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Abstract: Serotonin or 5-HT, DA and E, all monoamine neurotransmitters, work also as hormones, 

plays crucial role in the brain and body. This 5-HT, DA and E increased significantly, and regulated 

by activated p38 MAPK in type I diabetes mellitus (T1DM), and that has been shown to involve in 

metabolic disorders as well as cardiovascular diseases, leading to heart failure. Even though these 

molecules are being considered for clinical trials in the treatments of various cardiovascular diseases, 

the synergistic-pathophysiological mechanisms of these p38 MAPK and neurotransmitters on target 

molecules, cells and tissues in heart failure are not completely understood in T1DM. However, 

T1DM results in metabolic dysregulation, impairment/loss of insulin secretion, hyperglycemia and 

acidosis. These changes are widely reported to be involved in abnormal functions of receptors, which 

provide binding site for signaling molecules. We are constantly focusing on the mechanisms of 

alloxan-induced-diabetes, glucose-induced-hyperglycemia and ammonium chloride-induced-acidosis 

(non-diabetic hyperglycemia (NDH) and non-diabetic acidosis (NDA), respectively) on the levels 

and functions of neurotransmitters and p38 MAPK. Here, in this review, we are proposing the 

mechanisms of insulin and/or some of the pharmacological agents on the level and functions of p38 

MAPK and neurotransmitters in various areas of rat brain under diabetic or its associated conditions, 

which leads to cardiovascular dysfunctions. Targeting these molecules/pathways may be useful in 

the treatment of cardiovascular diseases and diabetes mediated heart failure.  

Keywords: diabetes; non-diabetic hyperglycemia; non-diabetic acidosis; p38 MAPK; 
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Abbreviations: 5-HT: 5-hydroxytryptamine; CaMKII: Ca
2+

-calmodulin dependent protein kinase II; 

CNS: central nervous system; CPST: Ca
2+

-dependent-phorbol esters sensitive,-and a family of 

serine/threonine protein kinases; CVDs: cardiovascular diseases; DA: dopamine; DMHF: diabetes-

mediated heart failure; E: epinephrine; GLUT-4: glucose transporter type-4; HF: heart failure; IL1-β: 

interleukin 1 beta; IRS-1: Insulin receptor substrate-1; LV: left ventricle; MD: metabolic disorders; 

NDA: non-diabetic acidosis; NDH: non-diabetic hyperglycemia; NH4Cl: ammonium chloride; p38 

MAPK: p38-mitogen activated protein kinase; PDB: phorbol 12, 13-dibutyrate; PKC-α: protein 

kinase C-alpha; T1DM: type I diabetes mellitus; TGF-β: transforming growth factor beta; TNF-α: 

tumor necrosis factor alpha 

1. Introduction 

Metabolic disorders (MD), including T1DM and type 2 diabetes mellitus (TIIDM) affect 

approximately about 35% of the world populations. Autoimmune dysfunction is the foremost major 

mechanism that produces T1DM by destroying β-cells, which produces insulin and maintains 

homeostasis of blood glucose levels all over the body. Insufficient or loss of insulin secretion leads 

to hyperglycemia as well as acidosis. These metabolic and/or diabetic disorders are associated with 

the alterations of either or both catecholamine’s and protein kinases [1–9] particularly in T1DM. 

Dysfunction of neurotransmitter is the most and well documented effects of diabetes mellitus on 

central nervous system (CNS) [5–13] and accompanied by a number of CNS abnormalities including 

neuronal atrophy and axonal degenerations [7,14,15]. 

We have shown that the Ca
2+

-dependent-phorbol esters sensitive,-and a family of 

serine/threonine (CPST) protein kinases such as protein kinase C-alpha (PKC-α) [5,6,10], 

Ca
2+

/calmodulin-dependent protein kinase II (CaMKII) [5,6,11] and p38-mitogen activated protein 

kinase (p38 MAPK) [4–6,13] were altered during T1DM, NDH and NDA condition(s) (Figure 1), 

correlating with the changes of neurotransmitters in discrete areas of brain. These changes were 

reversed to normal either after insulin or with respective pharmacological-suppressor’s treatments. 

MAPK activates/mediates many of the cellular and molecular functions in response to CPST-induced 

signals, including neurotransmitters synthesis and release [7,9,16–19]. 

p38 MAPK and neurotransmitters [5–7,17–19] plays crucial roles on various molecules and 

triggers its functions and ultimately leads to various complications under T1DM. Thus, it is very 

important to maintain these molecules under control either by insulin or any pharmacological agents 

which regulates these elements to prevent the progress of diabetic complications, including diabetes-

mediated heart failure (DMHF).  

In this review, we are discussing p38 MAPK, 5-hydroxytryptamine (5-HT), dopamine (DA) and 

epinephrine (E) in seven areas of brain viz. Striatum (ST), Hippocampus (HC), Hypothalamus (HT), 

Midbrain (MB), Pons Medulla (PM), Cerebellum (CB) and Cerebral Cortex (CCX). Studies have shown 

that the alterations of p38 MAPK correlated with the changes of DA, E and 5-HT [4–7,13,17–19] in 

some specific areas of brain, suggesting that p38 MAPK may regulate the level and functions of DA, 

E and 5-HT, in respective areas, under diabetic condition. The pharmacological-suppressor of p38 

MAPK as well as insulin normalized these changes.  
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Hyperglycemia and/or acidosis mediated CVDs are the major cause of death in DMHF [20–23]. 

Insulin regulates glucose homeostasis and mediates several physiological functions. However, in 

contrast, the complete or significant reversal of these signal molecules by sufficient insulin or 

pharmacological agents has also shown to affect some of the biochemical as well as physiological 

processes in the CNS and DMHF [21–24]. Hence, complete understanding of these mechanisms 

would potentially provide new targets in the treatment of DMHF. 

 

Figure 1. The impact of p38 MAPK, 5-HT/ DA/E in DMHF. T1DM (A) with metabolic 

dysregulation, loss of insulin secretion/action, hyperglycemia and acidosis (D), as well as 

NDH and/or NDA induced by daily repeated glucose (B) or NH4Cl (C) injections, 

respectively, to maintain the hyperglycemia or acidosis (blood acetoacetate, pH, HCO3 

and pCO2) levels (D), which mimics more closely to diabetic animals, to check if there is 

any difference between these groups. As shown in the figure, both T1DM and 

NDH/NDA groups, activates brain DA, E and 5-HT in ST, HC, HT, MB, PM, CB and 

CCX (E). p38 MAPK also synergistically-activated in ST, HC, HT and PM (F) and 

regulated DA in ST, HC and PM (G) as well as E in HT (H) (T1DM) and also regulated 

5-HT in PM under NDH/NDA (I) condition(s). Inadequate insulin secretion or action, 

oxidative stress, metabolic or mitochondrial dysfunction, formation of glycation end 

products, increase in neurotransmitters as well as p38 MAPK, are all shown to be 

involved in this complex mechanisms. Moreover, the activated MAPK pathway leads to 

activation of p38 MAPK, which plays significant roles in insulitis as well as the 

activation of neurotransmitters. All these develop neurodegeneration and atrophy and 

that leads to several neurological disorders including CVDs and heart failure. 
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2. Signaling systems and its functions in diabetes 

Among all, the loss or inadequate β-cell secretion of insulin develops variety of risk factors 

including hyperglycemia, which in turn leads to obesity, increased blood triglycerides, acidosis. All 

these changes either alone or in combination with other molecule(s) develops functional and 

structural changes of brain and neurodegeneration, [7,14,15] leading to abnormal functions of CNS 

as well as CVDs including cardiomyopathy [25] and DMHF [21–24,26]. 

Uncontrolled diabetes has shown to develop atrophy, particularly in the brain regions [7,14,15]. 

The understandings of underlying molecular mechanisms involved in the development of atrophy 

and chronic cellular damage in the CNS or DMHF are limited. However, there are several reports 

that points in the same direction that an over or less insulin secretion and its abnormal biological 

functions, metabolic or mitochondrial dysfunction, oxidative stress, formation of glycation end 

products, increase in neurotransmitters [9,20–23,26] and activated protein kinase C (PKC) [27–29] 

or p38 MAPK [24,30,31] are all shown to be involved in this complex mechanisms.  

2.1. Mechanistic and functional view of p38 MAPK isoforms on neurotransmitter signaling in 

T1DM 

p38 MAPKs are one of the main signal transduction mechanisms and the activation of which 

results in several cellular and molecular functions [139]. So far there are four p38 MAPK isoforms 

were characterized in mammalian cells: (1) p38α MAPK14, (2) p38β MAPK11, (3) p38γ MAPK12, 

and (4) p38δ MAPK13 [140] encoded by different genes. p38α was the first and most studied 

isoform, which refers to p38 MAPK in the literature. All of them are widely expressed in variety of 

cells and tissues at different concentrations [141]. 

p38 MAPKs are strongly activated by various stimulants including T1DM [4–6,13]. All p38 

MAPKs are CPST, which catalyze the reversible phosphorylation of proteins. The activation of these 

p38 MAPK isoforms (p38α, p38γ, p38β, and p38δ) are regulated by the selective and synchronized 

action of two kinases such as MKK3 and MKK6 [142]. These two kinases are in turn activated by a 

MAPK kinase kinase (MAP3K) upon phosphorylation of Serine/Threonine residues [140]. Based on 

sequence homology, substrate specificities, and sensitivity to chemical inhibitors, the p38 MAPK 

family can be further divided into two subsets, p38α/p38β and p38γ/p38δ. However, all these 

isoforms shares highly similar protein sequences with each other. p38  MAPK shares 61%, 59%, 

and 65% amino acid identity to p38 ,- ,and –  MAPKs, respectively [143]. 

Expression level of p38  MAPK directly proportional to pancreatic- -cell death and are 

afforded protection against insulin resistance induced by a high-fat diet, implicating a role in the 

pathogenesis of diabetes mellitus [144]. p38  and p38  MAPK signaling, functions, and substrates 

are highly sensitive to inhibition by SB203580, SB202190, and L-167307 [145–147]. These 

compounds ultimately lead to reversal of T1DM mediated alterations of neurotransmitters  [13] 

as well as CVD including heart failure [6]. Cardiomyocyte formation was impaired in p38γ 

MAPK knockdown mice [148] and both p38γ and p38δ promote cardiac hypertrophy via 

mTOR pathway [149]. Studies have shown that the alterations of p38 MAPK correlated with the 

changes of DA, E and 5-HT [4–7,13,17–19] in some specific areas of brain, suggesting that p38 

MAPK may regulate the level and functions of DA, E and 5-HT, in respective areas, under diabetic 
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condition (Figure 1 & 2). The pharmacological-suppressor of p38 MAPK normalized these changes 

suggesting a role for p38 MAPKs under diabetic conditions.  

 

Figure 2. T1DM-induced activation of p38 MAPK cascade and neurotransmitters. As 

shown, MEK1/2, ERK & JNK (MAPK) are all activated synergistically under diabetic 

condition and that these leads to the activation of p38α MAPK & p38β MAPK (isoforms) 

as well as p38 MAPK. On the other hand, isoform itself activates p38 MAPK or vice 

versa. Activated MAPK signal pathway selectively induces the activation of 

mitochondrial enzyme monoamine oxidase B (MAO B) expression and this increases the 

levels of neurotransmitters including DA, E, and 5-HT. However, 5-HT is also induced 

by p38 MAPK via S-100B/SERT. These neurotransmitters have shown to be involved in 

the regulation of CVDs and DMHF either alone or in combination. 

2.2. Role of p38 MAPK and neurotransmitters in DMHF 

Hyperglycemia induced activation of PKC triggers the activation of p38 MAPK, which plays 

significant roles in insulitis [28,32,33]. Prolonged hyperglycemic and acidotic conditions results in insulin 

or drug resistance, and activation of p38 MAPK and regulation of monoamines [4,7,9,13,17–19,28,29] 

(Figure 1) in some specific areas of brain. Therefore, these factors either alone or in combination 

with one or more compounds may develop neurodegeneration, functional and structural changes of 

brain [7,25,34,35], culminating in neurotransmitters and CNS dysfunction [17–19], arterial and 

vascular abnormalities via p38 MAPK and that may lead to CVDs and DMHF [21–23]. Hence, the 
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abnormal levels observed in various signal molecules under both T1DM and NDH conditions 

(Figure 1) may share a common pathway by which all the intra-and extracellular changes occur.  

2.3. Role of p38 MAPK in insulin-resistance and impaired glucose tolerance 

Insulin receptor substrate-1(IRS-1) plays a key role in insulin signal transduction, and glucose 

transporter type-4 (GLUT-4)/(SLC2A4) gene, which is important for insulin-mediated glucose 

uptake [33,36,37]. More specifically, p38 MAPK family of protein kinases has shown to involve in 

the development of insulin resistance by binding to potential MAP kinase phosphorylation sites in 

IRS-1 [30,31,33,38,39]. Furthermore, insulin stimulation in various cell types is capable of activating 

members of the MAP kinase family (Figure 2), particularly Erk 1/2, JNK, and p38 [40–45]. 

2.3.1. Signaling mechanisms and inhibition of p38 MAPK activity and activation 

p38 MAPKs activation occurs (signaling mechanisms) by dual phosphorylation of tyrosine and 

threonine residues, which is located in the kinase sub domain VIII. It is catalyzed by the dual 

specificity kinases (MKK3 or MKK6 and MAP2Ks), which are in turn activated upon 

phosphorylation of both serine/threonine residues and a MAP3K. This sequence of action is 

responsible for activating the p38MAPK pathways. This p38 MAPK activation is clearly cell type 

and stimulus specific. There are several MAP3Ks have shown to regulate p38MAPK signaling 

pathways such as mixed-lineage kinases (MLKs), thousand and one amino acid (TAO) 1 and 2, 

apoptosis signal-regulating kinase-1 (ASK1), TGFβ-activated kinase-1 (TAK1), and some of the 

MAPK/ERK kinase kinase (MEKK) family members [150]. MKK3 and MKK6 are selectively 

activates p38 MAPKs, and not other MAPKs [151], by docking sequences in the amino-terminus of 

the MKK and p38 MAPK isoform-specific sequences in the activation loop [152–154]. The 

biological effects of p38 MAPKs are determined by the magnitude and duration of its signal 

transduction.  

p38 MAPK activation and activity occurs by several biological and pharmacological 

mechanisms. T1DM or pharmacological agents such as phorbol 12-myristate 13-acetate (PMA), 

which activates p38 MAPK [4,13] by phosphorylation have been shown to involve in various 

cellular and molecular functions including neurotransmitters [16,17,19] as well as CVD including 

heart failure [6] were reversed after inhibiting p38 MAPK by its inhibitors SB203580, SB202190, 

and L-167307 [145–147].  

2.4. Myocardial infarction, apoptosis and p38 MAPK 

In a recent study, the diabetic post-infarct rat myocardium has shown an increase in the 

phosphorylation of the p38 MAPK and that the infarction exacerbated cardiac hypertrophy, fibrosis 

and collagen deposition in myocardial tissue [46–49]. The activated p38 MAPK has shown to be 

involved in hypoxia, inflammation, and other growth factors including TGF-β as well as angiotensin 

II [39,50–52]. Pro-inflammatory regulators such as interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) 

and CCL2 in the heart [53,54] have also been associated with an increase in the activation/expression 

of p38 MAPK. Myocardial infarction (MI) induced an increase in PTEN protein expression and that 

pathway might contribute to the increase in cardiomyocyte apoptosis [46,55].  
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Both myocardial ischemia and oxidative injury induces the activation of p38 MAPK. In cultured 

neonatal cardiomyocytes, over-expression of p38α MAPK reduced anti-apoptotic protein Bcl-xl 

expression, and p38 inhibition reduced stress-induced apoptosis [86–89]. In contrast, other studies 

have shown that p38 MAPK also involves in anti-apoptotic effects during early response to oxidative 

stress or anoxic preconditioning via phosphorylation of α and β-Crystallin or induction of Pim-3, 

respectively [90,91]. Interestingly, p38α MAPK has a pro-apoptotic role via p53 activation, whereas 

p38β MAPK has a pro-survival role via inhibition of ROS formation [92–94]. Therefore, the 

apoptotic effects seen after induction of p38 MAPK in various experimental conditions may be due 

to p38α MAPK, which represents major functional aspects in the p38 MAPK pathway. Another 

study indicates that inhibition of JNK/p38 MAPK-mediated inflammation and apoptosis by 

ivabradine improved cardiac function in STZ-induced diabetic mice [78,95].  

2.4.1. Mechanisms of p38 MAPK activation in T1DM related to acute myocardial infarction (AMI) 

The MAPK signaling pathway is present in majority of the cells and transduces extracellular 

signals into cytoplasm and nuclei of the cells. This pathway plays a vital role in biological functions 

including proliferation, differentiation, transformation, and apoptosis. Several studies have shown 

that pathological signals, in particular diabetic hyperglycemia, which activates this pathway. Some 

studies have also shown that this pathway leads to diabetic complications [155] as well as the 

development and progression of coronary artery disease such as fibrosis, cell hypertrophy, and 

migration including MI [156,157]. 

There are several stimulating factors such as reactive oxygen species, inflammatory factors, 

diabetes (hyperglycemia), and angiotensin II, which can activate this pathway are all shown to 

regulate indirectly by this pathway [158]. Endothelial cells cultured and treated with increasing 

concentrations of glucose activate the p38 MAPK signaling pathway further [159]. These studies 

confirmed that this pathway might play a vital role in the pathogenesis of AMI in T1DM. The over 

production of inflammatory factors and chemokines in T1DM (rats and/or cells) and the differential 

activation of the p38 MAPK signaling pathway may be a potential mechanism of pathophysiological 

changes in endothelial cells and cardiac dysfunction [160]. 

2.5. p38 MAPK regulation of cardiac hypertrophy  

In-vitro studies have shown that both pharmacological inhibition and/or dominant negative p38 

MAPK mutant expression was able to attenuate cardiomyocyte growth in response to hypertrophic 

stimuli [60–62]. Moreover, chronic activation of p38 MAPK is sufficient to induce hypertrophy in 

cultured cardiomyocytes [49,62]. It has been shown that these functions were carried out by two 

distinct isoforms of p38 MAPK (p38α-MAPK and p38β-MAPK) (Figure 3). Even though there is a 

discrepancy between in-vitro and in-vivo studies on the effects of p38α-MAPK and p38β-MAPK, over 

expression of active cardiac-specific MKK3 and MKK6 mice did not develop cardiomyocytes [63,64]. 

However, activated MKK3 in the heart results in cardiac hypertrophy and fibrosis [65]. This 

discrepancy might be caused by duration of p38 MAPK activation and the developmental timing of 

these factors.  
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Figure 3. The involvement of neurotransmitters pathway in the activation of p38 MAPK 

cascade, in T1DM. Signaling molecules including neurotransmitters and p38 MAPK are 

all increased either directly (L-Dopa, 5-HT & 5-HT2B) or indirectly (DA, E & MAPK) 

under T1DM and that leads to the activation of p38 MAPK via p38α MAPK and p38β 

MAPK isoforms. Moreover, the activated receptors of neurotransmitters (D2R, β-ARs & 

5-HT2B) are also able to induce the expressions of MAPK as well as p38 MAPK. 

Together, all these factors are involved in the development and progression of CVDs and 

DMHF. 

2.6. p38 MAPK/cardiac fibroblast/myofibroblast (CF/MF) and fibrosis  

Cardiomyocyte (CM) death and the formation of scar tissue are accompanied by hypertrophic 

growth caused by pressure overload or ischemic injury, which can lead to HF and lethal 

arrhythmias [66,67]. The activation of the ERK1/2/p38 MAPK pathway enhances angiotensin II-

induced proliferation of cardiac fibroblast/myofibroblast (CF/MF) [56–58]. Once CF/MF activated, it 

secrete extracellular matrix (ECM) in an adaptive response to injury, which enhances cardiac repair 

by preventing lethal wall rupture following MI [68–70]. However, sustained CF/MF activation 

eventually leads to excessive fibrosis and ventricle wall stiffening. CFs/MFs also stimulate electrical 

conduction, angiogenesis, inflammation, and cardiac growth and development [71–78]. All these 

changes are either completely or at-least partially normalized by p38 MAPK inhibitor.  

2.7. p38 MAPK and cardiac inflammation 

The diabetic cardiomyopathy is associated with cardiac inflammation, myocardial infarction, 

pressure overload, decreased left ventricle (LV) function, and dilated cardiomyopathy [41,79–81]. 
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Furthermore, other pro-inflammatory cytokines, such as TGF-β and IL-6 have also shown to be 

elevated in diabetic animal models [43,54]. Cytokines are important elements, which 

regulates/attenuate myocyte contractility, via reducing systolic cytosolic calcium levels by altering 

sarcoplasmic reticulum function [79,82]. Recent studies suggests that a direct role of cardiomyocytes 

in pro-inflammatory cytokine production [83,84]. 

p38 MAPK phosphorylation inhibited by suppressor simultaneously normalized the pro-

inflammatory cytokine levels such as TNF-α, TGF-β and IL1-β, and IL-6 in the cardiac tissue of 

diabetic animals [43,54,85]. Inhibition of p38 phosphorylation or activity is also accompanied by 

improvement of LV function, which showed impaired cardiac function and increased cytokine levels 

in non-diabetic, transgenic, p38-overexpressing mice [49,80,81,85]. 

2.8. Cardiomyopathy and p38 MAPK 

MAPK and in particular p38 MAPK pathway, play a crucial role in the development of diabetic 

cardiomyopathy and heart failure [21–23,25]. The p38 MAPK signaling cascades modulate genes 

that regulate cardiomyocyte proliferation, cardiomyocyte apoptosis, cardiac hypertrophy, cardiac 

fibrosis, and cardiac cytokine-mediated inflammation [48,52,56,89,96]. Diabetes-induced high 

glucose levels, oxidative stress, ischemia, and angiotensin II [38,39,49,51,52,97] all have shown to 

upregulate/phosphorylate p38 MAPK. Therefore, cardiomyopathy may be prevented by inhibiting 

p38 MAPK in diabetic patients. 

2.9. p38 MAPK and heart failure 

Experimental diabetic animals, imitate the structural and cellular abnormalities of diabetic 

cardiomyopathy of humans [37]. Both hyperglycemia and acidosis are the hallmark of T1DM, 

leads to several complications including cardiac fibrosis, cardiac inflammation, and LV 

dysfunction, through oxidative stress, angiotensin II [48,49,52,89,98]. Enormous preclinical 

studies have reported the role of p38 MAPK in myocardial infarction, ischemic heart disease, and 

atherosclerosis [55,96,99]. Moreover, data from human studies demonstrated that the heart samples 

from patients with idiopathic dilated cardiomyopathy and ischemic heart disease the p38 MAPK was 

found to be activated (Table 1). Recently the SOLSTICE phase 2 trials also demonstrated that 

suppressing the p38 MAPK improves LV function, and myocardial infarction [100,101]. These 

studies are in close agreement with animal studies, and collectively demonstrate that the p38 MAPK 

plays vital role in cardiovascular diseases and heart failure, and that the inhibition of p38 MAPK 

may be a promising therapeutic target.  
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Table 1. Various study models showing the effects of inhibition of MAPK signalling in 

CVDs and DMHF. 

MAPK 

signalling  

Study models 
Consequences/summary 

In-vitro In-vivo Ex-vivo Humans 

p38 

MAPK 

isoforms  

 
WT-

mice 

  Cardiac dysfunction were restored by TG 

DN p38α MAPK 

Human 

monocytes  

Eucaryotic 

cells 

Dog 

Monkeys 

 Humans Increased inflammatory factors, cytokines 

and p38β MAPK were reversed by p38 

MAPK inhibitor 

Cardio-

myocytes  

   p38 MAPK inhibition attenuates 

cardiomyocyte growth in response to 

hypertrophic stimuli.  

over-expression of p38α MAPK reduced 

anti-apoptotic protein Bcl-xl expression, 

and p38 inhibition reduced stress-induced 

apoptosis 

 
SD-rats   BPS treatment inhibits p38 MAPK, TNF-

 , HIF-1 , MMP-9, BNP, ANP, 

myocardial cell apoptosis & delays the 

progression of DMHF in condition heart  

 
 SFMCs 

HFLSs 

PBMCs 

 MK2 inhibitors decreases the expression 

of immune mediated inflammatory factors  

   
Humans 

 

p38 MAPK was activated in human heart 

samples of idiopathic dilated 

cardiomyopathy and ischemic heart 

disease. Suppressing it improves LV 

function, and myocardial infarction. 

Notes: WT: wild type; SD: sprague dawley; SFMCs: synovial fluid mononuclear cells; HFLSs: 

human fibroblast like synoviocytes; PBMCs: peripheral blood mononuclear cells. 

2.9.1. Roles of p38 MAPK in condition heart, application and therapeutic approach of p38 MAPK 

inhibitor  

Preliminary studies with p38 MAPK-specific inhibitors showed therapeutic effects on 

myocardial ischemia, myocardial apoptosis, and left ventricular hypertrophy [161]; Beraprost 

Sodium (BPS) have shown to be a promising effects on condition heart/heart failure in animal 

models. BPS treatment inhibits the p38 MAPK signaling pathway including expression of 
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inflammatory factors such as TNF- , HIF-1 , and MMP-9. It also inhibited the expression of BNP, 

ANP, and myocardial cell apoptosis thereby delaying the progression of DMHF and protecting 

cardiac function [162–166]. 

More importantly p38 MAPK signaling pathway also involve in the protection of MI. Injury of 

myocardial ischemia-reperfusion occurs via oxidative stress, inflammatory response, injury of 

mitochondria, overload of calcium, energy imbalance, and apoptosis [167,168]. Phosphorylated p38 

MAPK further activates the downstream substrates, activation of inflammatory cells, and release of 

inflammatory cytokines such as TNF-alpha and IL-1 beta until apoptosis [169]. The mechanism of 

activation and actions may be through the inhibition of inflammatory factors including TNF-alpha 

and IL-1 beta, which ultimately regulate the signaling pathway of p38 MAPK [170]. 

2.9.2. Use of p38 MAPK inhibitor in T1DM heart – Several study models 

Diabetic heart diseases are consequences of continuous process of several factors such as 

inflammatory factors, dual phosphorylation of tyrosine and threonine residues, cytokines, 

neurotransmitters, diabetic hyperglycemia, reactive oxygen species, chemokines, proliferation, 

differentiation, transformation, and apoptosis etc. Several studies in various animals and humans 

(both in-vitro and in-vivo) showed increased level of p38 MAPK under these conditions and reversed 

after the use of inhibitors such as SB203580, SB202190, and L-167307 [145–147,173,174]. Cardiac 

dysfunction induced by diabetic wild type (WT) mice showed increased level of p38α MAPK and 

were restored by TG DN p38α MAPK in diabetic heart of this mice [172]. Elevated p38 MAPK in 

cardiac hypertrophy, and myocardial infarction in murine model systems were attenuated by 

pharmacological inhibitors [173]. Inhibition of p38 MAPK in Streptozotocin (STZ)-induced diabetic 

male Lewis rats inhibited the increase in leukostasis and expression of iNOS [171]. Preclinical 

studies carried out in mammalians including dogs, monkeys (macaques and baboons) and humans 

showed increased level of inflammatory factors and cytokines as well as p38 MAPK (Table 1). 

These changes were reversed after treating with p38 MAPK inhibitor (SB203580) [174].  

p38 MAPK activity and activation occurs by several pathophysiological mechanisms. T1DM or 

pharmacological agents such as PMA, which activates p38 MAPK in Wistar strain albino rats [4,13] 

by phosphorylation have been shown to regulate neurotransmitters [10–13] as well as CVDs and 

heart failure [6]. These changes were reversed after inhibiting p38 MAPK by its inhibitors 

(SB203580, SB202190, and L-167307). p38β MAPK have shown to inhibit the over-expressions of 

inflammatory cytokines in human monocytes [145], eukaryotic cells [146] as well as in in-vivo 

models [147]. BPS has shown to be promising effects on condition heart/heart failure in Sprague-

Dawley (SD) rats. BPS treatment inhibits the p38 MAPK signaling pathway including expression of 

inflammatory factors such as TNF- , HIF-1 , and MMP-9. It also inhibited the expression of BNP, 

ANP, and myocardial cell apoptosis (Table 1) thereby delaying the progression of DMHF and 

protecting cardiac function [162–166]. 

3. Role of dopamine in glucose metabolism and insulin sensitivity 

Dopamine has been shown to control peripheral glucose metabolism in animals. Interventions 

such as selective dopamine reuptake inhibitor vanoxerine infusion into the nuclease accumbens 

(NAc) shell, deep brain stimulation (DBS) of the NAc shell and administration of central 
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bromocriptine, that directly target the central dopamine system, modulate peripheral metabolism in 

rodent models [102,103]. Additionally, human data also provide evidence in support of the central 

regulation of dopamine in glucose metabolism [103,104]. The same authors also demonstrated that 

DBS targeting the ventral anterior limb of the internal capsule (VALIC), releases striatal dopamine, 

which reduces insulin requirements and increases insulin sensitivity in hepatic and peripheral of 

obsessive-compulsive-disorder in diabetic patients. 

The human data also shows that the pharmacological suppression of dopamine synthesis in 

healthy subjects reduces striatal dopamine concentrations [105], which decreases peripheral insulin 

sensitivity. Kasper et al. [103] have reported that the direct activation of D1R+neurons in the 

experimental model of mice, the NAc improves glucose tolerance and insulin sensitivity. On the 

other hand, studies have shown the biphasic effects of bromocriptine that the low doses produce 

motor depression, while high doses initially produce depression and later excitation [106–108]. Even 

though there are certain methodological limitations in human models, both animal and human results 

(data’s) points in the same direction, strongly suggesting that DA and neuronal activity regulates 

systemic glucose metabolism. 

3.1. Dopamine and its derivatives in DMHF 

In the past literatures, it has been reported that the neurotransmitters including DA and 5-HT, 

affects multiple valves with echocardiographic features. Patients those who were taking pergolide 

and cabergoline (ergot-derived dopamine receptor agonists) have shown to develop significant valve 

regurgitation. Decarboxylation of L-DOPA yields DA (Figure 3) that act by binding to its GPCRs 

(D1, D2, D3, D4, D5). Over activation of β-adrenoreceptors, because of dopamine hydroxylase, in 

cardiac fibroblasts (Figure 3) has been shown to induce inflammatory cytokines, proliferation, and 

fibrotic processes. Mice cannot synthesize NE or E, in the absence of dopamine hydroxylase enzyme, 

and that condition leads to impaired proliferation during vascular remodeling [39,109–111].  

3.2. Dopamine receptors mediated heart diseases  

Cardiovascular (CV) complications such as orthostatic hypotension (OH) and heart failure (HF) is 

associated with the use of D2 receptor (D2R) agonists in the treatment of PD. Apart from central 

nervous system effect, dopamine agonists modulate other body functions including CV system(s). D2 

receptor selectively stimulates bradycardia and lowers BP both in human and animals [106,112,113]. 

Several preclinical studies have shown that administration of bromocriptine-QR (Dopamine D2 

receptor agonist) in the morning increases central dopaminergic tone and this has been linked to 

normal insulin sensitivity and functions as well as normal glucose metabolism. Bromocriptine-QR 

has shown to improve various metabolic functions in diabetic-patients as well as improvements in 

many surrogate markers of CV disease [113–115].  

4. The role of serotonin in heart diseases in general 

Circulating serotonin levels, elevates during metastatic proliferation of enterochromaffin cells 

(serotonin secreting cells), which causes fibrous plaques on the heart valves. Moreover, the ergot-

derived dopamine agonists have also shown to have significant increase in CVDs [116,117]. These 
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findings suggest that these neurotransmitters may play a role in the development of certain types of 

CVDs. It is widely reported that these signaling molecules exert their effects by two different 

potential pathways such as neuronal and the vascular networks, through which it affects the target 

sites including heart. 

5-HT perform its physiological functions via CNS as well as outside the CNS, including 

insulin secretion, gastrointestinal peristalsis, blood coagulation, vaso-constriction, and cardiac 

development [118–120]. There are about 14 subtypes of 5-HT receptor, however 5-HT2A, 5-HT2B, 

5-HT2C receptors are implicated in heart disease. 5-HT2B activation has shown to stimulate the 

ERK1/2 signaling pathways in the cardiac tissues and plays a vital role in the heart development. 

Excess Oral or intravenous administrations of 5-HT have shown to induce heart valvular disease 

(Figure 3) in adult mammals [121,122] and 5-HT2 receptor antagonist treatments reversed these effects.  

4.1. The role of serotonin in DMHF 

Increased CNS disorders correlate with increased levels of extracellular 5-HT in diabetic 

patients. A comparative study with diabetic patients and animal models has shown that increased 5-

HT level led to impaired heart valves. Diabetes associated depression have also shown to aggravate 

coronary heart disease [78,120]. 5-HT is found in the brain, gut, and blood platelets and it is a 

vasoactive substance. 5-HT performs diverse cardiophysiologic functions through the 5-HT1 

receptor mediating vasodilation and the 5-HT2 receptor mediating vasoconstriction in cardiac tissues. 

5-HT has also shown to be involved in the pathogenesis of cerebrovascular disorders including 

migraine and in the cardiovascular responses to stress [120,123]. 

4.2. Regulations of DA/E/5-HT and MAO by p38 MAPK in diabetes  

It is well documented that the changes in central monoamine oxidase (MAO) activity 

(mitochondrial enzyme), may alter the central level of one or more of these amines by inactivating 

several monoamines. Moreover, MAO A and B play key roles in the metabolism of 

neurotransmitters in the CNS. MAPK signal pathway selectively induces the activation of MAO B 

expression thereby suggesting that the MAPK or its pathway regulates both MAO and 

neurotransmitters including DA/E/5-HT (Figure 2). It has also been reported that cell culture and in-

vivo studies have shown that activated MEK1/2 and ERK (MAPK) activate neurotransmitters, 

including dopaminergic, adrenergic and serotonergic receptors [16,17,19].  

In contrast, it has been shown that the inhibition of p38 MAPK leads to insulitis. In general, 

insulin release processes involves, initially metabolism of glucose, and that leads to an increase in 

ATP/ADP ratio as well as an increase in the cytosolic free calcium concentration (Ca
2+

)i, and 

eventually exocytosis of insulin [19,33,125]. Hence, it is possible that the insulitis observed after the 

inhibition of p38 MAPK, may be through one of the release processes described above, and that may 

not be involved in the regulation of MAO or DA/E/5-HT by MAPK. 

4.3. Current treatment strategies and its pitfall in diabetes  

Insulin treatment to either T1DM or TIIDM is the foremost option to control all diabetic 

complications for the last several decades. The recent recombinant technology improved the 
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efficiency of insulin delivery with short or long acting, including various strengths as needed. 

However, several lines of evidence show that the prolonged treatment of insulin leads to insulin 

resistance [126–128]. Apart from insulin treatments, the trials of oral noninsulin medicaments for 

diabetes mellitus have been carried out for decades in T1DM as well as TIIDM patients. At first, the 

efforts were taken to control the release of glucose from liver to the blood stream and as a result of 

this the chemical/drug (biguanides) was used successfully for controlling the peripheral glucose 

levels [129] including juvenile [130,131]. Moreover, the other classes of drugs, such as amylin 

analogues, sodium-glucose co-transporter 2 inhibitors, thiazolidinediones, incretin-based agents as 

glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4, were also used and reported to 

be effective in the treatment of T1DM [132,133]. However, similar to insulin, these drugs also 

develop drug resistance as well as some known or unknown side effects. 

4.4. The discrepancy in the disease mechanism(s) of animal models and human beings and the use 

of animal’s in experimental diabetes 

Numerous studies have been reported that there are several variations in the disease 

mechanisms of animal models and human beings including the mRNA and cDNA sequences. 

Simultaneous sequence homology analysis of humans and rodents has shown that only ~45–48% of 

insulin promoter (−600 to +1) region is matching. There are several other features including cAMP 

response element, CCAAT box and negative regulatory element also shows marked species 

specificity. More importantly, the enzymes such as pyruvate carboxylase and ATP citrate lyase, 

which regulates glucose metabolic pathways, are reported to be significantly different from animals 

and humans and as a consequence, the glucose clearance and storage varies largely between animals 

and humans [49,78,134].  

Despite the differences in the mechanisms of T1DM between rodents and humans, non-obese 

diabetic (NOD) mice and NOD-derived recombinant congenic strains share common physiological 

mechanisms, which give several advantages in diabetic research [124]. Many molecules including 

human leukocyte antigen (HLA) class I and class II linked with human diabetes were generated in 

transgenic mice. Only the mice expressing HLA A2.1 allele showed development of diabetes, 

whereas, HLA class II transgenic mice are not able to develop diabetes. These transgenic animal 

models will be of useful in identifying the role of peptides and its associated pathway in diabetes and 

in particular antigen-specific immunotherapy [135,136]. Other studies on gut microbiome have 

shown that both NOD mice and humans develop T1DM [137,138]. 

In short, these experimental diabetic rats, NOD mouse or transgenic models demonstrated 

correlation of many key physiological functions with humans. Since, there are methodological 

limitations and ethics involved in human studies, these animal models would give better alternative 

or platform for understanding the unknown or yet to be identified molecular mechanisms involved in 

the development of T1DM and that may provide an excellent clue for treatment options for T1DM as 

well as DMHF. 

5. Discussion 

In conclusion, the research and clinical data’s from past several decades confirm that 

hyperglycemia and/or acidosis of T1DM or its associated conditions influences arterial and vascular 
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cell functions by various biological mechanisms. Several lines of reports shows that p38 MAPK is 

activated in CNS and PNS under T1DM and that leads to synergistic-activation of certain 

neurotransmitters such as DA, E and 5-HT, and those elements trigger the cardiovascular 

dysfunctions, including cardiomyocyte proliferation, cardiac inflammation, myocardial infarction, 

cardiac fibroblast/myofibroblast and fibrosis, cardiac hypertrophy, apoptosis in the heart and 

cardiomyopathy, leading to heart failure and death. Moreover, many studies have linked p38 MAPK 

in the regulation of vascular cells permeability, ECM, contractility, micro and macro vascular 

diseases, angiogenesis, cytokine actions, cell growth, and leukocyte adhesions. Furthermore, CPST-

pathway also involved in the up-regulation of 5-HT via S-100β and SERT (serotonin transporter) 

(Figure 2). Collectively, all these factors determines the levels and functions of paracrine trophic 

effects, cytoplasmic free calcium levels, metabolism, neuronal transmission and dendritic 

development, formation of the blood–brain barrier, and activation of receptors in the sensory neurons. 

More importantly, altered glucose homeostasis leads to changes in the glucose metabolism in CNS 

and PNS, and that may play crucial roles in the formation of micro or macro vascular diseases, and 

neuronal dysfunctions, activation of p38 MAPK as well as neurotransmitters (DA, E and 5-HT), 

which have been shown in the regulation of various CVDs as described above. All these factors 

could constitute reliable and valid pathological markers in T1DM. The pharmacological agent, which 

controls these factors, may have potential therapeutic value in the treatment of DMHF.  

6. Future directions for p38 MAPK research on DMHF 

The use of p38 MAPK inhibitors or dominant negative in human CVDs, in particular DMHF 

should strengthen future research interest in this pathway. To date, several study/experimental 

models such as in-vitro, in-vivo, ex-vivo and human (Table 1) are all shown that p38 MAPKs 

including isoforms (α, β, , ) are involved in the regulation of CVDs. However, there are several 

other associated factors and molecules are also involved in these complex diseases. The main 

limiting factors to further study on the role of p38 MAPKs on various cellular and molecular 

functions, which determines the development and progression of these diseases, however, are the 

lack of specific inhibitors and activators for respective molecules involved in this chain of events of 

this pathway. For example, p38 MAPK over-expression can be suppressed by various compounds 

such as SB203580, SB202190, L-167307 [145–147,173,174] and BPS in CVDs and shown to be a 

promising effect on condition heart/heart failure. These treatments not only inhibits the p38 MAPK, 

but also inhibits the expression of other factors in MAPK signaling pathway including inflammatory 

factors (TNF- , HIF-1 , and MMP-9) and BNP, ANP and myocardial cell apoptosis [162–166]. The 

prospects of therapeutic benefit for patients with CVDs in diabetes, the search for more potent and 

specific inhibitors of p38 MAPK and/or its associated molecules are absolutely necessary. These 

may provide potential treatment for the respective conditions and diseases discussed, and may also 

provide the opportunity to delineate the specific role of p38 MAPK in the absence of involvement of 

other isoforms (α, β, , ) or molecules. This will also help us to identify the role of p38 MAPK in 

the other diseases and ultimately the treatment options. 

Moreover, it is also absolutely necessary to focus on identifying specific p38 MAPK activators. 

This may rule out the possible involvements of non-specific molecules during the activation process. 

In the future, all these may translate to the development of novel therapeutic strategies for patients 

with CVDs and HF. These approaches (specific inhibitors or activators) may either improve or 
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benefit in the therapeutic regimen as well as to understand clear pathophysiological mechanisms of 

these elements. Based on our current knowledge and continued efforts on finding better compounds 

or molecules, which can target specific molecule under specific condition would be of beneficial in 

the treatment for CVDs in DMHF. 
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