 2.337 2.654 3.562 4.071 1.311 1.735 2.197 1.568 1.991 2.462 2.385 2.791 3.243
    1 370.39 370.03 370.46 370.38 370.84 370.47 370.19 371.04 370.94 370.10 370.18 370.40 369.38 370.46 370.20 370.32 370.55 370.80
    (3697.96) (3185.63) (823.02) (1760.16) (709.15) (305.28) (284.30) (283.56) (326.31) (436.65) (404.40) (385.94) (426.39) (398.10) (381.75) (398.74) (383.75) (374.87)
    1.025 37.41 38.22 132.72 63.95 150.61 244.94 253.96 270.61 281.92 219.62 238.99 256.05 225.87 243.72 262.16 241.04 259.09 277.07
    (181.11) (181.49) (287.58) (237.88) (285.14) (202.57) (192.20) (198.59) (241.43) (257.38) (259.87) (267.41) (260.51) (261.62) (270.74) (260.66) (268.48) (280.80)
    1.05 18.15 19.44 69.47 31.35 82.67 173.99 184.46 206.26 221.36 144.32 163.18 184.02 148.84 169.62 191.89 166.62 189.32 213.05
    (65.30) (71.34) (143.30) (96.74) (152.44) (144.69) (139.11) (147.63) (186.08) (166.34) (176.73) (191.53) (170.51) (181.60) (198.47) (179.07) (195.84) (216.13)
    1.08 11.53 12.03 40.19 18.29 48.04 122.88 134.15 155.75 169.31 95.70 111.20 131.07 98.49 116.29 136.98 114.33 134.82 158.32
    (32.04) (33.69) (78.95) (47.39) (85.57) (103.25) (102.14) (109.04) (139.11) (108.51) (118.62) (135.34) (111.18) (123.57) (141.47) (122.12) (138.84) (160.80)
    1.11 8.67 8.76 26.69 12.87 32.39 90.95 100.71 121.08 133.53 68.82 80.97 95.87 70.14 84.34 101.61 81.58 99.33 121.84
    (20.45) (20.59) (49.77) (28.73) (56.22) (77.77) (77.49) (83.53) (108.24) (76.54) (84.43) (98.45) (77.86) (88.95) (104.06) (86.27) (101.85) (123.23)
    1.18 5.71 5.81 14.28 7.83 16.83 51.99 59.45 74.97 82.40 38.79 44.93 53.79 38.19 46.32 56.94 44.67 55.41 70.88
    (10.42) (10.68) (23.27) (13.93) (26.19) (45.79) (46.88) (50.81) (63.90) (41.86) (45.00) (53.40) (41.15) (47.44) (57.26) (45.76) (55.29) (70.57)
    1.25 4.36 4.44 9.65 5.68 11.14 33.60 39.38 51.30 56.26 25.62 29.42 34.59 24.94 29.99 36.33 28.68 35.50 45.66
    (6.74) (6.85) (14.06) (8.84) (15.73) (30.31) (32.00) (34.68) (41.96) (27.29) (28.53) (33.41) (26.31) (29.77) (36.05) (28.48) (34.67) (44.95)
    1.43 2.96 3.03 5.35 3.63 5.94 15.49 18.40 25.38 27.41 12.62 14.57 16.24 11.88 13.99 16.43 13.31 16.11 20.22
    (3.41) (3.55) (6.29) (4.30) (6.87) (14.31) (15.61) (17.62) (19.58) (13.76) (13.82) (14.68) (12.42) (13.36) (15.23) (12.75) (14.97) (19.07)
    2 1.85 1.87 2.62 2.08 2.81 5.11 5.78 7.84 8.53 4.11 4.90 5.39 3.91 4.57 5.17 4.40 5.10 5.94
    (1.56) (1.57) (2.29) (1.78) (2.43) (4.26) (4.69) (5.79) (6.02) (4.49) (4.80) (4.74) (3.90) (4.26) (4.47) (3.88) (4.35) (5.00)
    4 1.22 1.23 1.42 1.29 1.47 1.97 2.08 2.41 2.48 1.48 1.61 1.76 1.48 1.61 1.74 1.64 1.76 1.91
    (0.69) (0.70) (0.93) (0.77) (0.98) (1.37) (1.45) (1.63) (1.66) (1.07) (1.20) (1.32) (0.96) (1.08) (1.19) (1.03) (1.14) (1.26)
    EQL 13.27 13.41 18.95 14.89 20.37 35.85 39.46 48.85 52.16 28.54 32.33 35.91 28.10 31.93 36.01 31.35 35.69 41.28
    RARL 1.00 1.00 1.00 1.12 1.52 1.89 2.97 3.64 2.75 2.15 2.41 1.90 2.12 2.38 1.90 2.36 2.66 2.18
    PCI 1.00 1.00 1.00 1.15 1.64 2.02 3.77 4.80 3.17 2.63 3.00 2.05 2.56 2.92 2.03 2.88 3.32 2.37

     | Show Table
    DownLoad: CSV
    Table 4.  ARL and SDRL values for the two-sided THWMA TBE chart and two-sided competing charts when 𝑘 = 2 and ARL0370.
    THWMA TBE DHWMA TBE HWMA TBE TEWMA TBE DEWMA TBE EWMA TBE
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1
    δ L = 1.2124 1.2483 1.571 1.342 1.641 2.484 2.729 3.56 1.7365 2.024 2.347 1.938 2.226 2.5404 2.526 2.811
    0.25 2.50 2.67 3.68 3.13 3.87 6.65 7.63 11.83 4.32 5.57 6.58 4.42 5.50 6.55 6.26 7.90
    (1.09) (1.04) (0.76) (0.77) (0.80) (1.08) (1.18) (1.63) (1.31) (1.34) (1.23) (1.12) (1.15) (1.19) (1.17) (1.43)
    0.5 4.36 4.57 6.40 5.14 6.85 13.27 15.61 26.97 10.01 11.90 13.42 9.72 11.63 14.88 13.33 19.20
    (2.39) (2.41) (2.94) (2.49) (3.09) (4.66) (5.14) (7.92) (5.25) (4.91) (5.10) (4.50) (4.57) (6.76) (4.98) (8.25)
    0.7 8.12 8.66 13.74 10.07 14.96 32.88 39.39 91.36 24.79 28.22 39.72 24.20 29.89 57.96 35.15 83.18
    (7.24) (7.60) (10.59) (8.46) (11.14) (17.17) (19.25) (46.00) (16.11) (16.47) (28.85) (15.03) (18.65) (47.42) (20.79) (67.01)
    0.8 13.00 14.06 25.43 17.08 28.18 66.98 82.20 508.52 46.64 56.53 101.06 47.67 65.65 170.57 78.83 301.49
    (15.82) (16.85) (25.49) (19.45) (26.97) (42.55) (49.27) (482.69) (34.86) (43.39) (90.42) (35.86) (53.45) (161.94) (61.40) (285.89)
    0.85 17.75 19.47 39.02 24.61 43.85 110.00 141.49 6831.02 71.59 92.38 180.40 75.74 112.05 316.07 138.83 622.02
    (26.12) (28.29) (45.00) (33.63) (48.05) (78.50) (97.22) (7657.19) (59.84) (80.10) (172.74) (64.72) (101.91) (311.37) (122.64) (616.53)
    0.9 27.27 30.90 70.23 40.68 79.59 223.35 312.16 2177.35 126.06 168.48 325.05 138.11 209.80 522.35 270.19 965.20
    (52.06) (56.83) (94.87) (69.13) (101.44) (181.21) (247.86) (1956.29) (120.42) (162.20) (325.12) (133.67) (206.71) (526.26) (262.08) (972.64)
    0.925 35.79 41.15 103.28 57.66 119.41 340.92 493.19 1267.32 178.63 234.27 406.70 195.39 283.77 585.75 368.11 907.37
    (80.41) (88.31) (155.41) (111.15) (167.01) (281.08) (400.90) (1088.34) (183.11) (234.79) (410.70) (199.30) (287.50) (596.06) (369.47) (929.04)
    0.95 53.01 63.09 173.19 91.50 200.33 470.61 616.33 795.22 256.90 312.35 457.21 276.29 363.28 563.63 451.17 713.63
    (148.01) (168.14) (291.41) (213.71) (307.89) (378.40) (494.36) (650.93) (277.77) (323.19) (468.12) (292.48) (374.80) (573.44) (464.18) (733.5)
    0.975 96.63 122.90 314.54 188.91 336.54 478.31 524.34 526.99 340.49 370.12 440.21 358.29 396.09 479.74 450.31 517.20
    (399.25) (462.24) (566.50) (576.53) (533.77) (381.25) (407.85) (414.94) (379.45) (388.14) (452.75) (391.77) (416.19) (494.20) (470.18) (532.42)
    1 370.76 370.10 370.72 370.22 369.36 370.55 370.77 370.71 370.49 360.45 370.99 370.24 369.78 370.52 369.92 370.02
    (3429.71) (2316.02) (656.82) (1312.93) (576.58) (295.23) (283.80) (281.38) (421.77) (384.40) (384.66) (412.63) (387.83) (378.78) (392.20) (379.46)
    1.025 100.37 119.86 241.15 170.43 250.30 264.85 263.26 271.38 306.46 294.53 288.77 303.65 294.27 279.45 270.12 264.97
    (433.33) (449.81) (415.76) (498.46) (382.51) (212.00) (197.20) (199.44) (348.41) (313.34) (299.96) (339.29) (310.99) (287.76) (285.41) (273.68)
    1.05 53.19 62.92 144.12 89.49 157.51 191.07 194.87 205.72 219.98 220.83 217.12 220.22 220.20 210.24 195.12 191.84
    (160.01) (179.06) (235.31) (214.58) (232.71) (152.90) (145.33) (148.19) (246.69) (234.13) (223.60) (241.41) (231.86) (216.63) (207.13) (198.87)
    1.08 33.19 38.99 87.58 53.04 96.60 136.33 140.32 155.51 146.29 153.25 156.75 148.22 152.45 150.59 133.85 137.92
    (78.37) (90.78) (136.27) (110.29) (138.38) (109.93) (104.92) (109.02) (157.93) (159.64) (161.23) (159.64) (159.70) (154.14) (140.61) (141.88)
    1.11 24.47 27.73 58.54 36.62 65.07 101.11 106.67 120.85 103.06 109.20 114.67 102.39 110.08 111.39 95.75 101.44
    (50.32) (55.47) (87.33) (67.99) (89.77) (82.38) (80.57) (83.62) (107.50) (111.29) (116.86) (108.03) (113.75) (113.81) (99.36) (103.30)
    1.18 15.08 16.47 29.94 19.98 32.79 57.81 62.31 74.77 55.12 58.44 62.44 53.29 57.83 61.85 51.48 56.76
    (24.64) (26.65) (40.88) (30.85) (42.73) (48.64) (48.29) (50.58) (54.05) (56.98) (61.98) (53.88) (57.80) (62.19) (51.79) (56.68)
    1.25 10.74 11.52 18.95 13.61 20.73 37.40 41.15 51.57 35.51 37.02 39.23 33.33 36.13 39.19 32.15 36.12
    (15.11) (16.07) (24.28) (18.65) (25.65) (32.44) (32.86) (34.75) (34.02) (34.47) (37.66) (32.86) (34.95) (38.80) (31.67) (35.29)
    1.43 6.31 6.63 9.28 7.36 9.85 16.99 19.17 25.31 17.00 17.46 17.86 15.29 16.25 17.40 14.72 16.29
    (7.11) (7.51) (10.18) (8.19) (10.64) (15.30) (16.08) (17.65) (16.50) (15.59) (15.93) (14.78) (14.94) (16.15) (13.84) (15.13)
    2 3.07 3.15 3.72 3.32 3.83 5.47 5.97 7.81 5.26 5.63 5.78 4.73 5.12 5.35 4.68 5.13
    (2.62) (2.69) (3.17) (2.83) (3.26) (4.49) (4.81) (5.79) (5.41) (5.31) (4.99) (4.59) (4.66) (4.58) (4.10) (4.37)
    4 1.56 1.58 1.69 1.61 1.72 2.02 2.11 2.41 1.65 1.74 1.82 1.61 1.70 1.77 1.68 1.77
    (1.08) (1.09) (1.19) (1.12) (1.20) (1.42) (1.48) (1.64) (1.29) (1.36) (1.37) (1.12) (1.18) (1.21) (1.07) (1.14)
    EQL 19.35 20.33 28.34 22.78 29.85 44.24 49.63 147.79 38.14 40.92 47.12 37.18 41.22 52.06 41.47 62.45
    RARL 1.00 1.00 1.00 1.18 1.47 1.56 2.57 7.27 1.97 2.01 1.66 1.92 2.03 1.84 2.14 3.07
    PCI 1.00 1.00 1.00 1.15 1.40 1.62 2.74 9.36 2.04 2.12 1.73 1.95 2.10 1.89 2.26 3.54

     | Show Table
    DownLoad: CSV
    Table 5.  ARL and SDRL values for the one-sided THWMA TBE chart and one-sided competing charts when 𝑘 = 3 and ARL0370.
    THWMA TBE DHWMA TBE HWMA TBE TEWMA TBE DEWMA TBE EWMA TBE
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
    δ L = 0.2555 0.239 0.453 0.248 0.52 1.027 1.117 1.355 1.498 1.288 1.603 1.885 1.497 1.794 2.027 1.993 2.1127 2.117
    1 370.96 370.12 370.93 370.00 370.21 369.95 371.01 370.58 371.55 370.49 370.14 370.34 369.90 370.19 370.72 370.20 370.24 370.94
    (3721.91) (3616.66) (2343.56) (3459.97) (1990.35) (939.73) (873.45) (754.19) (689.41) (426.80) (382.08) (368.26) (408.86) (378.92) (370.67) (378.58) (368.98) (365.70)
    0.975 27.72 27.15 45.73 27.83 52.88 106.60 113.82 128.03 138.54 204.44 226.41 248.95 210.03 232.40 256.98 227.90 249.00 272.92
    (145.81) (129.84) (172.09) (129.13) (183.32) (208.08) (206.49) (203.65) (215.66) (232.50) (231.09) (246.62) (229.07) (234.24) (253.69) (228.96) (245.46) (270.16)
    0.95 12.93 12.61 20.66 12.95 23.66 54.20 59.70 69.97 75.56 123.74 146.16 172.62 129.79 152.74 180.87 148.32 172.27 201.74
    (45.52) (44.45) (61.26) (44.85) (65.94) (92.63) (94.27) (96.04) (103.22) (135.79) (145.26) (167.87) (136.95) (151.23) (177.17) (145.84) (167.28) (198.39)
    0.925 8.20 8.02 12.58 8.22 14.51 34.38 38.00 45.33 49.26 81.75 99.29 121.39 85.15 103.85 130.07 100.81 122.41 151.09
    (22.85) (22.82) (32.03) (23.08) (34.98) (53.66) (55.06) (56.30) (61.05) (86.69) (95.49) (116.42) (86.89) (99.74) (125.19) (95.42) (116.93) (146.05)
    0.9 6.01 5.98 8.92 6.04 10.05 23.60 26.59 32.71 35.14 57.45 70.39 88.44 59.77 74.59 96.28 72.67 89.21 114.85
    (14.06) (14.21) (19.72) (14.27) (21.35) (34.37) (36.01) (37.37) (39.38) (58.34) (65.11) (82.13) (58.24) (69.34) (90.90) (66.34) (82.90) (109.56)
    0.85 3.91 3.94 5.50 3.96 6.11 13.83 15.61 19.48 20.94 33.10 40.66 50.21 33.82 42.43 55.03 41.46 51.45 68.34
    (7.03) (7.00) (9.72) (7.12) (10.57) (17.85) (18.77) (19.60) (20.49) (31.76) (33.80) (43.39) (30.80) (36.08) (49.28) (34.22) (44.47) (63.24)
    0.8 2.92 2.95 3.89 2.98 4.30 9.14 10.35 13.31 14.29 21.51 26.34 31.65 21.82 26.86 34.06 26.89 32.41 42.87
    (4.32) (4.23) (5.54) (4.31) (6.11) (10.56) (11.22) (12.11) (12.48) (19.87) (20.03) (24.82) (18.62) (20.67) (27.87) (20.07) (25.57) (37.39)
    0.7 2.00 2.01 2.52 2.02 2.70 5.17 5.80 7.44 8.11 10.87 13.86 15.78 11.04 13.74 16.38 13.94 16.06 19.87
    (2.14) (2.09) (2.65) (2.11) (2.86) (4.78) (5.06) (5.62) (5.76) (9.73) (9.42) (9.87) (8.55) (8.91) (11.03) (8.62) (10.21) (14.84)
    0.5 1.25 1.24 1.44 1.26 1.51 2.52 2.80 3.55 3.85 3.89 5.52 6.55 4.23 5.58 6.44 5.82 6.53 7.03
    (0.79) (0.78) (1.00) (0.78) (1.07) (1.66) (1.74) (1.79) (1.78) (2.97) (3.13) (2.89) (2.54) (2.70) (2.75) (2.50) (2.74) (3.26)
    0.25 1.00 1.00 1.01 1.00 1.02 1.24 1.36 1.84 2.11 1.51 2.38 3.07 1.95 2.60 3.12 2.88 3.20 3.27
    (0.10) (0.09) (0.17) (0.09) (0.20) (0.64) (0.74) (0.90) (0.75) (0.71) (0.79) (0.84) (0.67) (0.71) (0.73) (0.69) (0.70) (0.74)
    EQL 8.66 8.56 9.85 8.60 10.34 15.07 15.95 17.76 18.71 25.38 28.86 32.81 26.02 29.67 34.32 29.22 33.00 38.40
    RARL 1.01 1.00 1.00 1.00 1.21 1.53 1.85 2.07 1.90 2.95 3.37 3.33 3.02 3.47 3.48 3.40 3.85 3.90
    PCI 1.01 1.00 1.00 1.00 1.34 1.95 2.76 3.49 2.98 4.92 6.35 5.84 5.17 6.52 6.08 6.53 7.69 7.10
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
    δ L = 0.139 0.1332 0.794 0.333 0.915 2.211 2.504 3.347 3.819 1.316 1.726 2.168 1.57 1.976 2.424 2.348 2.725 3.128
    1 370.97 370.13 370.61 370.06 370.49 370.05 369.96 370.61 370.81 370.91 370.55 370.31 370.88 369.61 370.97 370.33 370.52 370.99
    (3675.48) (3263.53) (872.67) (1947.69) (752.39) (320.54) (295.75) (287.22) (327.03) (442.16) (404.97) (387.38) (428.66) (394.60) (380.36) (397.99) (382.01) (376.81)
    1.025 31.46 30.08 107.35 49.01 121.97 220.24 229.94 250.11 264.91 198.84 218.96 238.15 206.29 225.78 244.50 220.92 241.75 261.45
    (143.94) (135.21) (240.15) (181.78) (241.89) (190.03) (181.03) (186.14) (226.48) (233.31) (238.21) (248.70) (236.26) (241.30) (252.70) (237.49) (249.21) (264.52)
    1.05 15.00 15.15 52.29 23.12 61.02 145.29 156.60 179.59 197.25 123.10 140.40 162.35 127.82 147.32 170.36 143.52 166.19 192.12
    (49.01) (50.21) (109.40) (68.29) (115.96) (125.85) (123.21) (130.32) (165.60) (140.85) (149.81) (168.05) (145.40) (156.51) (176.24) (153.56) (170.81) (193.41)
    1.08 9.64 9.52 28.86 13.64 34.60 96.39 106.75 128.42 142.99 77.59 91.24 108.53 80.17 95.38 115.14 93.18 112.19 135.82
    (24.94) (24.54) (56.18) (33.44) (62.00) (84.7) (84.67) (90.64) (116.75) (86.99) (96.44) (111.56) (88.82) (100.56) (117.8) (97.43) (113.93) (136.88)
    1.11 7.16 7.09 19.49 9.71 22.69 68.23 77.22 96.35 108.08 54.22 63.57 76.76 55.01 66.04 82.02 64.35 78.93 99.81
    (15.44) (15.24) (34.94) (20.29) (38.73) (60.74) (61.90) (66.93) (85.78) (59.22) (65.26) (77.56) (59.85) (68.81) (83.49) (66.54) (79.51) (99.57)
    1.18 4.72 4.66 10.43 5.96 11.88 36.88 42.84 56.15 63.11 29.50 34.22 40.48 28.98 34.77 43.02 33.64 41.76 54.31
    (7.81) (7.65) (15.97) (9.69) (17.68) (33.68) (35.18) (38.14) (47.72) (31.55) (33.38) (39.23) (30.80) (34.38) (42.69) (33.50) (40.90) (53.62)
    1.25 3.65 3.61 7.07 4.46 8.02 23.11 27.28 37.21 41.20 19.19 21.97 25.43 18.45 21.90 26.62 21.08 25.97 33.64
    (5.03) (4.92) (9.55) (6.15) (10.53) (21.51) (22.95) (25.48) (30.21) (20.54) (20.64) (23.74) (19.17) (21.06) (25.55) (20.57) (24.34) (32.34)
    1.43 2.50 2.50 4.09 2.91 4.45 10.62 12.36 17.64 19.26 9.12 10.66 11.83 8.55 10.15 11.77 9.71 11.56 14.33
    (2.60) (2.61) (4.37) (3.09) (4.70) (9.62) (10.59) (12.39) (13.50) (9.94) (10.08) (10.30) (8.84) (9.46) (10.50) (9.02) (10.29) (12.86)
    2 1.58 1.57 2.09 1.72 2.20 3.72 4.13 5.39 5.90 2.93 3.50 3.90 2.84 3.31 3.76 3.25 3.72 4.25
    (1.19) (1.18) (1.68) (1.35) (1.76) (2.86) (3.12) (3.81) (4.02) (3.05) (3.35) (3.35) (2.67) (2.93) (3.09) (2.64) (2.97) (3.33)
    4 1.11 1.10 1.21 1.13 1.23 1.52 1.60 1.82 1.85 1.22 1.30 1.38 1.24 1.31 1.39 1.35 1.43 1.51
    (0.46) (0.46) (0.65) (0.52) (0.67) (0.98) (1.04) (1.17) (1.14) (0.62) (0.73) (0.81) (0.60) (0.68) (0.76) (0.67) (0.75) (0.83)
    EQL 11.89 11.80 15.63 12.76 16.47 27.36 29.90 36.72 39.38 22.61 25.45 28.15 22.52 25.28 28.43 25.05 28.27 32.36
    RARL 1.00 1.00 1.00 1.07 1.40 1.75 2.52 3.11 2.52 1.90 2.16 1.80 1.89 2.14 1.82 2.11 2.40 2.07
    PCI 1.00 1.00 1.00 1.10 1.51 1.86 3.19 4.16 2.89 2.32 2.70 1.94 2.27 2.65 1.93 2.58 3.01 2.24

     | Show Table
    DownLoad: CSV
    Table 6.  ARL and SDRL values for the two-sided THWMA TBE chart and two-sided competing charts when 𝑘 = 3 and ARL0370.
    THWMA TBE DHWMA TBE HWMA TBE TEWMA TBE DEWMA TBE EWMA TBE
    φ = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1
    δ L = 1.226 1.2495 1.569 1.342 1.635 2.418 2.261 3.35 1.742 2.039 2.351 1.945 2.236 2.536 2.524 2.775
    0.25 1.66 1.72 2.91 2.02 3.12 4.73 5.25 7.30 2.84 3.81 4.63 3.05 3.85 4.57 4.32 5.18
    (0.97) (0.99) (0.77) (1.05) (0.59) (0.73) (0.79) (0.98) (0.92) (0.97) (0.92) (0.80) (0.83) (0.83) (0.81) (0.92)
    0.5 3.33 3.43 4.84 3.83 5.11 8.93 10.15 15.48 6.84 8.45 9.47 6.74 8.17 9.67 9.05 11.49
    (1.90) (1.91) (2.03) (1.94) (2.08) (3.04) (3.29) (4.45) (3.75) (3.62) (3.37) (3.15) (3.20) (3.67) (3.27) (4.24)
    0.7 6.29 6.52 9.99 7.44 10.73 21.67 24.96 43.40 17.78 20.40 24.82 17.12 20.49 30.46 23.06 36.96
    (5.25) (5.39) (7.18) (5.88) (7.53) (11.26) (12.18) (19.52) (11.73) (11.27) (15.59) (10.55) (11.78) (21.69) (12.64) (24.74)
    0.8 10.18 10.66 18.28 12.65 20.03 43.77 50.91 114.66 34.22 40.05 59.94 34.02 43.87 84.77 49.33 109.76
    (11.42) (11.85) (17.28) (13.38) (18.38) (27.25) (30.00) (71.08) (25.06) (28.24) (49.88) (24.75) (33.07) (75.96) (35.05) (95.67)
    0.85 14.04 14.94 28.12 18.38 31.15 70.93 84.04 303.10 52.67 65.37 109.65 54.35 75.25 162.31 85.78 229.25
    (19.02) (20.06) (30.90) (23.32) (32.76) (49.27) (55.29) (254.65) (42.29) (53.37) (100.41) (44.33) (64.56) (155.20) (70.57) (218.38)
    0.9 21.79 23.44 50.78 30.51 56.89 139.01 172.39 2704.74 95.02 125.79 220.03 102.57 149.78 323.97 174.84 492.86
    (37.81) (40.20) (66.16) (48.62) (70.02) (109.66) (131.00) (3233.74) (87.62) (117.41) (214.73) (95.65) (143.22) (322.28) (164.62) (491.37)
    0.925 29.27 32.22 76.15 43.60 86.29 219.10 280.24 1855.15 139.05 184.03 308.14 151.40 217.80 426.77 259.84 631.64
    (59.52) (64.54) (110.33) (80.19) (116.93) (182.92) (227.49) (1738.82) (138.67) (180.80) (306.88) (150.67) (215.42) (430.14) (254.96) (637.25)
    0.95 44.03 48.65 130.17 69.11 146.98 354.47 449.51 1012.55 215.30 272.92 396.09 232.74 310.87 486.02 366.52 648.52
    (112.62) (121.16) (212.63) (151.94) (223.35) (295.19) (363.75) (869.73) (229.28) (280.93) (401.12) (244.82) (317.99) (491.13) (371.73) (658.33)
    0.975 84.63 98.67 266.79 147.85 289.70 448.34 502.56 586.50 322.21 362.65 427.71 338.20 385.72 461.74 428.08 521.26
    (313.33) (346.47) (493.06) (433.46) (475.99) (361.71) (398.34) (474.14) (362.99) (381.14) (439.15) (370.69) (404.49) (470.00) (447.00) (529.59)
    1 370.01 370.84 370.34 371.39 370.15 369.61 368.98 369.66 370.55 370.17 370.08 369.74 369.98 370.90 370.75 369.91
    (3368.86) (2444.97) (677.96) (1375.52) (593.91) (300.78) (288.67) (286.65) (424.64) (394.88) (381.29) (412.51) (388.86) (378.48) (388.82) (381.06)
    1.025 83.72 97.81 214.03 141.35 224.72 248.48 245.54 250.03 289.07 289.77 280.87 289.63 286.46 272.23 261.42 251.96
    (325.58) (348.54) (375.13) (402.22) (352.70) (203.03) (190.15) (186.57) (330.44) (308.85) (289.54) (324.61) (301.25) (278.28) (276.45) (259.69)
    1.05 44.27 48.17 116.41 69.47 126.52 168.07 169.58 179.86 189.74 200.87 201.64 192.06 200.81 194.34 176.46 176.59
    (119.14) (126.24) (188.96) (160.67) (188.58) (137.41) (130.24) (130.70) (210.19) (210.05) (206.19) (209.24) (210.38) (199.27) (184.71) (180.30)
    1.08 27.38 30.09 66.39 39.61 73.06 112.33 115.73 128.18 117.88 129.17 136.08 119.11 129.65 132.69 113.12 120.07
    (59.44) (64.24) (101.18) (78.10) (103.80) (92.99) (88.95) (90.12) (124.77) (132.95) (139.16) (126.70) (134.10) (135.85) (117.07) (122.50)
    1.11 19.73 21.39 43.61 27.54 48.09 80.18 83.71 96.33 79.66 87.66 95.06 79.55 88.19 93.95 78.44 84.09
    (37.17) (39.36) (63.19) (48.61) (65.55) (66.79) (64.94) (66.98) (80.98) (87.57) (95.70) (82.14) (90.06) (95.13) (79.66) (84.64)
    1.18 11.87 12.63 21.72 15.07 23.85 42.74 46.22 56.19 41.49 44.61 48.34 39.79 44.13 48.70 39.72 43.86
    (17.77) (18.84) (28.19) (21.68) (30.20) (36.94) (36.88) (38.11) (39.64) (41.65) (46.63) (38.86) (42.54) (48.06) (38.61) (42.78)
    1.25 8.54 8.90 13.76 10.34 14.98 26.85 29.43 37.16 26.48 27.82 29.34 24.67 26.99 29.46 24.31 27.20
    (11.16) (11.60) (16.26) (13.10) (17.56) (23.64) (23.96) (25.39) (24.98) (24.95) (27.18) (23.52) (25.00) (28.24) (22.88) (25.74)
    1.43 5.04 5.16 6.95 5.69 7.29 11.99 13.30 17.47 12.30 12.96 13.17 11.03 11.95 12.70 10.84 11.92
    (5.24) (5.36) (7.00) (5.88) (7.30) (10.54) (11.12) (12.27) (12.07) (11.42) (11.22) (10.50) (10.61) (11.25) (9.82) (10.57)
    2 2.48 2.51 2.92 2.63 3.00 4.01 4.30 5.39 3.70 4.07 4.22 3.43 3.74 3.94 3.50 3.79
    (1.98) (2.00) (2.32) (2.10) (2.37) (3.04) (3.23) (3.84) (3.71) (3.78) (3.56) (3.15) (3.24) (3.22) (2.83) (3.01)
    4 1.31 1.31 1.38 1.33 1.40 1.59 1.64 1.81 1.30 1.37 1.43 1.31 1.36 1.42 1.38 1.44
    (0.78) (0.78) (0.87) (0.81) (0.88) (1.04) (1.08) (1.16) (0.76) (0.83) (0.87) (0.69) (0.75) (0.79) (0.71) (0.76)
    EQL 16.35 16.81 22.94 16.60 24.04 34.33 37.35 78.31 30.33 33.14 37.35 29.97 33.27 39.90 33.15 43.81
    RARL 1.00 1.00 1.00 1.02 1.43 1.50 2.28 4.66 1.86 1.97 1.63 1.83 1.98 1.74 2.03 2.61
    PCI 1.00 1.00 1.00 1.01 1.38 1.52 2.40 4.69 1.88 2.04 1.64 1.82 2.00 1.71 2.08 2.75

     | Show Table
    DownLoad: CSV

    This section covers the performance and comparative study for the THWMA TBE charts. The THWMA TBE charts are compared to competing charts, including the DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts. Details of the performance and comparative analysis are as follows:

    From Tables 16, it can be concluded that for a given value of φ, the performance behavior of the THWMA TBE charts is enhanced as the value of k rises. For example, if φ= 0.05 and δ= 0.95, then the lower-sided THWMA TBE chart provides ARL1= 22.7 when k= 1, while it yields ARL1= 15.63 when k= 2 and it has ARL1= 12.93 when k= 3. A similar type of behavior can be observed with the upper- and two-sided THWMA TBE charts. In addition, for a specified k, the performance behavior of the two-sided THWMA TBE chart worsens when the values of φ increase. For instance, when k= 1 and δ= 0.9, then the two-sided THWMA TBE chart achieves ARL1= 40.01 with φ= 0.05, whereas it holds ARL1= 48.88 with φ= 0.1, and it receives ARL1= 123.12 with φ= 0.2. Similarly, for k= 1, 2. The performance of the upper-sided THWMA TBE chart deteriorates with increasing values of φ. For instance, at k= 1 and δ= 1.025, for φ= 0.05 the upper-sided THWMA TBE chart has ARL1= 54.62, for φ= 0.1, it has ARL1= 59.52 and for φ= 0.2, it has ARL1= 185.03. However, this is not observed for the lower-sided THWMA TBE chart with any k. For instance, when k= 2 and δ= 0.925, the lower-sided THWMA TBE chart has ARL1= 8.24 if φ= 0.05, ARL1= 8.02 if φ= 0.1 and ARL1= 12.58 if φ= 0.2. Furthermore, for a given value of k and φ, the lower-sided THWMA TBE chart has better detection ability than the upper-sided THWMA TBE chart. For example, if k= 3 and φ= 0.1, the lower-sided THWMA TBE chart has ARL1= 12.61 when δ= 0.95 (1.05 time less than θ0), whereas the upper-sided THWMA TBE chart has ARL1= 15.15 when δ= 1.05 (1.05 time greater than θ0). Also, for k=1, the two-sided THWMA TBE chart is just ARL-biased for very small downward shifts, i.e., 0.975δ<1 when φ=0.2. Moreover, as far as the SDRL values are concerned, it can be observed that when the value of φ rises, the IC SDRL (SDRL0) values reduce. For example, when k=3, then the two-sided THWMA TBE chart has SDRL0=3368.86 when φ=0.05, though the two-sided THWMA TBE chart has SDRL0=2444.97 when φ=0.1 and the two-sided THWMA TBE chart has SDRL0=677.96 when φ=0.2. Similar inferences may be drawn for the one-sided THWMA TBE charts. It should be noted that the results regarding the competing charts, i.e., the DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE, and EWMA TBE charts, those observed along with the THWMA TBE chart can be discussed in the same manner.

    In comparing the THWMA TBE charts against the competing TBE charts, it is observed that the THWMA TBE charts gain excellent performance against the corresponding EWMA TBE charts for small and large shifts. For example, if k=1, φ=0.1 and δ= 0.975, 0.95, …, 0.25, then the lower-sided THWMA TBE chart has ARL1= 48.61, 21.54, …, 1.11, while the lower-sided EWMA TBE has ARL1= 296.22,237.58, …, 7.22. The THWMA TBE charts reveal superior performance over the DHWMA TBE charts for every shift value. For instance, when k=2, φ=0.05 and δ= 1.025, 1.05, …, 4, the upper-sided THWMA TBE chart has ARL1= 37.41, 18.15, …, 1.22, whereas the upper-sided DHWMA TBE has ARL1= 225.87,148.84, … 1.48. The THWMA TBE charts show better detection ability relative to the TEWMA TBE charts for each shift value. For example, when k=3, φ=0.05 and δ= 0.25, 0.5, …, 4, the two-sided THWMA TBE chart has ARL1= 4.06, 6.90, …, 2.26, but the upper-sided DHWMA TBE has ARL1= 8.51, 18.46, …, 2.77. The THWMA TBE charts achieve better detection ability over the TEWMA TBE charts for each shift value. For example, when k=3, φ=0.05 and δ= 0.25, 0.5, …, 4, the two-sided THWMA TBE chart has ARL1= 4.06, 6.90, …, 2.26, where the upper-sided DHWMA TBE has ARL1= 8.51, 18.46, …, 2.77. The THWMA TBE charts have better performance compared with the respective 𝐻𝑊𝑀𝐴 TBE charts for every single shift. For instance, if k=1, φ=0.2 and δ= 0.975, 0.95, …, 0.25, then the lower-sided THWMA TBE chart has ARL1= 58.14, 27.88, …, 1.17; however, the upper-sided HWMA TBE has ARL1= 105.69, 58.09, …, 2.43. The THWMA TBE charts have better performance compared with the DHWMA TBE charts for every shift. For example, when k=2, φ=0.1 and δ= 0.25, 0.5, …, 4, the ARL1 values of the two-sided THWMA TBE chart are 4.57, 8.66, …, 1.58, on the other hand, the ARL1 values the upper-sided DHWMA TBE are 6.85, 14.96, …, 1.72. Similar types of conclusions can also be drawn from the ARL plots of the one- and two-sided THWMA TBE versus one- and two-sided competing charts, given in the Figures 1 to 3.

    Figure 1.  ARL1 plot for the lower-sided THWMA TBE versus lower-sided competing charts when k=1, φ=0.05 and ARL0=370.
    Figure 2.  ARL1 plot for the upper-sided THWMA TBE versus upper-sided competing charts when k=1, φ=0.05 and ARL0=370.
    Figure 3.  ARL plot for the two-sided THWMA TBE versus two-sided competing charts when k=1, φ=0.05 and ARL0=370.

    The overall comparisons of the THWMA TBE charts against the rival TBE charts indicate that the THWMA TBE charts show better overall performance as compared to the EWMA TBE charts in term of minimum EQL, RARL and PCI values. For example, when k=1 and φ=0.05, then the upper-sided THWMA TBE chart has EQL=17.35, RARL=1.00 and PCI=1.00, whereas the upper-sided EWMA TBE chart has EQL=47.59, RARL=2.74 and PCI= 3.35. The THWMA TBE charts demonstrate superior overall performance relative to the DEWMA TBE charts. For instance, when k=2 and φ=0.1, the lower-sided THWMA TBE chart has EQL=9.08, RARL=1.00 and PCI=1.00; whereas, the upper-sided DHWMA TBE chart has EQL=34.68, RARL=3.82 and PCI= 7.53. The THWMA TBE charts reveal an improved overall performance against the TEWMA TBE charts. For instance, if k=3 and φ=0.05, then the two-sided THWMA TBE chart has EQL=16.35, RARL=1.00 and PCI=1.00, where the two-sided TEWMA TBE chart has EQL=30.33, RARL=1.86 and PCI= 1.88. The THWMA TBE charts indicate dominant overall performance against the HWMA TBE charts. For instance, when k=2 and φ=0.2, the lower-sided THWMA TBE chart has EQL=10.35, RARL=1.00 and PCI=1.00, but the lower-sided HWMA TBE chart has EQL=18.19, RARL=1.76 and PCI= 2.76. The THWMA TBE charts have enhanced overall performance as compared to the DHWMA TBE charts. For example, for k=1 and φ=0.1, the lower-sided THWMA TBE chart has EQL=10.35, RARL=1.00 and PCI=1.00; in contrast, the lower-sided DHWMA TBE chart has EQL=18.19, RARL=1.76 and PCI= 2.76.

    This section provides two real-life examples to demonstrate how THWMA TBE charts can be used practically. Subsection 5.1 offers Example 5.1, which analyzes real-life data of a vertical boring machine's failure time. Additionally, the analysis of the real-life data representing the hospital stay time of the traumatic brain injury patients is given in Subsection 5.2.

    Boring machines are extensively utilized in boring, drilling, milling, thread cutting, face-turning processes, etc. These machines may be horizontal or vertical, depending on the axis. The boring machines use a spinning tool known as a machine spindle, which generates the basic motion. By enlarging the existing holes in the workpiece, these machines generate a smooth and precise hole diameter. To accomplish this, boring machines employed a cutter, boring rod, drill or milling head to bore, thread, ream and mill surfaces, among other operations. A single steel cutting tip, a diamond, cemented carbide or a tiny grinding wheel can be used as the boring instrument. Special boring machines with many spindles are often utilized in large production plants [28].

    In this example, the dataset is analyzed that reports the vertical boring machine failure times. This dataset was also utilized by Hossain et al. [29] and Hossain et al. [30] to construct various chart schemes. The TBE charts are not only implemented to monitor the processes of components or systems [8] in addition to being utilized to monitor the boring machine failure process. All possible actions must be taken to maintain the capability of the boring process to reduce the expense and hardship of boring machine failure.

    Table 7 shows the data set, which consists of 32 vertical boring machine failure time (in hours) observations. Before implementing the THWMA TBE charts, the Kolmogorov-Smirnov (KS) test is used to test the goodness-of-fit for the gamma distribution. The KS test provides a p-value of 0.3053, which confirms that the boring machine failure time follows the gamma distribution at the parametric values k= 3 and θ = 959.3. To implement the THWMA TBE charts, the methodology of Alevizakos and Koukouvinos [11] is followed. The IC value θ0 of the process is considered to be 1200 for the downward shift, and for the upward shift, it is assumed to be 800. As a result, the shifts δ for downward and upward cases are approximately equal to 0.8 and 1.2, respectively. Because the earlier developments assume θ0=1, so each observation in Table 7 is divided by θ0 to rescale the failure time. Setting ARL0=370, the lower-sided THWMA TBE, DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts are constructed using the design parameters for each chart, respectively chosen as; (φ,L)=(0.2,0.453), (φ,L)=(0.2,1.027), (φ,L)=(0.2,1.498), (φ,L)=(0.2,1.885), (φ,L)=(0.2,2.027) and (φ,L)=(0.2,2.117) (see Table 5). Similarly, the upper-sided THWMA TBE, DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts are formulated, based on the design parameters, respectively, given as; (φ,L)=(0.2,0.794), (φ,L)=(0.2,2.211), (φ,L)=(0.2,3.819), (φ,L)=(0.2,2.168), (φ,L)=(0.2,2.424) and (φ,L)=(0.2,3.128) (see Table 5). Likewise, the two-sided THWMA TBE, DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts are developed, which used the design parameters provided as; (φ,L)=(0.05,1.226), (φ,L)=(0.05,1.342), (φ,L)=(0.05,2.261), (φ,L)=(0.05,1.742), (φ,L)=(0.05,1.945) and (φ,L)=(0.05,2.524), respectively (see Table 6). The lower, upper and two-sided THWMA TBE, DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts are displayed in Figures 46, respectively.

    Table 7.  Vertical boring machine failure time (in hours).
    Sample no. Failure time Sample no. Failure time Sample no. Failure time Sample no. Failure time
    1 2802 9 2937 17 2136 25 4359
    2 4020 10 1781 18 2816 26 2655
    3 3886 11 2296 19 3158 27 3695
    4 4155 12 3811 20 2380 28 376
    5 2172 13 3705 21 2848 29 4339
    6 2076 14 2672 22 3632 30 1976
    7 1700 15 1596 23 1701 31 3575
    8 3802 16 4351 24 4291 32 808

     | Show Table
    DownLoad: CSV
    Figure 4.  Lower-sided THWMA TBE chart and lower-sided competing charts for Example 5.1 data with φ=0.2 and δ=0.8.
    Figure 5.  Upper-sided THWMA TBE chart and upper-sided competing charts for Example 5.1 data with φ=0.2 and δ=1.2.
    Figure 6.  Two-sided THWMA TBE chart and two-sided competing charts for Example 5.1 data with φ=0.05 and δ=1.2.

    Figure 4 reveals that the lower-sided THWMA TBE chart detects the first OOC point at failure number 7, while the lower-sided DHWMA TBE, HWMA TBE and TEWMA TBE charts diagnose the first OOC point at failure numbers 11, 23 and 20, respectively; however, the lower-sided DHWMA TBE and EWMA TBE charts fail to identify any OOC point. Similarly, Figure 5 indicates that the upper-sided THWMA TBE chart detects the first OOC point at failure number 3, while the upper-sided DHWMA TBE and TEWMA TBE charts identify the first OOC point at failure numbers 27 and 3, respectively, and the upper-sided HWMA TBE and EWMA TBE charts remain insensitive and do not detect any OOC signal. Likewise, Figure 6 suggests that with decreasing shift, the two-sided THWMA TBE chart provides the first OOC signal at failure number 16, while the two-sided DHWMA TBE chart triggers the first OOC point at failure number 19, but the HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts detect no OOC point. Equally, Figure 6 also shows that, with increasing shift, both the two-sided THWMA TBE and DHWMA TBE charts produce the first OOC point at failure number 4, whereas both the two-sided HWMA TBE and DEWMA TBE charts diagnose the OOC point at failure number 27 and the TEWMA TBE and EWMA TBE charts identify no OOC signal. The above discussion suggests that the THWMA TBE charts are more efficient in detecting changes in the process than the DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts.

    Trauma is a multifaceted psychiatric state that is the third leading source of mortality globally, after only cardiovascular disease and cancer. As a result of traumatic injury, over sixty million individuals are believed to be affected by trauma every year, with approximately 16,000 people dying each day. In trauma epidemiology statistics, traumatic brain injury (TBI) is one of the main roots of death and disability [31]. The vast majority of TBI patients are young and financially active adults who have a higher risk of being involved in road accidents [32]. As a result, TBI is viewed as a public health issue that results in large healthcare costs as well as many economic and social impacts. Therefore, a monitoring scheme is needed to assist in developing public health policies, reduce the TBI burden and enhance survival. In the current example, the one- and two-sided THWMA TBE with the competing charts, i.e., DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts are applied to the data set of male patients suffering from TBI related to car accidents, hospitalized in the Emergency Department of Ribeirão Preto Medical School, University of São Paulo, Brazil.

    The data set considered by Ramos et al. [33] representing the hospital stay time for male patients suffering from TBI related to car accidents is offered in Table 8. The KS goodness-of-fit test is applied, which provides a p-value of 0.918, confirming that the hospital stay times of the TBI patients follow the gamma distribution having parameters k= 1 and θ = 32.5. In accordance with Alevizakos et al. [2], the IC process value θ0 is supposed to be 50 for the decrease in interarrival time; however, for the increase in interarrival time, it is considered to be 15. As a result, the data set may be regarded as the OOC process observations having a decreasing shift of size 0.65 and an increasing shift of size 2.17. All the previous developments are executed at θ0=1, thus each observation of the data set is divided by the IC value θ0, i.e., θ0 = 50 for the downward shift and θ0 = 15.

    Table 8.  Hospital stay time for male patients suffering from TBI related to car accidents.
    Patient number Hospital stay Patient number Hospital stay Patient number Hospital stay
    1 25 8 19 15 44
    2 6 9 6 16 65
    3 20 10 35 17 39
    4 12 11 23 18 4
    5 23 12 35 19 50
    6 6 13 21
    7 67 14 15

     | Show Table
    DownLoad: CSV

    The THWMA TBE, DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts are constructed with a common value of ARL0, i.e., ARL0370. The design parameters; (φ,L)=(0.2,0.365), (φ,L)=(0.2,0.727), (φ,L)=(0.2,0.9537), (φ,L)=(0.2,1.7765), (φ,L)=(0.2,1.8724) and (φ,L)=(0.05,1.813) are, respectively, chosen to formulate the lower-sided THWMA TBE, DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts. The lower-sided charts are shown in Figure 7, which suggests that the lower-sided THWMA TBE chart diagnoses the first OOC signal after patient number 1, whereas the lower-sided 𝐷 DHWMA TBE, HWMA TBE, TEWMA TBE and DEWMA TBE charts, respectively, diagnose the first OOC point after patient numbers 2, 2, 10 and 13, but the EWMA TBE chart detects no OOC point. In addition, Figure 7 also indicates that the THWMA TBE chart overall detects 18 OOC signals, while the DHWMA TBE, HWMA TBE, TEWMA TBE and DEWMA TBE charts trigger 17, 17, 9 and 2 OOC signals, respectively.

    Figure 7.  Lower-sided THWMA TBE chart versus lower-sided competing charts for Example 5.2 data with φ=0.2 and δ=0.65.

    Similarly, the upper-sided THWMA TBE, DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts are developed using the design parameters, respectively, given as; (φ,L)=(0.2,0.878), (φ,L)=(0.2,2.608), (φ,L)=(0.2,4.601), (φ,L)=(0.2,2.258), (φ,L)=(0.2,2.548) and (φ,L)=(0.2,3.498). The upper-sided charts are depicted in Figure 8, which indicates that the upper-sided THWMA TBE chart identifies the first OOC point at patient number 7, while the upper-sided DHWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts, respectively, trigger the first OOC point after patient numbers 15, 15, 16 and 15, but the HWMA TBE chart fails to detect any OOC signal. Furthermore, Figure 8 also demonstrates that the THWMA TBE chart diagnoses 14 OOC points in total; however, the DHWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts detect 4, 4, 3 and 3 OOC points, respectively.

    Figure 8.  Upper-sided THWMA TBE chart versus upper-sided competing charts for Example 5.2 data with φ=0.2 and δ=2.17.

    Likewise, the two-sided THWMA TBE, DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts are constructed, which are based on the design parameters; (φ,L)=(0.05,1.196), (φ,L)=(0.05,1.342), (φ,L)=(0.05,2.998), (φ,L)=(0.05,1.724), (φ,L)=(0.05,1.9264) and (φ,L)=(0.05,2.536). The two-sided charts are portrayed in Figure 9, which demonstrates that both two-sided THWMA TBE and DHWMA TBE charts trigger the first OOC point after patient numbers 4 and 7 with downward and upward shift, respectively; however, the two-sided DEWMA TBE chart identifies the first OOC signal after patient number 13 with downward and after patient number 15 with upward shifts, respectively. On the other hand, the two-sided HWMA TBE and EWMA TBE charts diagnose the first OOC point after patient numbers 16 and 15, respectively, with an upward shift only, while the two-sided TEWMA TBE chart is unable to detect the OOC signal. Moreover, in overall detection, Figure 9 also shows that the two-sided THWMA TBE and DHWMA TBE charts detect 15 OOC signals with decreasing shift, whereas the two-sided DEWMA TBE chart trigger 6 OOC points. On the contrary, as the increasing shift is concerned, the two-sided THWMA TBE and DHWMA TBE charts detect 11 OOC points, whereas the two-sided HWMA TBE, DEWMA TBE and EWMA TBE charts identify 3, 4 and 3 OOC points, respectively. The above discussion suggests that, in terms of the ability to diagnose the changes in the process, the THWMA TBE appears to be more sensitive than other charts, i.e., the DHWMA TBE, HWMA TBE, TEWMA TBE, 𝐷DEWMA TBE, and EWMA TBE charts.

    Figure 9.  Two-sided THWMA TBE chart versus two-sided competing charts for Example 5.2 data with φ=0.05 and δ=0.65,2.17.

    This paper proposes triple homogeneously weighted moving average charts to monitor TBE observations following by the gamma distribution. The proposed charts are referred to as THWMA TBE charts. THWMA TBE charts are one- and two-sided charts. The one-sided THWMA TBE charts comprise the lower- and upper-sided THWMA TBE charts, which monitor the process's downward and upward shifts, respectively. Similarly, the two-sided THWMA TBE chart detects both the downward and upward changes in the process simultaneously. The Monte Carlo simulations methodology is used to compute the numerical findings for the performance measures, such as average run length (ARL), standard deviation run length (SDRL), extra quadratic loss (EQL), relative average run length (RARL) and performance comparison index (PCI). These numerical findings are obtained for the THWMA TBE charts, as well as for competing charts including the DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts. A comparison study, based on aforementioned performance measures, is carried out and the THWMA TBE charts are compared to the competing charts. The comparison suggests that the THWMA TBE charts outperform the competing DHWMA TBE, HWMA TBE, TEWMA TBE, DEWMA TBE and EWMA TBE charts. In addition, two real-life data sets, i.e., one representing vertical boring machine failure time, and the other representing the hospital stay time for traumatic brain injury patients, are analyzed to implement the one- and two-sided THWMA TBE charts practically. Finally, it is pointed out that some of the issues may require further research. For instance, the performance of the THWMA TBE charts can be investigated in the case when the scale parameter of the gamma distribution is assumed to be unknown and thus estimated by the reference sample or historical data. Furthermore, the THWMA TBE methodology can be used in cases when TBE observations follow distributions such as Weibull or lognormal.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was supported by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R259), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    The authors reported that they do not have any conflicts of interest.

    Open source data sets are used and references are provided.

    Suppose TiiidExponential(θ) for i=1,2,k and if T=ki=1Ti then T Gamma(k,θ). Let TtiidGamma(k,θ) at time t=1,2, then for the IC process, i.e., θ=θ0,

    E(Tt)=kθ0,Var(Tt)=kθ20andCov(Tt,Ts)=0forallt,s=1,2,andts. (A1)

    For the IC process, the expected value of Tt is given as follows:

    E(Tt)=1t1E(tj=1Tj)=1tE(T1+T2++Tt)=1t[E(T1)+E(T2)++E(Tt)]=kθ0 (A2)

    Similarly, the variance of Tt is given as follows:

    Var(Tt)=1t2Var(tj=1Tj)=1t2[tj=1Var(Tj)+2j<lCov(Tj,Tl)]=1t2[kθ20+kθ20++kθ20]=kθ20t. (A3)

    Likewise, the covariance of Tt and Tt1, i.e., Cov(Tt,Tt1) is given as follows:

    Cov(Tt,Tt1)=Cov(Tt,T1+T2++Tt1t1)=1t1[Cov(Tt,T1)+Cov(Tt,T2)++Cov(Tt,Tt1)]=1t1[0+0++0]=0. (A4)

    The charting statistic of the HWMA TBE chart is presented as follows:

    Ut=φTt+(1φ)Tt1 (B1)

    For a stable process, the mean of Ut is given as follows:

    E(Ut)=E[φTt+(1φ)Tt1]=φE(Tt)+(1φ)E(Tt1)=φkθ0+(1φ)kθ0=kθ0 (cf. Eq. A1 and A2)

    Similarly, the variance of Ut is provided as follows:

    Var(Ut)=Var[φTt+(1φ)Tt1]=φ2Var(Tt)+(1φ)2Var(Tt1)+2φ(1φ)Cov(Tt,Tt1)=φ2kθ20+(1φ)2kθ20t1+2φ(1φ)(0)={φ2+(1φ)2t1}kθ20 (cf. Eq. A1, A3, and A4)

    or

    Var(Ut)=φ2kθ20,ift=1,andVar(Ut)={φ2+(1φ)2t1}kθ20,ift>1.

    The DHWMA TBE statistic, Vt can be defined as follows:

    Vt=φUt+(1φ)Tt1(C1)=φ[φTt+(1φ)Tt1]+(1φ)Tt1=φ2Tt+(1φ2)Tt1(C2) (cf. Eq B1)

    For the IC process, the mean of Vt is defined as follows:

    E(Vt)=E[φ2Tt+(1φ2)Tt1]=φ2E(Tt)+(1φ2)E(Tt1)=φ2kθ0+(1φ2)kθ0=kθ0 (cf. Eq A1 and A2)

    In the same way, the variance of Vt is defined as follows:

    Var(Vt)=Var[φ2Tt+(1φ2)Tt1]=φ4Var(Tt)+(1φ2)2Var(Tt1)+2φ2(1φ2)Cov(Tt,Tt1)=φ4kθ20+(1φ2)2kθ20t1+2φ2(1φ2)(0)={φ4+(1φ2)2t1}kθ20 (cf. Eq A1, A3, and A4)

    or

    Var(Vt)=φ4kθ20,ift=1,andVar(Vt)={φ4+(1φ2)2t1}kθ20,ift>1.

    The plotting statistic of the THWMA TBE chart is defined as follows:

    Wt=φVt+(1φ)Tt1 (D1)
    =φ[φ2Tt+(1φ2)Tt1]+(1φ)Tt1 (cf. Eq C2)
    =φ3Tt+(1φ3)Tt1) (D2)

    The IC mean of Wt is given as follows:

    E(Wt)=E[φ3Tt+(1φ3)Tt1]=φ3E(Tt)+(1φ3)E(Tt1)=φ3kθ0+(1φ3)kθ0=kθ0 (cf. Eq A1 and A2)

    Similarly, the IC variance of Wt is given as follows:

    Var(Wt)=Var[φ3Tt+(1φ3)Tt1]=φ6Var(Tt)+(1φ3)2Var(Tt1)+2φ3(1φ3)Cov(Tt,Tt1)=φ6kθ20+(1φ3)2kθ20t1+2φ3(1φ3)(0)={φ6+(1φ3)2t1}kθ20 (cf. Eq A1, A3, and A4)

    or

    Var(Wt)=φ6kθ20,ift=1,andVar(Wt)={φ6+(1φ3)2t1}kθ20,ift>1.

    Abbreviation 5-HT: 5-hydroxytryptamine; CaMKII: Ca-calmodulin dependent protein kinase II; CNS: central nervous system; CPST: Ca-dependent-phorbol esters sensitive,-and a family of serine/threonine protein kinases; CVDs: cardiovascular diseases; DA: dopamine; DMHF: diabetes-mediated heart failure; E: epinephrine; GLUT-4: glucose transporter type-4; HF: heart failure; IL1-β: interleukin 1 beta; IRS-1: Insulin receptor substrate-1; LV: left ventricle; MD: metabolic disorders; NDA: non-diabetic acidosis; NDH: non-diabetic hyperglycemia; NHCl: ammonium chloride; p38 MAPK: p38-mitogen activated protein kinase; PDB: phorbol 12, 13-dibutyrate; PKC-α: protein kinase C-alpha; T1DM: type I diabetes mellitus; TGF-β: transforming growth factor beta; TNF-α: tumor necrosis factor alpha;
    Acknowledgments



    The author(s) are thankful to University of Madras for their financial support in part, during this study.

    Conflict of interest



    There is no potential conflict of interest relevant to this article.

    [1] Ramakrishnan R, Namasivayam A (1995) Norepinephrine and epinephrine levels in the brain of alloxan diabetic rats. Neurosci Lett 186: 200-202. doi: 10.1016/0304-3940(95)11315-N
    [2] Ramakrishnan R, Suthanthirarajan N, Namasivayam A (1996) Brain dopamine in experimental diabetes. Indian J Physiol Pharmacol 40: 193-195.
    [3] Ramakrishnan R, Nazer MY, Suthanthirarajan N, et al. (2003) An experimental analysis of the catecholamine's in hyperglycemia and acidosis induced rat brain. Int J Immunopathol Pharmacol 16: 233-239. doi: 10.1177/039463200301600308
    [4] Ramakrishnan R, Kempuraj D, Prabhakaran K, et al. (2005) A short-term diabetes induced changes of catecholamine's and p38 MAPK in discrete areas of rat brain. Life Sci 77: 1825-1835. doi: 10.1016/j.lfs.2004.12.038
    [5] Ramakrishnan R (2014)  Brain Biogenic Amines in Diabetes LAP Lambert Academic Publishing, 1-148.
    [6] Ramakrishnan R (2019) Brain signaling systems: A target for treating type 1 diabetes mellitus. Brain Res Bull 152: 191-201. doi: 10.1016/j.brainresbull.2019.07.017
    [7] Shpakov AO, Derkach KV, Berstein LM (2015) Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 1: FSO25. doi: 10.4155/fso.15.23
    [8] Watson AMD, Gould EAM, Penfold SA, et al. (2019) Diabetes and Hypertension Differentially Affect Renal Catecholamines and Renal Reactive Oxygen Species. Front Physiol 10: 309. doi: 10.3389/fphys.2019.00309
    [9] Akalu Y, Birhan A (2020) Peripheral arterial disease and its associated factors among type 2 diabetes mellitus patients at Debre Tabor general hospital, Northwest Ethiopia. J Diabetes Res 9419413.
    [10] Ramakrishnan R, Sheeladevi R, Suthanthirarajan N (2004) PKC-alpha mediated alterations of indoleamine contents in diabetic rat brain. Brain Res Bull 64: 189-194. doi: 10.1016/j.brainresbull.2004.07.002
    [11] Ramakrishnan R, Prabhakaran K, Jayakumar AR, et al. (2005) Involvement of Ca(2+)/calmodulin-dependent protein kinase II in the modulation of indolamines in diabetic and hyperglycemic rats. J Neurosci Res 80: 518-528. doi: 10.1002/jnr.20499
    [12] Ramakrishnan R, Sheeladevi R, Suthanthirarajan N, et al. (2005) An acute hyperglycemia or acidosis-induced changes of indolamines level correlates with PKC-alpha expression in rat brain. Brain Res Bull 67: 46-52. doi: 10.1016/j.brainresbull.2005.06.001
    [13] Ramakrishnan R, Sheeladevi R, Namasivayam A (2009) Regulation of protein kinases and co-regulatory interplay of S-100β between PKAII and PKC-α on serotonin level in diabetic rat brain. J Neurosci Res 87: 246-259. doi: 10.1002/jnr.21833
    [14] Moran C, Phan TG, Chen J, et al. (2013) Brain Atrophy in Type 2 Diabetes: Regional distribution and influence on cognition. Diabetes Care 36: 4036-4042. doi: 10.2337/dc13-0143
    [15] Moran C, Beare R, Wang W, et al. (2019) Type 2 diabetes mellitus, brain atropy, and cognitive decline. Neurology 92. doi: 10.1212/WNL.0000000000006955
    [16] Chen K (2004) Organization of MAO A and MAO B promoters and regulation of gene expression. Neurotoxicology 25: 31-36. doi: 10.1016/S0161-813X(03)00113-X
    [17] Fang C, Wu B, Le NTT, et al. (2018) Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog 14: e1007283. doi: 10.1371/journal.ppat.1007283
    [18] Dewi DAMS, Wiryana M (2019) The interaction of neuroimmunology, neuromodulator, and neurotransmitter with nociceptor and MAPK signaling. J Immunol Res Ther 4: 9.
    [19] Yang X, Guo Z, Lu J, et al. (2017) The Role of MAPK and Dopaminergic Synapse Signaling Pathways in Antidepressant Effect of Electroacupuncture Pretreatment in Chronic Restraint Stress Rats. Evid Based Complement Alternat Med 2357653.
    [20] Elliott G, Juan BG, Jacqueline HF, et al. (2017) Serotonin and catecholamine's in the development and progression of heart valve diseases. Cardiovasc Res 113: 849-857. doi: 10.1093/cvr/cvx092
    [21] Rosano GMC, Vitale C, Seferovic P (2017) Heart Failure in Patients with Diabetes Mellitus. Card Fail Rev 3: 52-55. doi: 10.15420/cfr.2016:20:2
    [22] Packer M (2018) Heart Failure: The Most Important, Preventable, and Treatable Cardiovascular Complication of Type 2 Diabetes. Diabetes Care 41: 11-13. doi: 10.2337/dci17-0052
    [23] Kenny HC, Abel ED (2019) Heart Failure in Type 2 Diabetes Mellitus: Impact of Glucose-Lowering Agents, Heart Failure Therapies, and Novel Therapeutic Strategies. Circ Res 124: 121-141. doi: 10.1161/CIRCRESAHA.118.311371
    [24] De Vecchis R, Cantatrione C, Mazzei D, et al. (2016) Non-Ergot-Dopamine Agonists don't Increase the Risk of Heart Failure in Parkinson's disease Patients: A Meta-Analysis of Randomized Controlled Trials. J Clin Med Res 8: 449-460. doi: 10.14740/jocmr2541e
    [25] Evangelista I, Nuti R, Picchioni T, et al. (2019) Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy. Int J Mol Sci 20: 3264. doi: 10.3390/ijms20133264
    [26] Tank AW, Lee WD (2015) Peripheral and central effects of circulating catecholamine's. Compr Physiol 5: 1-15.
    [27] Duarte AI, Moreira PI, Oliveira CR (2012) Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 384: 1414-1431.
    [28] Zheng J, Wang Y, Han S, et al. (2018) Identification of Protein Kinase C Isoforms Involved in Type 1 Diabetic Encephalopathy in Mice. J Diabetes Res 8431249.
    [29] Das SK, Yuan YF, Li MQ (2018) Specific PKC βII inhibitor: one stone two birds in the treatment of diabetic foot ulcers. Biosci Rep 38: BSR20171459. doi: 10.1042/BSR20171459
    [30] Nokkaew N, Mongkolpathumrat P, Junsiri R, et al. (2019) p38 MAPK Inhibitor (SB203580) and Metformin Reduces Aortic Protein Carbonyl and Inflammation in Non-obese Type 2 Diabetic Rats. Ind J Clin Biochem 1–7.
    [31] Nokkaew N, Sanit J, Mongkolpathumrat P, et al. (2019) Anti-diabetic drug, metformin, and the p38 inhibitor (SB203580) reduces internal organs oxidative stress in non-obese type 2 diabetic rats. J Appl Pharm Sci 9: 12-20.
    [32] Cramer SC, Sur M, Dobkin BH, et al. (2011) Harnessing neuroplasticity for clinical applications. Brain 134: 1591-1609. doi: 10.1093/brain/awr039
    [33] Hui C, Jingli L, Jiao D, et al. (2015) TAK1 inhibition prevents the development of autoimmune diabetes in NOD mice. Sci Rep 5: 14593. doi: 10.1038/srep14593
    [34] Luchsinger JA, Reitz C, Patel B, et al. (2007) Mayeux, Relation of diabetes to mild cognitive impairment. Arch Neurol 64: 570-575. doi: 10.1001/archneur.64.4.570
    [35] Carvalho C, Cardoso S, Correia SC, et al. (2012) Metabolic alterations induced by sucrose intake and Alzheimer's disease promote similar brain mitochondrial abnormalities. Diabetes 61: 1234-1242. doi: 10.2337/db11-1186
    [36] Bell DS (2003) Diabetic cardiomyopathy. Diabetes Care 26: 2949-2951. doi: 10.2337/diacare.26.10.2949
    [37] Tschope C, Walther T, Koniger J, et al. (2004) Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. Faseb J 18: 828-835. doi: 10.1096/fj.03-0736com
    [38] Fischer TA, Ludwig S, Flory E, et al. (2001) Activation of cardiac c-Jun NH(2)-terminal kinases and p38-mitogen-activated protein kinases with abrupt changes in hemodynamic load. Hypertension 37: 1222-1228. doi: 10.1161/01.HYP.37.5.1222
    [39] Zhang GX, Kimura S, Nishiyama A, et al. (2004) ROS during the acute phase of Ang-II hypertension participates in cardiovascular MAPK activation but not vasoconstriction. Hypertension 43: 117-124. doi: 10.1161/01.HYP.0000105110.12667.F8
    [40] Steendijk P, Staal E, Jukema JW, et al. (2001) Hypertonic saline method accurately determines parallel conductance for dual-field conductance catheter. Am J Physiol Heart Circ Physiol 281: H755-H763. doi: 10.1152/ajpheart.2001.281.2.H755
    [41] Steenbergen C (2002) The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; relationship to ischemic preconditioning. Basic Res Cardiol 97: 276-285. doi: 10.1007/s00395-002-0364-9
    [42] Gorog DA, Tanno M, Cao X, et al. (2004) Inhibition of p38 MAPK activity fails to attenuate contractile dysfunction in a mouse model of low-flow ischemia. Cardiovasc Res 61: 123-131. doi: 10.1016/j.cardiores.2003.09.034
    [43] Westermann D, Rutschow S, Van Linthout S, et al. (2006) Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia 49: 2507-2513. doi: 10.1007/s00125-006-0385-2
    [44] Pereira S, Yu WQ, Moore J, et al. (2016) Effect of a p38 MAPK inhibitor on FFA-induced hepatic insulin resistance in-vivo. Nutr Diabetes 6: e210. doi: 10.1038/nutd.2016.11
    [45] Xu J, Li J, Hou R, et al. (2019) JPQ downregulates the P38 MAPK signal pathway in skeletal muscle of diabetic rats and increases the insulin sensitivity of Skeletal Muscle. Int J Clin Exp Med 12: 5130-5137.
    [46] Erik V, Marjut L, Hanna F, et al. (2010) Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol 9: 1-13. doi: 10.1186/1475-2840-9-1
    [47] Wang S, Ding L, Ji H, et al. (2016) The Role of p38 MAPK in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 17: 1037. doi: 10.3390/ijms17071037
    [48] Jantira S, Eakkapote P, Punyanuch A, et al. (2019) Combination of metformin and p38 MAPK inhibitor, SB203580, reduced myocardial ischemia/reperfusion injury in non-obese type 2 diabetic Goto-Kakizaki rats. Exp Ther Med 18: 1701-1714.
    [49] Xie D, Zhao J, Guo R (2020) Sevoflurane pre-conditioning ameliorates diabetic myocardial ischemia/reperfusion injury via differential regulation of p38 and ERK. Sci Rep 10: 23. doi: 10.1038/s41598-019-56897-8
    [50] Gao F, Yue TL, Shi DW, et al. (2002) p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation. Cardiovasc Res 53: 414-422. doi: 10.1016/S0008-6363(01)00488-6
    [51] Dubash AD, Kam CY, Aguado BA, et al. (2016) Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. J Cell Biol 212: 425. doi: 10.1083/jcb.201507018
    [52] Umbarkar P, Singh AP, Gupte M, et al. (2019) Cardiomyocyte SMAD4-Dependent TGF-β Signaling is Essential to Maintain Adult Heart Homeostasis. JACC Basic Transl Sci 4: 41-53. doi: 10.1016/j.jacbts.2018.10.003
    [53] Palojoki E, Saraste A, Eriksson A, et al. (2001) Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 280: H2726-H2731. doi: 10.1152/ajpheart.2001.280.6.H2726
    [54] Dong H, Cui B, Hao X (2019) MicroRNA-22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol Med Rep 20: 735-744.
    [55] Yu L, Li Z, Dong X, et al. (2018) Polydatin Protects Diabetic Heart against Ischemia-Reperfusion Injury via Notch1/Hes1-Mediated Activation of Pten/Akt Signaling. Oxid Med Cell Longev 2018: 2750695.
    [56] Stockand JD, Meszaros JG (2003) Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-Ras A and MAPK1/2 signaling. Am J Physiol Heart Circ Physiol 284: H176-H184. doi: 10.1152/ajpheart.00421.2002
    [57] Koga Y, Tsurumaki H, Aoki-Saito H, et al. (2019) Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signaling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 20: 1346. doi: 10.3390/ijms20061346
    [58] Turner NA, Blythe NM (2019) Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis 6: 27. doi: 10.3390/jcdd6030027
    [59] Thum T, Gross C, Fiedler J, et al. (2008) Micro RNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts. Nature 456: 980-984. doi: 10.1038/nature07511
    [60] Liang Q, Molkentin JD (2003) Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 35: 1385-1394. doi: 10.1016/j.yjmcc.2003.10.001
    [61] Xu Z, Sun J, Tong Q, et al. (2016) The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 17: 2001. doi: 10.3390/ijms17122001
    [62] Ruiz M, Coderre L, Allen BG, et al. (2018) Protecting the heart through MK2 modulation, toward a role in diabetic cardiomyopathy and lipid metabolism. Biochim Biophys Acta Mol Basis Dis 1864: 1914-1922. doi: 10.1016/j.bbadis.2017.07.015
    [63] Liao P, Georgakopoulos D, Kovacs A, et al. (2001) The in-vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci U S A 98: 12283-12288. doi: 10.1073/pnas.211086598
    [64] Jia G, Hill MA, Sowers JR (2018) Diabetic Cardiomyopathy An Update of Mechanisms Contributing to This Clinical Entity. Circ Res 122: 624-638. doi: 10.1161/CIRCRESAHA.117.311586
    [65] Streicher JM, Ren S, Herschman H, et al. (2010) MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res 106: 1434-1443. doi: 10.1161/CIRCRESAHA.109.213199
    [66] Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358: 1370-1380. doi: 10.1056/NEJMra072139
    [67] Vikas K, Kumar A, Rahul S, et al. (2019) Chronic Pressure Overload Results in Deficiency of Mitochondrial Membrane Transporter ABCB7 Which Contributes to Iron Overload, Mitochondrial Dysfunction, Metabolic Shift and Worsens Cardiac Function. Sci Rep 9: 13170. doi: 10.1038/s41598-019-49666-0
    [68] Takeda N, Manabe I, Uchino Y, et al. (2010) Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 120: 254-265. doi: 10.1172/JCI40295
    [69] Small EM (2012) The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 5: 794-804. doi: 10.1007/s12265-012-9397-0
    [70] Zent J, Guo LW (2018) Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem 49: 848-868. doi: 10.1159/000493217
    [71] Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74: 184-195. doi: 10.1016/j.cardiores.2006.10.002
    [72] Ieda M, Tsuchihashi T, Ivey KN, et al. (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16: 233-244. doi: 10.1016/j.devcel.2008.12.007
    [73] Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105: 1164-1176. doi: 10.1161/CIRCRESAHA.109.209809
    [74] Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106: 47-57. doi: 10.1161/CIRCRESAHA.109.207456
    [75] Martin ML, Blaxall BC (2012) Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends? J Cardiovasc Transl Res 5: 768-782. doi: 10.1007/s12265-012-9404-5
    [76] Furtado MB, Costa MW, Pranoto EA, et al. (2014) Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res 114: 1422-1434. doi: 10.1161/CIRCRESAHA.114.302530
    [77] Miyazaki T, Haraguchi S, Kim-Kaneyama JR, et al. (2019) Endothelial calpain systems orchestrate myofibroblast differentiation during wound healing. FASEB J 33: fj.201800588RR. doi: 10.1096/fj.201800588RR
    [78] Zhang ZY, Wang N, Qian LL, et al. (2020) Glucose fluctuations promote aortic fibrosis through the ROS/p38 MAPK/Runx2 signaling pathway. J Vasc Res 57: 24-33. doi: 10.1159/000503608
    [79] Nian M, Lee P, Khaper N, et al. (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94: 1543-1553. doi: 10.1161/01.RES.0000130526.20854.fa
    [80] Lee MMY, McMurray JJV, Lorenzo-Almorós A, et al. (2016) Diabetic cardiomyopathy. Heart 105.
    [81] Kocabaş U, Yılmaz Ö, Kurtoğlu V (2019) Diabetic cardiomyopathy: acute and reversible left ventricular systolic dysfunction due to cardiotoxicity of hyperglycaemic hyperosmolar state—a case report. Eur Heart J Case Rep 3: ytz049. doi: 10.1093/ehjcr/ytz049
    [82] Gao M, Wang X, Zhang X, et al. (2015) Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. J Immunol 195: 672-682. doi: 10.4049/jimmunol.1403155
    [83] Mann DL (2003) Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 65: 81-101. doi: 10.1146/annurev.physiol.65.092101.142249
    [84] Fiordelisi A, Iaccarino G, Morisco C, et al. (2019) NFkappaB is a Key Player in the Crosstalk between Inflammation and Cardiovascular Diseases. Int J Mol Sci 20: 1599. doi: 10.3390/ijms20071599
    [85] Frati G, Schirone L, Chimenti I, et al. (2017) An overview of the inflammatory signaling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 113: 378-388. doi: 10.1093/cvr/cvx011
    [86] Sharov VG, Todor A, Suzuki G, et al. (2003) Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D1. Eur J Heart Fail 5: 121-129. doi: 10.1016/S1388-9842(02)00254-4
    [87] Kaiser RA, Bueno OF, Lips DJ, et al. (2004) Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in-vivo. J Biol Chem 279: 15524-15530. doi: 10.1074/jbc.M313717200
    [88] Wakeman D, Guo J, Santos JA, et al. (2012) p38 MAPK regulates Bax activity and apoptosis in enterocytes at baseline and after intestinal resection. Am J Physiol Gastrointest Liver Physiol 302: G997-1005. doi: 10.1152/ajpgi.00485.2011
    [89] Xu Q, Fang H, Zhao L, et al. (2019) Mechano growth factor attenuates mechanical overload-induced nucleus pulposus cell apoptosis through inhibiting the p38 MAPK pathway. Biosci Rep 39: BSR20182462. doi: 10.1042/BSR20182462
    [90] Aggeli IK, Beis I, Gaitanaki C (2008) Oxidative stress and calpain inhibition induces alpha B-crystallin phosphorylation via p38 MAPK and calcium signaling pathways in H9c2 cells. Cell Signal 20: 1292-1302. doi: 10.1016/j.cellsig.2008.02.019
    [91] Mitra A, Ray A, Datta R, et al. (2014) Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of alpha-crystallin B and Nrf2. J Cell Physiol 229: 1272-1282. doi: 10.1002/jcp.24565
    [92] Kim JK, Pedram A, Razandi M, et al. (2006) Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 281: 6760-6767. doi: 10.1074/jbc.M511024200
    [93] Liu H, Pedram A, Kim JK (2011) Oestrogen prevents cardiomyocyte apoptosis by suppressing p38alpha-mediated activation of p53 and by down-regulating p53 inhibition on p38beta. Cardiovasc Res 89: 119-128. doi: 10.1093/cvr/cvq265
    [94] Wu H, Wang G, Li S, et al. (2015) TNF-α- Mediated-p38-Dependent Signaling Pathway Contributes to Myocyte Apoptosis in Rats Subjected to Surgical Trauma. Cell Physiol Biochem 35: 1454-1466. doi: 10.1159/000373965
    [95] Zuo G, Ren X, Qian X, et al. (2019) Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. J Cell Physiol 234: 1925-1936. doi: 10.1002/jcp.27070
    [96] Li Z, Ma JY, Kerr I, et al. (2006) Selective inhibition of p38alpha MAPK improves cardiac function and reduces myocardial apoptosis in rat model of myocardial injury. Am J Physiol Heart Circ Physiol 291: H1972-H1977. doi: 10.1152/ajpheart.00043.2006
    [97] Adhikary L, Chow F, Nikolic-Paterson DJ, et al. (2004) Abnormal p38 mitogen-activated protein kinase signaling in human and experimental diabetic nephropathy. Diabetologia 47: 1210-1222. doi: 10.1007/s00125-004-1437-0
    [98] Kojonazarov B, Novoyatleva T, Boehm M, et al. (2017) p38 MAPK Inhibition Improves Heart Function in Pressure-Loaded Right Ventricular Hypertrophy. Am J Respir Cell Mol Biol 57: 603-614. doi: 10.1165/rcmb.2016-0374OC
    [99] Seeger FH, Sedding D, Langheinrich AC, et al. (2010) Inhibition of the p38 MAP kinase in-vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res Cardiol 105: 389-397. doi: 10.1007/s00395-009-0072-9
    [100] Nediani C, Borchi E, Giordano C, et al. (2007) NADPH oxidase-dependent redox signaling in human heart failure: relationship between the left and right ventricle. J Mol Cell Cardiol 42: 826-834. doi: 10.1016/j.yjmcc.2007.01.009
    [101] Newby LK, Marber MS, Melloni C, et al. (2014) SOLSTICE Investigators. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet 384: 1187-1195. doi: 10.1016/S0140-6736(14)60417-7
    [102] Halpern CH, Tekriwal A, Santollo J, et al. (2013) Amelioration of binge eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. J Neurosci 33: 7122-7129. doi: 10.1523/JNEUROSCI.3237-12.2013
    [103] Ter Horst KW, Lammers NM, Trinko R, et al. (2018) Striatal dopamine regulates systemic glucose metabolism in humans and mice. Sci Transl Med 10: eaar3752. doi: 10.1126/scitranslmed.aar3752
    [104] Figee M, De Koning P, Klaassen S, et al. (2014) Deep brain stimulation induces striatal dopamine release in obsessive-compulsive disorder. Biol Psychiatry 75: 647-652. doi: 10.1016/j.biopsych.2013.06.021
    [105] Boot E, Booij J, Hasler G, et al. (2008) AMPT-induced monoamine depletion in humans: Evaluation of two alternative (123I) IBZM SPECT procedures. Eur J Nucl Med Mol Imaging 35: 1350-1356. doi: 10.1007/s00259-008-0739-8
    [106] Zeng C, Zhang M, Asico LD, et al. (2007) The dopaminergic system in hypertension. Clin Sci 112: 583-597. doi: 10.1042/CS20070018
    [107] Channabasappa S, Sanjay K (2011) Bromocriptine in type 2 diabetes mellitus. Indian J Endocrinol Metab 15: S17-S24. doi: 10.4103/2230-8210.83058
    [108] Reda E, Hassaneen S, El-Abhar HS (2018) Novel Trajectories of Bromocriptine Antidiabetic Action: Leptin-IL-6/ JAK2/p-STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-γ/Adiponectin, Nrf2/PARP-1, and GLP-1. Front Pharmacol 9: 771. doi: 10.3389/fphar.2018.00771
    [109] Leicht M, Briest W, Zimmer HG (2003) Regulation of norepinephrine-induced proliferation in cardiac fibroblasts by interleukin-6 and p42/p44 mitogen activated protein kinase. Mol Cell Biochem 243: 65-72. doi: 10.1023/A:1021655023870
    [110] Lubahn CL, Lorton D, Schaller JA, et al. (2014) Targeting a-and b-adrenergic receptors differentially shift Th1, Th2, and inflammatory cytokine profiles in immune organs to attenuate adjuvant arthritis. Front Immunol 5: 346. doi: 10.3389/fimmu.2014.00346
    [111] Moliner P, Enjuanes C, Tajes M, et al. (2019) Association Between Norepinephrine Levels and Abnormal Iron Status in Patients With Chronic Heart Failure: Is Iron Deficiency More Than a Comorbidity? J Am Heart Assoc 8: e010887. doi: 10.1161/JAHA.118.010887
    [112] Zhang P, Li Y, Nie K, et al. (2018) Hypotension and bradycardia, a serious adverse effect of piribedil, a case report and literature review. BMC Neurol 18: 221. doi: 10.1186/s12883-018-1230-1
    [113] Michael E, Shuqin L, Nicholas C, et al. (2019) 1793-P: Dopamine D1 plus D2 Receptor Coactivation Ameliorates Metabolic Syndrome (MS) and Nonalcoholic Fatty Liver Disease (NAFLD) in Mice. Diabetes 68.
    [114] Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11: 113-133. doi: 10.1016/j.smrv.2006.08.003
    [115] Wang X, Wang ZB, Luo C, et al. (2019) The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J Cancer 10: 1622-1632. doi: 10.7150/jca.27780
    [116] Chávez-Castillo M, Ortega Á, Nava M, et al. (2018) Metabolic risk in depression and treatment with selective serotonin reuptake inhibitors: are the metabolic syndrome and an increase in cardiovascular risk unavoidable? Vessel Plus 2: 6. doi: 10.20517/2574-1209.2018.02
    [117] Fortier JH, Pizzarotti B, Shaw RE, et al. (2019) Drug-associated valvular heart diseases and serotonin-related pathways: a meta-analysis. Heart 105: 1140-1148.
    [118] Mawe GM, Hoffman JM (2013) Serotonin signaling in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 10: 473-486. doi: 10.1038/nrgastro.2013.105
    [119] Selim AM, Sarswat N, Kelesidis I, et al. (2017) Plasma Serotonin in Heart Failure: Possible Marker and Potential Treatment Target. Heart Lung Circ 26: 442-449. doi: 10.1016/j.hlc.2016.08.003
    [120] Guo S, Chen L, Cheng S, et al. (2019) Comparative cardiovascular safety of selective serotonin reuptake inhibitors (SSRIs) among Chinese senile depression patients: A network meta-analysis of randomized controlled trials. Medicine 98: e15786. doi: 10.1097/MD.0000000000015786
    [121] Lancellotti P, Nchimi A, Hego A, et al. (2015) High-dose oral intake of serotonin induces valvular heart disease in rabbits. Int J Cardiol 197: 72-75. doi: 10.1016/j.ijcard.2015.06.035
    [122] Seferovic PM, Ponikowski P, Anker SD, et al. (2019) Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 21: 1169-1186. doi: 10.1002/ejhf.1531
    [123] Shimizu Y, Minatoguchi S, Hashimoto K, et al. (2002) The role of serotonin in ischemic cellular damage and the infarct size-reducing effect of sarpogrelate, a 5-hydroxytryptamine-2 receptor blocker, in rabbit hearts. J Am Coll Cardiol 40: 1347-1355. doi: 10.1016/S0735-1097(02)02158-7
    [124] Chen YG, Mathews CE, Driver JP (2018) The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol 9: 51. doi: 10.3389/fendo.2018.00051
    [125] Pei Y, Cui F, Du X, et al. (2019) Antioxidative nanofullerol inhibits macrophage activation and development of osteoarthritis in rats. Int J Nanomedicine 14: 4145-4155. doi: 10.2147/IJN.S202466
    [126] Kullmann S, Heni M, Hallschmid M, et al. (2016) Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev 96: 169-209. doi: 10.1152/physrev.00032.2015
    [127] Grillo CA, Woodruff JL, Macht VA, et al. (2019) Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp Neurol 318: 71-77. doi: 10.1016/j.expneurol.2019.04.012
    [128] Nakabeppu Y (2019) Origins of brain insulin and its function. In: Diabetes Mellitus. Advances in Experimental Medicine and Biology. Adv Exp Med Biol 1128: 1-11. doi: 10.1007/978-981-13-3540-2_1
    [129] Bode BW, Garg SK (2016) The Emerging Role of Adjunctive Noninsulin Anti-hyperglycemic Therapy in the Management of Type 1 Diabetes. Endocr Pract 22: 220-230. doi: 10.4158/EP15869.RA
    [130] Otto-Buczkowska E, Nowowiejska B, Jarosz-Chobot P, et al. (2009) Could oral antidiabetic agents be useful in the management of different types of diabetes and syndromes of insulin resistance in children and adolescents? Przegl Lek 66: 388-393.
    [131] Otto-Buczkowska E, Natalia J (2018) Pharmacological Treatment in Diabetes Mellitus Type 1 – Insulin and What Else? Int J Endocrinol Metab 16: e13008.
    [132] Grizzanti J, Corrigan R, Casadesusa G (2018) Neuroprotective Effects of Amylin Analogues on Alzheimer's Disease Pathogenesis and Cognition. J Alzheimers Dis 66: 11-23. doi: 10.3233/JAD-180433
    [133] Alicic RZ, Neumiller JJ, Johnson EJ, et al. (2019) Sodium-Glucose Cotransporter 2 Inhibition and Diabetic Kidney Disease. Diabetes 68: 248-257. doi: 10.2337/dbi18-0007
    [134] Mullane K, Williams M (2019) Preclinical Models of Alzheimer's Disease: Relevance and Translational Validity. Curr Protoc Pharmacol 84: e57. doi: 10.1002/cpph.57
    [135] Antal Z, Baker JC, Smith C, et al. (2012) Beyond HLA-A*0201: new HLA-transgenic non-obese diabetic mouse models of type 1 diabetes identify the insulin C-peptide as a rich source of CD8+T cell epitopes. J Immunol 188: 5766-5775. doi: 10.4049/jimmunol.1102930
    [136] Serr P, Santamaria P (2019) Antigen-specific therapeutic approaches for autoimmunity. Nature Biotechnol 37: 238-251. doi: 10.1038/s41587-019-0015-4
    [137] Singer-Englar T, Barlow G, Mathur R (2018) Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol 13: 3-15. doi: 10.1080/17474124.2019.1543023
    [138] Siljandera H, Honkanenb J, Knipa M (2019) Microbiome and type 1 diabetes. Ebiomedicine 46: 512-521. doi: 10.1016/j.ebiom.2019.06.031
    [139] Escós A, Risco A, Alsina-Beauchamp D, et al. (2016) p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy. Front Cell Dev Biol 4: 31. doi: 10.3389/fcell.2016.00031
    [140] Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773: 1358-1375. doi: 10.1016/j.bbamcr.2007.03.010
    [141] Beardmore VA, Hinton HJ, Eftychi C, et al. (2005) Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25: 10454-10464. doi: 10.1128/MCB.25.23.10454-10464.2005
    [142] Remy G, Risco AM, Iñesta-Vaquera FA, et al. (2010) Differential activation of p38 MAPK isoforms by MKK6 and MKK3. Cell Signal 22: 660-667. doi: 10.1016/j.cellsig.2009.11.020
    [143] Jiang Y, Gram H, Zhao M, et al. (1997) Characterization of the structure and function of the fourth member of p38 group mitogen activated protein kinases, p38δJ Biol Chem 272: 30122-30128. doi: 10.1074/jbc.272.48.30122
    [144] Sumara G, Formentini I, Collinsetal S (2009) Regulation of PKD by the MAPK p38 delta in insulin secretion and glucose homeostasis. Cell 136: 235-248. doi: 10.1016/j.cell.2008.11.018
    [145] Lee JC, Laydon JT, McDonnelletal PC (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739-746. doi: 10.1038/372739a0
    [146] Jiang Y, Chen C, Li Z, et al. (1996) Characterization of the structure and function of a new mitogen activated protein kinase (p38β). J Biol Chem 271: 17920-17926. doi: 10.1074/jbc.271.30.17920
    [147] Cuenda A, Rouse J, Dozaetal YN (1995) SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Letters 364: 229-233. doi: 10.1016/0014-5793(95)00357-F
    [148] Ramachandra CJ, Mehta A, Wong P, et al. (2016) ErbB4 Activated p38gamma MAPK isoform mediates early cardiogenesis through NKx2.5 in human pluripotent stem cells. Stem Cells 34: 288-298. doi: 10.1002/stem.2223
    [149] González-Terán B, López JA, Rodríguez E, et al. (2016) p38gamma and delta promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat Commun 7: 10477. doi: 10.1038/ncomms10477
    [150] Cuevas BD, Abell AN, Johnson GL (2007) Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene 26: 3159-3171. doi: 10.1038/sj.onc.1210409
    [151] Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773: 1358-1375. doi: 10.1016/j.bbamcr.2007.03.010
    [152] Chang CI, Xu BE, Akella R, et al. (2002) Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell 9: 1241-1249. doi: 10.1016/S1097-2765(02)00525-7
    [153] Biondi RM, Nebreda AR (2003) Signaling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372: 1-13. doi: 10.1042/bj20021641
    [154] Enslen H, Brancho DM, Davis RJ (2000) Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J 19: 1301-1311. doi: 10.1093/emboj/19.6.1301
    [155] Tomlinson DR (1999) Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 42: 1271-1281. doi: 10.1007/s001250051439
    [156] Begum N, Ragolia L (2000) High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol 278: C81-C91. doi: 10.1152/ajpcell.2000.278.1.C81
    [157] Chen S, Qiong Y, Gardner DG (2006) Aroleforp38mitogen-activatedproteinkinase and c-Myc inendothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension 47: 252-258. doi: 10.1161/01.HYP.0000198424.93598.6b
    [158] Natarajan R, Scott S, Bai W, et al. (1999) Angiotensin II signaling in vascular smoothmuscle cells under high glucose conditions. Hypertension 33: 378-384. doi: 10.1161/01.HYP.33.1.378
    [159] Igarashi M, Wakasaki H, Takahara N, et al. (1999) Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest 103: 185-195. doi: 10.1172/JCI3326
    [160] Dorenkamp M, Riad AS, Stiehl S, et al. (2005) Protection against oxidative stress indiabetic rats: role of angiotensinAT1 receptor and beta 1-adrenoceptor antagonism. Eur J Pharmacol 520: 179-187. doi: 10.1016/j.ejphar.2005.07.020
    [161] Begum N, Ragolia L (2000) High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol 278: C81-C91. doi: 10.1152/ajpcell.2000.278.1.C81
    [162] Chen S, Qiong Y, Gardner DG (2006) A role for p38 mitogen-activated protein kinase and c-Myc in endothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension 47: 252-258. doi: 10.1161/01.HYP.0000198424.93598.6b
    [163] Cain BS, Meldrum DR, Meng X, et al. (1999) p38 MAPK inhibition decreases TNF-α production and enhances post ischemic human myocardial function. J Surg Res 83: 7-12. doi: 10.1006/jsre.1998.5548
    [164] Communal C, Colucci WS, Singh K (2000) p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes againstβ-adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem 275: 19395-19400. doi: 10.1074/jbc.M910471199
    [165] Liang Q, Molkentin JD (2003) Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 35: 1385-1394. doi: 10.1016/j.yjmcc.2003.10.001
    [166] Li M, Georgakopoulos D, Luetal G (2005) p38MAPkinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation 111: 2494-2502. doi: 10.1161/01.CIR.0000165117.71483.0C
    [167] Hu SS, Kong LZ, Gaoetal RL (2010) Outline of the report on cardiovascular disease in China. Biomed Environ Sci 25: 251-256.
    [168] Yang HS, Zheng QY, Duetal YY (2016) Influence of different acupoint combinations on immediate effect of surface electromyography of patients with cervical spondylosis. World J Acupunct Moxibustion 26: 7-13. doi: 10.1016/S1003-5257(17)30056-9
    [169] Pan YX, Chen KF, Lin YX, et al. (2013) Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase tumor necrosis factor-alpha. J Clin Neurosci 20: 726-730. doi: 10.1016/j.jocn.2012.09.012
    [170] Wu S, Li J, Hong YQ, et al. (2012) Efects of electroacupuncture at Neiguan (PC 6) on p38 MAPK signaling pathway in rats with cardiac hypertrophy. Chin Acupunct Moxibustion 32: 145-148.
    [171] Du Y, Tang J, Li G, et al. (2010) Effects of p38 MAPK Inhibition on Early Stages of Diabetic Retinopathy and Sensory Nerve Function. Invest Ophthalmol Vis Sci 51: 2158-2164. doi: 10.1167/iovs.09-3674
    [172] Wang S, Ding L, Zheng Y, et al. (2016) The role of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci 17: 1037. doi: 10.3390/ijms17071037
    [173] Muslin AJ (2008) MAPK signaling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clin Sci (Lond) 115: 203-218. doi: 10.1042/CS20070430
    [174] Radi ZA, Marusak RA, Morris DL (2009) Species comparison of the role of p38 MAPK in the female reproductive system. J Toxicol Pathol 22: 109-124. doi: 10.1293/tox.22.109
  • This article has been cited by:

    1. Peile Chen, Chuan He, Bing Liu, Jiujun Zhang, Multivariate time between events control charts for Gumbel's bivariate exponential distribution with estimated parameters, 2024, 94, 0094-9655, 3599, 10.1080/00949655.2024.2399171
    2. Jean-Claude Malela-Majika, Schalk William Human, Kashinath Chatterjee, Homogeneously Weighted Moving Average Control Charts: Overview, Controversies, and New Directions, 2024, 12, 2227-7390, 637, 10.3390/math12050637
    3. Kang Heng Lim, Francis Ngoc Hoang Long Nguyen, Ronald Wen Li Cheong, Xaver Ghim Yong Tan, Yogeswary Pasupathy, Ser Chye Toh, Marcus Eng Hock Ong, Sean Shao Wei Lam, Enhancing Emergency Department Management: A Data-Driven Approach to Detect and Predict Surge Persistence, 2024, 12, 2227-9032, 1751, 10.3390/healthcare12171751
    4. Peile Chen, Amitava Mukherjee, Wei Yang, Jiujun Zhang, Some new real-time monitoring schemes for Gumbel’s bivariate exponential time between the events, 2025, 200, 03608352, 110759, 10.1016/j.cie.2024.110759
    5. Kotchaporn Karoon, Yupaporn Areepong, The Efficiency of the New Extended EWMA Control Chart for Detecting Changes Under an Autoregressive Model and Its Application, 2025, 17, 2073-8994, 104, 10.3390/sym17010104
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6117) PDF downloads(100) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog