Citation: Laetitia Weinhard, Paolo d'Errico, Tuan Leng Tay. Headmasters: Microglial regulation of learning and memory in health and disease[J]. AIMS Molecular Science, 2018, 5(1): 63-89. doi: 10.3934/molsci.2018.1.63
[1] | Adel M Bash, Sulaiman E. Mnawe, Salim A. Salah . Numerical buckling analysis of carbon fibre-epoxy composite plates with different cutouts number by finite element method. AIMS Materials Science, 2020, 7(1): 46-59. doi: 10.3934/matersci.2020.1.46 |
[2] | Saeid Saberi, Azam Abdollahi, Fawad Inam . Reliability analysis of bistable composite laminates. AIMS Materials Science, 2021, 8(1): 29-41. doi: 10.3934/matersci.2021003 |
[3] | Ruaa Al-Mezrakchi, Ahmed Al-Ramthan, Shah Alam . Designing and modeling new generation of advanced hybrid composite sandwich structure armors for ballistic threats in defense applications. AIMS Materials Science, 2020, 7(5): 608-631. doi: 10.3934/matersci.2020.5.608 |
[4] | Rebai Billel . Contribution to study the effect of (Reuss, LRVE, Tamura) models on the axial and shear stress of sandwich FGM plate (Ti–6A1–4V/ZrO2) subjected on linear and nonlinear thermal loads. AIMS Materials Science, 2023, 10(1): 26-39. doi: 10.3934/matersci.2023002 |
[5] | Mohammed Y. Abdellah, Hamzah Alharthi, Mohamed K. Hassan, Ahmed F. Mohamed . Effect of specimen size on natural vibration of open hole copper/glass-reinforced epoxy laminate composites. AIMS Materials Science, 2020, 7(4): 499-517. doi: 10.3934/matersci.2020.4.499 |
[6] | Mica Grujicic, Jennifer S. Snipes, S. Ramaswami . Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs): A computational investigation. AIMS Materials Science, 2016, 3(3): 686-721. doi: 10.3934/matersci.2016.3.686 |
[7] | D. M. S. Costa, M. A. R. Loja . Assessing the static behavior of hybrid CNT-metal-ceramic composite plates. AIMS Materials Science, 2016, 3(3): 808-831. doi: 10.3934/matersci.2016.3.808 |
[8] | Mateo Duarte, Johan A. Oquendo, Sebastián Vallejo, Johnattan Vargas, Yamile Cardona-Maya, Cesar A. Isaza . Fabrication of FRP/CNT hybrid laminate composites and their effect on interlaminar and mechanical properties. AIMS Materials Science, 2024, 11(6): 1125-1144. doi: 10.3934/matersci.2024054 |
[9] | Zulzamri Salleh, Md Mainul Islam, Jayantha Ananda Epaarachchi, Haibin Su . Mechanical properties of sandwich composite made of syntactic foam core and GFRP skins. AIMS Materials Science, 2016, 3(4): 1704-1727. doi: 10.3934/matersci.2016.4.1704 |
[10] | M.A.R. Loja, André Carvalho, Ines C.J. Barbosa . A study on the static behavior of functionally graded I-shaped beams. AIMS Materials Science, 2024, 11(1): 28-57. doi: 10.3934/matersci.2024002 |
Composite laminates and sandwich plates constitute a commonly used structural component with many applications in several areas of engineering. Whether considering one or the other type of plate, we have a multilayer configuration, where it is possible to tailor their constitution in order to achieve a better performance, fitted to specific operating requirements and to ensure a satisfactory service life. A typical sandwich structure consists of one or more layers of high-strength and high-stiffness face sheets, or skins, bonded to a core which may have significantly different elastic properties. In this layered configuration we may also consider the stacking of differently oriented fiber reinforced materials, as well as a combination of different composite materials. In any case it may be important to achieve a more realistic characterization of these structures response, namely concerning the description of the plate deformation kinematics, and therefore on the corresponding states of strain and stress distributions. The study of layered composite structures continues to attract the attention of many researchers, although the extent of the work developed so far. This may be due to continuous advances in the constitution of new materials and on their physical characterization, to the advances in technological processes, and probably also because the availability of more powerful computational resources, enables the use of more expensive algorithmic procedures and the manipulation of greater data volumes.
In the context of equivalent single-layer approaches focused on the study of sandwich or laminated composite structures, we may find many published works. Within this broad branch, we may find works based on different basis theories ranging from the classical one to the higher order shear deformation theories. Just to name a few of them, we may refer the work carried out by Reissner [1] who studied the effect of the transverse shear deformations in plates consisting of anisotropic laminations symmetrical about their midplane. Closely related to this work, Whitney [2] has developed a bending theory for simply supported laminated plates, which included transverse shear deformations. He obtained closed form solutions for bending deflections, flexural vibration frequencies, and buckling loads. Later, Lo et al. [3] presented a higher order theory devoted to the study of the of laminated plates deformation, comparing the results obtained with elasticity solutions. Pandya and Kant [4] developed a higher order shear deformation model for the analysis of the bending analysis of symmetric sandwich plates. Their model assumed a non-linear variation of the in-plane displacements and a constant transverse one. Also in the context of the equivalent single-layer (ESL) approaches, Bernardo et al. [4,5] presented a study on the linear static and free vibrations behavior of functionally graded plates. To this purpose they have used plate models based on the first order shear deformation theory and implemented via traditional Lagrangean elements, kriging-based elements and via a meshless approach with radial basis functions. Loja et al. [6] analysed the transient dynamic behavior of sandwich structures, having a metallic core and functionally graded outer layers. The properties of the particulate composite metal-ceramic outer layers, were estimated using Mori-Tanaka scheme and the dynamic analyses considered first order and higher order shear deformation theories implemented though kriging finite element method. The transient dynamic response of these structures is carried out through Bossak-Newmark method. A framework for the formulation and the dynamic analysis computations of moderately thick laminated doubly-curved shells and panels was proposed by Viola et al. [7]. To that purpose a higher-order shear deformation theory was considered and the differential geometry was used to define the arbitrary shape of the middle surface of shells and panels with different curvatures. Following this single-layer approach, but in the context of non-linear theories, we can refer the work presented by Reddy [8] which proposed a higher-order shear deformation theory of plates accounting for the von Karman strains. Ferreira and Barbosa [9] presented a finite element model for the geometric non-linear analysis of composite shell structures. The non-linear incremental equilibrium equations were established using a total Lagrangian displacement formulation and the solution was obtained via the incremental/iterative Newton-Raphson method as well as a spherical formulation of the arc-length methods. Recently, Dehkordi et al. [10] proceeded to a nonlinear dynamic analysis of sandwich plate with flexible core and laminated composite face sheets embedded with shape memory alloy wires. This study was based on the mixed layerwise and equivalent single layer (LW/ESL) models in the framework of Carrera’s Unified Formulation. It is also relevant to mention the work developed by Thai and his colleagues [11,12,13,14,15] in the context of the isogeometric analysis of laminated structures. This research field is expanding due to its versatility and integrative character; which goes from the computer aided design to the computer aided engineering wherein one may consider included the analysis of structures.
The importance and adequacy of layerwise approaches to multilayer structural elements, as more efficient alternative methodologies when compared to the equivalent single layer ones, has been an object of study and discussion, and some comprehensive studies and reviews were published upon this subject, namely the ones due to Carrera [16,17]. In the first mentioned work of Carrera, he carried out an historical review on the zig-zag theories developed for the analysis of multilayered structures, wherein they describe a piecewise continuous displacement field in the plate thickness direction and fulfill interlaminar continuity of transverse stresses at each layer interface. In the second one referred in the present study, he made a review on the derivation of governing equations and finite element matrices for some of the most relevant plate/shell theories. He also addressed extensive numerical evaluations of available results, along with assessment and benchmarking. In a comprehensive study, Demasi et al. [18] assessed the accuracy of the variational asymptotic plate and shell analysis, when compared to different higher-order, zig-zag and layerwise theories generated through the invariant axiomatic framework denoted as generalized unified formulation. The axiomatic models were also compared to the elasticity solution developed for the case of sandwich structures with high face to core stiffness ratio. Among other works that have already been carried out within the layerwise theories, in the broad sense, we refer some. Filippi et al. [19] proposed one-dimensional layerwise theories using higher-order zig-zag functions defined over fictitious/mathematical layers of the cross-sectional area of laminated beams. Variable kinematics theories have been obtained using piecewise continuous power series expansions of an arbitrary order. Ferreira [20] combined a layerwise theory with the multiquadrics discretization to analyse laminated composite and sandwich plates. To this aim, he used radial basis functions to approximate the differential governing equations and the boundary conditions. Vuksanović and Ćetković [21] proposed Navier-type closed-form solution for static analysis of simply supported composite plate, based on generalized laminate plate theory. The mathematical model assumed a piecewise linear variation of the in-plane displacement components and a constant transverse displacement through the thickness. Nosier et al. [22] considered Reddy’s layer-wise theory to carry out free-vibration analysis of laminated plates, which results were further compared with those obtained from a full-fledged three-dimensional elasticity analysis and various ESL theories. The use of LW approaches to study the dynamic behavior of damped structures has also been used by some researchers, namely by Sainsbury and Zhang [23], Daya and Potier-Ferry [24], Barkanov et al. [25] and Araújo et al. [26]. Sainsbury and Zhang [23] proposed a finite element for damped sandwich beam structures combining polynomial shape functions of conventional finite element analysis with Galerkin orthogonal functions. They accounted for displacement consistency over the interfaces between the damping layer and the elastic layers to guarantee good accuracy. Daya and Pottier-Ferry [24] proposed a numerical method for the exact solution of nonlinear eigenvalue problems. This method associates homotopy and asymptotic numerical techniques and it was applied to the calculation of the natural frequencies and the loss factors of viscoelastically damped sandwich structures. An inverse technique to characterize the nonlinear mechanical properties of viscoelastic core layers in sandwich panels was developed by Barkanov et al. [25]. This technique was based in vibration tests, allowing preserving the frequency and temperature dependences of the storage and loss moduli of viscoelastic materials. The use of an optimization approach based on the planning of the experiments and the response surface technique to minimize the error functional, enabled additionally the reduction of the computational cost. More recently, Araújo et al. [26] carried out optimization and parameter estimation studies of frequency dependent passive damping of sandwich structures with viscoelastic core. To this purpose he used a mixed-layerwise finite element model and the complex modulus approach to model the viscoelastic material behavior.
In the present work, the authors consider a layerwise theory based on the assumptions of the first order shear deformation theory, layer by layer. The global kinematic through the thickness is therefore approximated in a piecewise manner, being potentially advantageous when compared to other equivalent single-layer higher order theories. A study both on the linear static and free vibrations behavior of three-layered configuration composite plates is presented. The viscoelastic behavior of softer cores is not considered in the present work. A parametric assessment on the influence of different geometrical and material factors is carried out.
A laminated composite can be constructed by superposing layers of materials, which can be for example, orthotropic fibrous composite materials or isotropic materials, among other possibilities. Underlying these layers superposition, it is considered that a set of assumptions is verified, namely, that there exist a perfect adhesion among constituent phases and between adjacent layers, the inexistence of voids, the continuity of displacements and the validity of a linear elastic regime, in the structure operating conditions. In Figure 1, we can observe a typical stacking sequence of laminae, each possessing a different fiber orientation.
In the present study, one considers a layerwise formulation which assumes negligible the transverse normal deformations, within each layer, thus leading to a constant transverse displacement [27,28]. Neglecting as well the transverse normal stress one has for an orthotropic k-th layer, the stress-strain relations in the material coordinate system (1, 2, 3):
$\left\{ {σ(k)1σ(k)2τ(k)12τ(k)23τ(k)31 } \right\} = {\left[{Q11Q12000Q12Q2200000Q6600000Q4400000Q55 } \right]^{(k)}}\left\{ {ε(k)1ε(k)2γ(k)12γ(k)23γ(k)31 } \right\}$
|
(1) |
where the subscripts 1 and 2 denote respectively the directions of the fiber and the in-plane normal to fiber, and the subscript 3 is associated to the ply transverse normal direction. $Q_{ij}^{(k)}$, represent the reduced elastic stiffness coefficients of the k-th layer. As each layer may have a different fiber orientation, as we can observe in Figures 1 and 2, it is thus necessary to carry out a transformation procedure so that the necessary analyses involving the whole laminate can be performed.
The angle that characterizes the fiber orientation angle is measured between the positive senses of directions 1 and x. By performing the adequate coordinate transformation the constitutive relations in the laminate coordinate system is finally given as in [29], where represents the transformed reduced elastic stiffness coefficients, associated to each k-th layer.
$\left\{ {σ(k)xxσ(k)yyτ(k)xyτ(k)yzτ(k)zx } \right\} = {\left[{ˉQ(k)11ˉQ(k)12ˉQ(k)1600ˉQ(k)12ˉQ(k)22ˉQ(k)2600ˉQ(k)16ˉQ(k)26ˉQ(k)6600000ˉQ(k)44ˉQ(k)45000ˉQ(k)45ˉQ(k)55 } \right]^{(k)}}\left\{ {ε(k)xxε(k)yyγ(k)xyγ(k)yzγ(k)zx } \right\}$
|
(2) |
The mentioned transformation is carried out layer by layer, being not needed if for example, a specific layer has coinciding axes 1 − x (positive senses) or if one uses a material that can be considered to be isotropic. Usually, when considering an ESL approach and using a first order shear deformation theory, one uses shear correction factors to overcome the through-thickness constant prediction of the transverse shear stresses and thus to approximate the model response to the 3D elasticity distributions. The present LW model considers the FSDT assumptions within each layer, yielding to a kinematics description wherein the rotations at each layer, are independent. Under these conditions, and according to some research works [25,26,27,28], the use of the shear correction factors is not considered. However to enable a comparative study, in the present study one has considered in some cases both approaches, i.e., the use of a shear correction factor equal to 1 and equal to a commonly used value, 5/6.
In the present study we have considered that the deformation kinematics of the layered plate would be described through a layerwise approach wherein each of the layers response is based on the first-order shear deformation theory assumptions and by imposing the continuity of displacements at the layer’s interfaces. It is relevant to note that the stresses that result from the constitutive relation (Eqn. 2) may not satisfy the continuity of tractions across these interfaces. However the deviations introduced by this approximation is considered acceptable, as reported by other researchers [27,28]. Similar approaches have been used in the context of the dynamic analysis of viscoelastic sandwich beams and plates, by Barkanov et al. [25] and Araújo et al. [26]. The prediction of the transverse shear stresses within each layer yields a constant value, according to the constitutive relation, thus leading to a stepwise distribution profile. However, a continuous distribution may be obtained if one uses the elasticity equilibrium equations in a post-processing phase. To illustrate the specific case of a three-layered configuration, independently of the nature of the constituent materials, we present in Figure 3, a schematic representation of the kinematics of the present approach.
The major reason for the use of the first order shear deformation theory is related to its minor computational cost when compared to other approaches. If one considers higher order displacement fields in layerwise or equivalent single layer theories, the dimension of the problem can become significantly higher. If one would aim to proceed with a failure analysis, for instances, it would be at any time possible, in a post-processing stage, to calculate the transverse normal and shear stresses via the equilibrium equations. Considering this three-layered configuration, and according to the referred kinematics assumptions, the middle layer (core) displacement components, ${u^{(2)}}$, ${v^{(2)}}$, ${w^{(2)}}$, respectively along the $x, y, z$, directions, are described as:
$u(2)(x,y,z,t)=u0(x,y,t)+z(2)θ(2)x(x,y,t)v(2)(x,y,z,t)=v0(x,y,t)+z(2)θ(2)y(x,y,t)w(2)(x,y,z,t)=w0(x,y,t) $
|
(3) |
where u and v are the in-plane displacements at any point characterized by the coordinates (x, y, z, t) at a generic time instant t; u0 and v0 denote the in-plane displacements of a point in the plate mid-plane (x, y, 0, t); is the transverse deflection; and $\theta _x^{(2)}$ and $\theta _y^{(2)}$ are the rotations of the normals to the core layer mid-plane about the y and x axes, respectively. After the imposition of displacements’ continuity at the layers’ interfaces, the displacement fields for the upper (1) and lower (3) layers, are respectively given as:
$u(1)(x,y,z,t)=u0(x,y,t)+h22θ(2)x(x,y,t)+h12θ(1)x(x,y,t)+z(1)θ(1)x(x,y,t)v(1)(x,y,z,t)=v0(x,y,t)+h22θ(2)y(x,y,t)+h12θ(1)y(x,y,t)+z(1)θ(1)y(x,y,t)w(1)(x,y,z,t)=w0(x,y,t) $
|
(4) |
$u(3)(x,y,z,t)=u0(x,y,t)−h22θ(2)x(x,y,t)−h32θ(3)x(x,y,t)+z(3)θ(3)x(x,y,t)v(3)(x,y,z,t)=v0(x,y,t)−h22θ(2)y(x,y,t)−h32θ(3)y(x,y,t)+z(3)θ(3)y(x,y,t)w(3)(x,y,z,t)=w0(x,y,t) $
|
(5) |
where hk is the th-layer thickness and ${z^{(k)}} \in [- {h_k}/2, {h_k}/2]$ are the kth-layer z coordinates. Considering the kinematical relations from the elasticity for small deformations, we obtain for a generic kth layer (omitting time and spatial coordinates’ dependency):
${ε(k)xxε(k)yyγ(k)xy}={∂u(k)∂x∂v(k)∂y∂u(k)∂y+∂v(k)∂x}={εm(k)xxεm(k)yyγm(k)xy}+z(k){εb(k)xxεb(k)yyγb(k)xy}+{εmb(k)xxεmb(k)yyγmb(k)xy}{γ(k)xzγ(k)yz}={∂u(k)∂z+∂w(k)∂x∂v(k)∂z+∂w(k)∂y}={∂w0∂x+θ(k)x∂w0∂y+θ(k)x} $
|
(6) |
The bending (superscript b) and the membrane (superscript m) components are expressed as:
$\left\{ {εb(k)xxεb(k)yyγb(k)xy } \right\} = \left\{ {∂θ(k)x∂x∂θ(k)y∂y∂θ(k)x∂y+∂θ(k)y∂x } \right\}; \left\{ {εm(k)xxεm(k)yyγm(k)xy } \right\} = \left\{ {∂u0∂x∂v0∂y∂u0∂y+∂v0∂x } \right\}$
|
(7) |
and the membrane-bending (superscript mb) components for outer layers are respectively given by:
$\left\{ {εmb(3)xxεmb(3)yyγmb(3)xy } \right\} = \left\{ {−h22∂θ(2)x∂x−h32∂θ(3)x∂x−h22∂θ(2)y∂y−h32∂θ(3)y∂y−h22(∂θ(2)x∂y+∂θ(2)y∂x)−h32(∂θ(3)x∂y+∂θ(3)y∂x) } \right\}$
|
(8) |
$\left\{ {εmb(1)xxεmb(1)yyγmb(1)xy } \right\} = \left\{ {h22∂θ(2)x∂x+h12∂θ(1)x∂xh22∂θ(2)y∂y+h32∂θ(1)y∂yh22(∂θ(2)x∂y+∂θ(2)y∂x)+h12(∂θ(1)x∂y+∂θ(1)y∂x) } \right\}$
|
(9) |
The equilibrium equations that will enable to perform the static and free vibrations of the laminated or sandwich composite plate, can be obtained through Hamilton principle [29] which can be written as:
$\int_{t0}^{t1} {} (\delta U - \delta V + \delta W)dt = 0$ | (10) |
where U, V, W represent respectively the elastic strain energy, the kinetic energy and the work done by external forces applied to the system. Each of these parameters is generically given by:
$\delta U = \int_\Omega ^{} {} (\delta {\varepsilon ^T}\sigma )d\Omega \qquad; \qquad \delta V = \int_\Omega ^{} {} (\rho \delta {{\dot q}^T}\dot q)d\Omega \qquad; \qquad \delta W = \int_{\text{A}}^{} {} (p\delta q)dA$ | (11) |
with $\Omega, A$ being the volume of the plate and the loading application area; $\varepsilon, \sigma$ are the generalized strains and stresses’ vectors. The density and the pressure loading are respectively represented by $\rho$ and p. After the constitution of the element matrices and vectors, and their subsequent assembly considering the discretized domain, we can write the equilibrium equation:
$Kq + M\ddot q = F$ | (12) |
where K, M, F represent respectively the global elastic stiffness and mass matrices and the global load vector, and $q, \ddot q$ stand for the generalized displacements and accelerations vectors. The vector of the generalized degrees of freedom is then given as:
${q^T} = [{u_0},{v_0},{w_0},{\theta _{x1}},{\theta _{y1}},{\theta _{x2}},{\theta _{y2}},{\theta _{x3}},{\theta _{y3}}]$ | (13) |
Assuming free harmonic vibrations we’ll have:
$(K - \omega _i^2M)qi = 0$ | (14) |
with $\omega _i$ representing the ith natural frequency associated to the ith vibration mode qi. For a linear static problem, the equilibrium equation becomes reduced to:
$Kq = F$ | (15) |
In any case, these equilibrium equations are solved only after the imposition of the boundary conditions associated to the problem under study.
The laminated plates considered in the studies carried out possess a three-layered configuration and comprise two main types of plates: a first one where the outer layers are made of orthotropic composite layers and the core is an isotropic foam. In the second group of plates, all the layers are from orthotropic composite materials. The composite layers consider a 60% volume fraction of long reinforcement fibers (carbon or glass) embedded in an epoxy resin. Tables 1 and 2, present the properties used in the present study.
Vf = 60% | E1 (GPa) | E2 (GPa) | G12 (GPa) | υ12 | ($\rho $ kg/m3) |
Glass-Epoxy | 45.0 | 12.0 | 4.5 | 0.3 | 2080 |
Carbon-Epoxy | 134.0 | 7.0 | 4.2 | 0.25 | 1530 |
H35 | H45 | H60 | H80 | H100 | H130 | H160 | H200 | H250 | |
Young’s modulus (MPa) | 49 | 55 | 75 | 95 | 130 | 175 | 205 | 250 | 320 |
Poisson’s ratio | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Density (kg/m3) | 38 | 48 | 60 | 80 | 100 | 130 | 160 | 200 | 250 |
Concerning to the materials presented in Table 2, which properties were consulted in the manufacturer site [30] and more specifically to the softness of the core, it is important to say that to obtain a more effective prediction of the response of a soft core sandwich it would be advisable to adopt a more adequate approach that takes into account its viscoelastic behavior. The study of soft core sandwich structures constitutes an investigation field where others researchers have been carrying out different studies. Among others we may refer Daya and Pottier-Ferry [24], Barkanov et al. [24] and Araújo et al. [26]. Considering however just the elastic behavior, a higher order methodology may be an approach to consider in particular if the aspect ratio of the plates is not high. The transverse displacement and the stress components determined in the different case studies, as well as the natural frequencies, are presented in a non-dimensional form using the following multipliers:
$ˉw=w(l2,l2,0)q,ˉσ1x=σ(1)x(l2,l2,h2)q,ˉσ2x=σ(1)x(l2,l2,hcore2)q,ˉσ3x=σ(2)x(l2,l2,hcore2)qˉσ1y=σ(1)y(l2,l2,h2)q,ˉσ2y=σ(1)y(l2,l2,hcore2)q,ˉσ3y=σ(1)y(l2,l2,hcore2)qˉτ1xz=τ(2)xz(0,l2,0)q,ˉτ2xz=τ(2)xz(0,l2,hcore2)q,ˉω=ωh√ρE2 $
|
(16) |
The points where these quantities are assessed, as well as its plate spatial correspondence can be respectively exemplified in Figure 4. In Table 3, the presented coordinates are exemplified for a situation where all the layers have equal thickness.
A | B | C | D | E | F |
$w\left( {\frac{l}{2},\frac{l}{2},0} \right)$ | ${\sigma _x^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{h}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{h}{2}} \right)}$ | ${\sigma _x^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ | ${\sigma _x^{(2)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ | ${\tau _{xz}^{(2)}\left( {0,\frac{l}{2},0} \right)}$ | ${\tau _{xz}^{(2)}\left( {0,\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ |
The present layerwise model was implemented using a Lagrange quadrilateral plate finite element model with nine nodes, each having nine degrees of freedom, according to equation 13. The discretization used comprised a plate elements mesh, unless otherwise stated. In this work, one considers aspect ratios ranging from five to twenty. As it would be possible to observe, the results obtained, allow to conclude that thicker composites can still be analyzed using this theory. If one considers thinner laminates, a simpler theory may be more adequate.
Two first case studies were considered in the present work, to validate the results obtained using the layerwise model taking as reference the results obtained by other authors. The first case is devoted to the static analysis of a sandwich plate, and the second case is focused on the characterization of the eight first natural frequencies of a laminated composite. The discretization considered for the studies carried out was a mesh.
In this first case, one considered the static analysis of a simply supported square sandwich plate having skin thicknesses of each, and a core thickness equal to, being (h) the total thickness. The plate is submitted to a uniformly distributed transverse load. The elastic stiffness coefficients of the sandwich core are expressed in the matrix, $\bar Q_{core}$ as [31]:
${\bar Q_{core}} = \left[{0.9997810.2311920000.2311920.524886000000.62931000000.266810000000.159914 } \right]$
|
The skins’ elastic stiffness coefficients are related to the core coefficients by a factor as follows:
${\bar Q_{skin}} = R{\bar Q_{core}}$ |
The results obtained, namely the transverse displacements and the stresses are presented in a non-dimensional form using the multipliers,
$ˉw=w(l2,l2,0)0.999781hq,ˉσ1x=σ(1)x(l2,l2,h2)q,ˉσ2x=σ(1)x(l2,l2,4h10)q,ˉσ3x=σ(2)x(l2,l2,4h10)q,ˉσ1y=σ(1)y(l2,l2,h2)q,ˉσ2y=σ(1)y(l2,l2,4h10)q,ˉσ3y=σ(1)y(l2,l2,4h10)q,ˉτ1xz=τ(2)xz(0,l2,0)q,ˉτ2xz=τ(2)xz(0,l2,4h10)q $
|
In Tables 4-6 one summarizes the transverse displacements and the stresses in non-dimensional form, for different ratios (R) between the elastic stiffness coefficients of the skins and the ones of the core. The present results are denoted in Tables 4-7 by Q4 and Q9 to denote the two quadrilateral bilinear and biquadratic finite elements used.
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 256.13 | 62.38 | 46.91 | 9.382 | 38.93 | 30.33 | 6.065 | 3.089 | 2.566 |
Exact [31] | 258.97 | 60.353 | 46.623 | 9.34 | 38.491 | 30.097 | 6.161 | 4.3641 | 3.2675 |
Ferreira [32] | 258.834 | 60.088 | 46.372 | 9.274 | - | - | - | 3.880 | 1.731 |
Ferreira [27] | 258.180 | 60.0262 | 46.3926 | 9.2785 | 38.3644 | 30.0294 | 6.0059 | 4.095 | 2.0418 |
Q4,(4 × 4) | 259.5352 | 55.923 | 42.7778 | 8.5556 | 36.8245 | 28.6415 | 5.7283 | 2.9135 | 1.2510 |
Q4,(10 × 10) | 258.8336 | 59.5704 | 45.9692 | 9.1938 | 38.2179 | 29.8914 | 5.9783 | 3.6289 | 1.5831 |
Q4,(12 × 12) | 258.8424 | 59.8026 | 46.1183 | 9.2237 | 38.3128 | 29.9483 | 5.9897 | 3.7122 | 1.6286 |
Q4,(20 × 20) | 258.8342 | 60.0881 | 46.3718 | 9.2744 | 38.4267 | 30.0523 | 6.0105 | 3.8804 | 1.7314 |
Q9,(4 × 4) | 258.5895 | 60.3915 | 46.942 | 9.3884 | 38.6598 | 30.4271 | 6.0854 | 4.0522 | 1.8705 |
Q9,(10 × 10) | 258.8281 | 60.2736 | 46.556 | 9.3112 | 38.4985 | 30.127 | 6.0254 | 4.0669 | 1.9366 |
Q9,(12 × 12) | 258.8314 | 60.2689 | 46.5404 | 9.3081 | 38.4972 | 30.1202 | 6.024 | 4.0719 | 1.952 |
Q9,(20 × 20) | 258.8342 | 60.2607 | 46.5197 | 9.3039 | 38.4959 | 30.1124 | 6.0225 | 4.0841 | 1.9826 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 152.33 | 64.65 | 51.31 | 5.131 | 42.83 | 33.97 | 3.397 | 3.147 | 2.587 |
Exact [31] | 159.38 | 65.332 | 48.857 | 4.903 | 43.566 | 33.413 | 3.5 | 4.0959 | 3.5154 |
Ferreira [32] | 159.476 | 65.047 | 48.576 | 4.858 | - | - | - | 3.792 | 1.928 |
Ferreira [27] | 158.9117 | 64.9927 | 48.6009 | 4.8601 | 43.4907 | 33.4089 | 3.3409 | 3.9803 | 2.3325 |
Q4,(4 × 4) | 162.0181 | 60.543 | 44.4486 | 4.4449 | 41.9587 | 31.8772 | 3.1877 | 2.8323 | 1.3629 |
Q4,(10 × 10) | 159.6822 | 64.4631 | 48.1314 | 4.8131 | 43.3636 | 33.2797 | 3.328 | 3.5483 | 1.747 |
Q4,(12 × 12) | 159.6097 | 64.7366 | 48.2823 | 4.8282 | 43.4708 | 33.3274 | 3.3327 | 3.6295 | 1.8016 |
Q4,(20 × 20) | 159.4757 | 65.0473 | 48.5758 | 4.8576 | 43.5805 | 33.4408 | 3.3441 | 3.7918 | 1.9279 |
Q9,(4 × 4) | 159.3758 | 65.4971 | 49.2619 | 4.9262 | 43.932 | 33.9226 | 3.3923 | 3.8726 | 2.007 |
Q9,(10 × 10) | 159.4047 | 65.2546 | 48.782 | 4.8782 | 43.6564 | 33.5212 | 3.3521 | 3.9533 | 2.1755 |
Q9,(12 × 12) | 159.4053 | 65.2476 | 48.7654 | 4.8765 | 43.6535 | 33.5134 | 3.3513 | 3.9621 | 2.2073 |
Q9,(20 × 20) | 159.4058 | 65.2373 | 48.7433 | 4.8743 | 43.6505 | 33.5042 | 3.3504 | 3.9779 | 2.2689 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 110.43 | 66.62 | 51.97 | 3.465 | 44.92 | 35.41 | 2.361 | 3.035 | 2.691 |
Exact [31] | 121.72 | 66.787 | 48.299 | 3.238 | 46.424 | 34.955 | 2.494 | 3.9638 | 3.5768 |
Ferreira [32] | 121.871 | 66.490 | 48.000 | 3.200 | - | - | - | 3.730 | 2.019 |
Ferreira [27] | 121.3474 | 66.4362 | 48.0104 | 3.2007 | 46.3849 | 34.9650 | 2.331 | 3.9024 | 2.4811 |
Q4,(4 × 4) | 125.0593 | 61.9463 | 43.5915 | 2.9061 | 44.8984 | 33.3497 | 2.2233 | 2.7739 | 1.4016 |
Q4,(10 × 10) | 122.1499 | 65.8759 | 47.5395 | 3.1693 | 46.2623 | 34.8631 | 2.3242 | 3.4912 | 1.8158 |
Q4,(12 × 12) | 122.0484 | 66.1709 | 47.6863 | 3.1791 | 46.3774 | 34.9007 | 2.3267 | 3.5712 | 1.8766 |
Q4,(20 × 20) | 121.8709 | 66.4903 | 48.0001 | 3.2 | 46.4797 | 35.0191 | 2.3346 | 3.7297 | 2.0192 |
Q9,(4 × 4) | 121.8099 | 67.0141 | 48.6933 | 3.2462 | 46.8978 | 35.5358 | 2.3691 | 3.7749 | 2.0626 |
Q9,(10 × 10) | 121.7767 | 66.7069 | 48.2131 | 3.2142 | 46.5567 | 35.1012 | 2.3401 | 3.8804 | 2.3078 |
Q9,(12 × 12) | 121.7766 | 66.6983 | 48.1976 | 3.2132 | 46.5525 | 35.0931 | 2.3395 | 3.8899 | 2.3516 |
Q9,(20 × 20) | 121.7765 | 66.6866 | 48.1768 | 3.2118 | 46.5478 | 35.0835 | 2.3389 | 3.9054 | 2.433 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
R = 5 | |||||||||
Exact [31] | 258.97 | 60.353 | 46.623 | 9.34 | 38.491 | 30.097 | 6.161 | 4.3641 | 3.2675 |
Ferreira [32] | 258.834 | 60.088 | 46.372 | 9.274 | - | - | - | 3.880 | 1.731 |
Ferreira [27] | 258.180 | 60.0262 | 46.3926 | 9.2785 | 38.3644 | 30.0294 | 6.0059 | 4.095 | 2.0418 |
Q4 | 258.8342 | 60.0881 | 46.3718 | 9.2744 | 38.4267 | 30.0523 | 6.0105 | 3.8804 | 1.7314 |
Q9 | 258.8342 | 60.2607 | 46.5197 | 9.3039 | 38.4959 | 30.1124 | 6.0225 | 4.0841 | 1.9826 |
Q4,k = 5/6 | 267.1507 | 59.9246 | 45.9070 | 9.1814 | 38.7909 | 30.2055 | 6.0411 | 3.8675 | 1.7430 |
Q9,k = 5/6 | 267.1177 | 60.0977 | 46.0558 | 9.2112 | 38.8587 | 30.2646 | 6.0529 | 4.0667 | 1.9980 |
R = 10 | |||||||||
Exact [31] | 159.38 | 65.332 | 48.857 | 4.903 | 43.566 | 33.413 | 3.5 | 4.0959 | 3.5154 |
Ferreira [32] | 159.476 | 65.047 | 48.576 | 4.858 | - | - | - | 3.792 | 1.928 |
Ferreira [27] | 158.9117 | 64.9927 | 48.6009 | 4.8601 | 43.4907 | 33.4089 | 3.3409 | 3.9803 | 2.3325 |
Q4 | 159.4757 | 65.0473 | 48.5758 | 4.8576 | 43.5805 | 33.4408 | 3.3441 | 3.7918 | 1.9279 |
Q9 | 159.4058 | 65.2373 | 48.7433 | 4.8743 | 43.6505 | 33.5042 | 3.3504 | 3.9779 | 2.2689 |
Q4,k = 5/6 | 167.4872 | 64.7566 | 47.6721 | 4.7672 | 44.2484 | 33.6886 | 3.3689 | 3.7697 | 1.9447 |
Q9,k = 5/6 | 167.3863 | 64.9468 | 47.8409 | 4.7841 | 44.3164 | 33.7511 | 3.3751 | 3.9513 | 2.2977 |
R = 15 | |||||||||
Exact [31] | 121.72 | 66.787 | 48.299 | 3.238 | 46.424 | 34.955 | 2.494 | 3.9638 | 3.5768 |
Ferreira [32] | 121.871 | 66.490 | 48.000 | 3.200 | - | - | - | 3.730 | 2.019 |
Ferreira [27] | 121.3474 | 66.4362 | 48.0104 | 3.2007 | 46.3849 | 34.9650 | 2.331 | 3.9024 | 2.4811 |
Q4 | 121.8709 | 66.4903 | 48.0001 | 3.2 | 46.4797 | 35.0191 | 2.3346 | 3.7297 | 2.0192 |
Q9 | 121.7765 | 66.6866 | 48.1768 | 3.2118 | 46.5478 | 35.0835 | 2.3389 | 3.9054 | 2.433 |
Q4,k=5/6 | 129.7105 | 66.1127 | 46.7050 | 3.1137 | 47.4140 | 35.3295 | 2.3553 | 3.6995 | 2.0400 |
Q9,k=5/6 | 129.5865 | 66.3085 | 46.8830 | 3.1255 | 47.4803 | 35.3936 | 2.3596 | 3.8704 | 2.4703 |
As it is possible to conclude, the present results show a general good agreement with the reference solutions. The results obtained with the LW-Q9 model are in good agreement with the ones obtained by Ferreira et al. [27] which used a LW theory and radial basis functions discretization. Although in the present work, one only presents results obtained with nine-node elements, the results obtained with the four-node element implement can be observed also in these tables. A good agreement is found with Ferreira [32] solution which used a bilinear quadrilateral finite element based on a simplified formulation where the membrane degrees of freedom were neglected. Considering a shear correction factor of 5/6, the results will be the ones presented in Table 7.
As it is possible to conclude, and as expected, the use of a shear correction equal to 5/6, produces alterations in the different quantities presented. In the present cases, the agreement with the reference solutions is better when k = 1.
This second validation study, considers a cross-ply simply supported laminated plate with the following stacking sequence [0º/90º/90º/0º]. The thickness-to-span ratio h/a is 0.2 and the thickness of all the plies is equal. The material properties of the composite are E1/E2 = 10, 20, 30, 40; G12 = G13 = 0.6 E2;G23 = 0.5 E2; v12 = 0.25. Table 8 presents the fundamental frequency in a non-dimensional form using the multiplier $\bar \omega = \frac{{\omega {a^2}}}{h}\sqrt {\frac{\rho }{{{E_2}}}} $.
k | Method | 10 | 20 | 30 | 40 |
1 | Liew et al. [33] | 8.2924 | 9.5613 | 10.320 | 10.849 |
Khdeir et al. [34] | 8.2982 | 9.5671 | 10.326 | 10.854 | |
Ferreira et al. [28] | 8.5846 | 9.8384 | 10.5695 | 10.0649 | |
1 | Present (11 × 11) | 8.4255 | 9.5735 | 10.2072 | 10.62 |
Present (15 × 15) | 8.4244 | 9.5724 | 10.2063 | 10.6192 | |
Present (19 × 19) | 8.4241 | 9.5722 | 10.2061 | 10.619 | |
5/6 | Present (11 × 11) | 8.14 | 9.1314 | 9.6646 | 10.0078 |
Present (15 × 15) | 8.1389 | 9.1305 | 9.6638 | 10.0071 | |
Present (19 × 19) | 8.1387 | 9.1303 | 9.6636 | 10.0069 |
From Table 8 it is possible to conclude on the good agreement with the reference results for the different stiffness ratios considered. As we may conclude, in these cases the use of a unit shear correction factor yields a better agreement when compared to the use of a 5/6 shear correction factor.
In this second validation study, one has considered a simply supported square laminated plate with the following stacking sequence [0º/90º/90º/0º]. The side-to-thickness ratio a/h is set to 10 and the thickness of each ply is h/3. The material properties of the composite are: E1 = 173 MPa; E2 = 33.1 MPa; G12 = 9.38 MPa; G13 = 8.27 MPa; G23 = 3.24 MPa; v12 = 0.036; v13 = 0.25; v23 = 0.171. For illustrative purposes, we present in Figure 5 the corresponding first eight vibration modes.
The results obtained in the free vibrations analyses carried out, are presented in Table 9.
Method | (1,1) | (1,2) | (2,1) | (2,2) | (1,3) | (2,3) | (3,1) | (3,2) |
Exact [35] | 0.0672 | 0.1281 | 0.1722 | 0.2080 | - | - | - | - |
Nosier et al. [22] | 0.0672 | 0.1282 | 0.1723 | 0.2081 | - | - | - | - |
Ferreira et al. [27] | 0.0681 | 0.1322 | 0.1762 | 0.2150 | 0.2376 | 0.2954 | 0.3009 | 0.3288 |
Present,(4 × 4) | 0.0687 | 0.1277 | 0.1829 | 0.2166 | 0.2263 | 0.2882 | 0.3175 | 0.3397 |
Present,(10 × 10) | 0.0687 | 0.127 | 0.1817 | 0.2155 | 0.2195 | 0.2836 | 0.3099 | 0.3286 |
Present,(12 × 12) | 0.0687 | 0.1269 | 0.1817 | 0.2155 | 0.2194 | 0.2836 | 0.3098 | 0.3281 |
Present,(20 × 20) | 0.0687 | 0.1269 | 0.1817 | 0.2155 | 0.2193 | 0.2835 | 0.3097 | 0.3277 |
The frequencies in Table 9 are non-dimensionalized using the corresponding multiplier in Eqn. 16. We can also observe a general good agreement with the reference results.
Following the previous validation studies, we considered a case study where the inner layer, the core, was made from different density polyvinyl chloride (PVC) foams [30]. This configuration is able to present a favorable lightweight solution, namely when the structure weight can be a constraint. To this purpose one has studied the effect of considering different foams with different thicknesses. The outer layers, were assumed to be made of unidirectional carbon-epoxy or glass-epoxy composite. The material properties are presented in Tables 1 and 2, and an aspect ratio a/h = 10 was considered. The plates were subjected to a uniformly distributed transverse load (1 Pa). The maximum deflection and the first five natural frequencies for a sandwich configuration with carbon-epoxy skins and a core with 10 mm and 15 mm thickness are respectively presented in Tables 10 and 11, in a non-dimensional form. The thickness of each skin is 2 mm, in both cases.
Core Id. | Material Id. | Deflection | Vibration modes | ||||
(1, 1) | (2, 1) | (1, 2) | (2, 2) | (3, 1) | |||
1 | H35 | 2.35E−07 | 0.0303 | 0.0489 | 0.0619 | 0.0723 | 0.0736 |
2 | H45 | 2.16E−07 | 0.0316 | 0.0511 | 0.064 | 0.0758 | 0.0765 |
3 | H60 | 1.72E−07 | 0.0354 | 0.0576 | 0.0707 | 0.085 | 0.0859 |
4 | H80 | 1.45E−07 | 0.0385 | 0.0629 | 0.0767 | 0.0924 | 0.0944 |
5 | H100 | 1.16E−07 | 0.0431 | 0.0703 | 0.0858 | 0.1034 | 0.1067 |
6 | H130 | 9.43E−08 | 0.0478 | 0.0777 | 0.0959 | 0.1153 | 0.1193 |
7 | H160 | 8.47E−08 | 0.0504 | 0.0817 | 0.1019 | 0.1222 | 0.1263 |
8 | H200 | 7.41E−08 | 0.0539 | 0.0869 | 0.1101 | 0.1314 | 0.1354 |
9 | H250 | 6.32E−08 | 0.0584 | 0.0934 | 0.1213 | 0.1438 | 0.1469 |
Core Id. | Material Id. | Deflection | Vibration modes | ||||
1 | H35 | 2.64E−07 | 0.0285 | 0.0465 | 0.0541 | 0.0659 | 0.0688 |
2 | H45 | 2.41E−07 | 0.0298 | 0.0487 | 0.0565 | 0.0689 | 0.0722 |
3 | H60 | 1.91E−07 | 0.0335 | 0.0550 | 0.0639 | 0.0779 | 0.0822 |
4 | H80 | 1.60E−07 | 0.0366 | 0.0600 | 0.0702 | 0.0856 | 0.0906 |
5 | H100 | 1.27E−07 | 0.0411 | 0.0671 | 0.0799 | 0.0969 | 0.1024 |
6 | H130 | 1.03E−07 | 0.0456 | 0.0740 | 0.0903 | 0.1089 | 0.1144 |
7 | H160 | 9.28E−08 | 0.0481 | 0.0778 | 0.0965 | 0.1158 | 0.1210 |
8 | H200 | 8.13E−08 | 0.0514 | 0.0826 | 0.1048 | 0.1250 | 0.1295 |
9 | H250 | 6.94E−08 | 0.0557 | 0.0887 | 0.1161 | 0.1373 | 0.1403 |
From Table 10, we see that as we go from the H35 to the H250 foam core, the maximum deflection decreases, which is expected as the foams provide an increasing stiffness to the plate. Concerning to the frequencies we observe an opposite trend as expected. Table 11 presents now a similar set of studies, considering a thicker core.
Again we observe that the maximum deflection decreases for the higher density cores configurations, and the frequencies increase. We see additionally that in this last situation, where the core is thicker but the skins have the same thickness, we achieve a less stiff solution, which would be expectable.
The identification of the core material in the horizontal axis of the graphics, correspond to the core identification in Tables 10 and 11, CE and GE denotes the carbon-epoxy and glass-epoxy skins.
Similar trends are observed if one considers glass-epoxy skins, as depicted in Figures 6 and 7. In addition to the stiffening effect provided by the two types of skins at different distances from the middle-plane, it is also worth of mention the evolution of the Young’s modulus and the density for the different cores configurations considered. We may conclude from the material data (Table 2) that we have a greater gradient in the case of the Young’s modulus, although for the second core, the evolution rate of the Young’s modulus is lower. Considering these aspects, the static and dynamic response of the sandwich plate in the neighborhood of this second configuration becomes clearer.
Also concerning to the remaining response evolution, the evolution rate of the Young’s modulus slows down again in the case of the seventh core, but not the density one. This is again visible in the responses (Figures 6 and 7). Globally, we can conclude that despite the proximity perception of the curves which may be affected by the magnitude of the different scales’ axes; the thicker these cores are, the greater the deflection and the minor the fundamental frequency of the sandwich plate. Moreover, when we consider a growing density core, regardless its thickness, the fundamental frequency increases and the deflection decreases.
In order to characterize the influence of plate aspect ratio (a/h) in its mechanical response, we considered a unit edge length, simply supported square laminated plate [0º/90º/0º], subjected to a uniformly distributed transverse load (1 Pa) and three side-to-thickness ratios (a/h = 5, 10 and 20). The material properties of the carbon-epoxy composite used in the plate are listed in Table 1, and the transverse displacement and the stress components are presented in non-dimensional form.
In Table 12 we can observe the non-dimensional transverse displacement and stresses for the three aspect ratios. Additionally we can also see how the plate behaves if for each a/h we consider the variation of the skins thicknesses in an equal manner. We can conclude that as the aspect ratio (a/h) increases, the plate goes thinner and the non-dimensional transverse displacement also increases.
a/h | hk | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | h/6 | 1.48E−09 | 19.5679 | 13.0317 | 0.8189 | 1.3064 | 0.7513 | 11.3281 | 2.4376 | 1.2329 |
h/5 | 1.50E−09 | 18.5382 | 11.2410 | 0.7236 | 1.3899 | 0.7205 | 11.1640 | 2.6190 | 1.3573 | |
h/4 | 1.57E−09 | 17.5487 | 9.1203 | 0.6083 | 1.5917 | 0.6740 | 10.7743 | 2.8794 | 1.5397 | |
h/3 | 1.72E−09 | 16.7142 | 6.2640 | 0.4399 | 1.9373 | 0.5558 | 9.1840 | 3.2748 | 1.8389 | |
10 | h/6 | 1.50E−08 | 78.2689 | 52.1422 | 3.3108 | 4.8995 | 3.1501 | 48.0947 | 4.8990 | 2.4775 |
h/5 | 1.51E−08 | 76.6934 | 46.1283 | 2.9489 | 4.9249 | 2.8708 | 44.1609 | 5.3622 | 2.7893 | |
h/4 | 1.53E−08 | 75.1630 | 37.9595 | 2.4446 | 4.9481 | 2.4378 | 37.7885 | 5.9820 | 3.2284 | |
h/3 | 1.59E−08 | 73.8013 | 25.3755 | 1.6389 | 5.4659 | 1.6997 | 27.4375 | 6.8049 | 3.8884 | |
20 | h/6 | 2.05E−07 | 313.4683 | 208.9234 | 13.3188 | 19.4379 | 12.8451 | 196.9901 | 9.8338 | 4.9746 |
h/5 | 2.05E−07 | 311.7869 | 187.1772 | 11.9098 | 19.1397 | 11.4128 | 174.6566 | 10.8530 | 5.6574 | |
h/4 | 2.05E−07 | 309.2712 | 155.0268 | 9.8104 | 18.4756 | 9.2265 | 141.4401 | 12.1659 | 6.5958 | |
h/3 | 2.06E−07 | 304.6326 | 102.3482 | 6.3685 | 19.2816 | 6.2762 | 102.4880 | 13.7655 | 7.9295 |
A similar response pattern is visible in the case of the stresses. For a specific a/h when we consider the thickening of the skins (hk) we can conclude that the increasing trend also occurs for the transverse displacement. In the case of the evolution of stresses, it shows a similar consistent trend.
In Table 13 it is also possible to see the first four non-dimensional natural frequencies, for the same aspect ratios and skins’ thicknesses.
a/h | hk | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | h/6 | 0.3811 | 0.6345 | 0.8080 | 0.9135 |
h/5 | 0.3774 | 0.6037 | 0.8158 | 0.8883 | |
h/4 | 0.3694 | 0.5804 | 0.7996 | 0.8661 | |
h/3 | 0.3535 | 0.5501 | 0.7645 | 0.8537 | |
10 | h/6 | 0.1216 | 0.2339 | 0.3189 | 0.3812 |
h/5 | 0.1211 | 0.2222 | 0.3223 | 0.3631 | |
h/4 | 0.1199 | 0.2054 | 0.3228 | 0.3365 | |
h/3 | 0.1172 | 0.1828 | 0.3005 | 0.3164 | |
20 | h/6 | 0.0331 | 0.0725 | 0.0993 | 0.1216 |
h/5 | 0.0331 | 0.0671 | 0.1024 | 0.1211 | |
h/4 | 0.0330 | 0.0600 | 0.1052 | 0.1090 | |
h/3 | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
Regarding the natural frequencies, it is possible to see that as the aspect ratio increases, the natural frequencies decrease. This pattern trend is also visible when the thickness of the middle layer decreases.
To characterize the effect of the fibers’ orientations on the static and free vibration behavior of the previous plates, we carried out another study. To this purpose we have considered three types of laminates, which stacking sequences may be summarized as [θº/0º/θº], [−θº/0º/θº] and [−θº/90º/θº]. The material properties of the composite and the aspect ratios considered were the same of the previous case study and the transverse displacement and the stress components are again presented in a non-dimensional form. The results obtained are presented in Tables 14 to 15.
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [0°/0°/0°] | 2.14E−09 | 18.8606 | 2.2167 | 2.2167 | 2.5442 | 0.7787 | 0.7787 | 3.0414 | 1.9686 |
[30°/0°/30°] | 1.70E−09 | 12.0237 | 3.3023 | 4.3633 | 5.5495 | 1.3426 | 0.5884 | 2.5117 | 1.6649 | |
[45°/0°/45°] | 1.53E−09 | 8.1046 | 2.3263 | 3.4907 | 8.3541 | 2.5853 | 0.5242 | 2.2195 | 1.4765 | |
[60°/0°/60°] | 1.56E−09 | 5.1650 | 1.1668 | 5.3923 | 12.4994 | 3.1178 | 0.4897 | 1.9449 | 1.1327 | |
[90°/0°/90°] | 1.72E−09 | 1.9373 | 0.5558 | 9.1840 | 16.7142 | 6.2640 | 0.4399 | 1.3839 | 0.6264 | |
10 | [0°/0°/0°] | 1.78E−08 | 76.2657 | 20.5571 | 20.5571 | 6.5166 | 2.0940 | 2.0940 | 6.8372 | 3.9905 |
[30°/0°/30°] | 1.60E−08 | 47.4375 | 12.7804 | 27.0856 | 19.6930 | 5.5572 | 2.1496 | 5.7971 | 3.3289 | |
[45°/0°/45°] | 1.50E−08 | 30.1627 | 8.2030 | 24.8592 | 30.6463 | 8.8301 | 2.3782 | 5.0787 | 2.9633 | |
[60°/0°/60°] | 1.53E−08 | 19.5482 | 5.9614 | 25.8571 | 48.5890 | 15.2072 | 2.3090 | 4.5459 | 2.2036 | |
[90°/0°/90°] | 1.59E−08 | 5.4659 | 1.6997 | 27.4375 | 73.8013 | 25.3755 | 1.6389 | 2.6868 | 0.9767 | |
20 | [0°/0°/0°] | 2.11E−07 | 303.6790 | 96.2366 | 96.2366 | 21.9219 | 7.2265 | 7.2265 | 14.1760 | 7.8875 |
[30°/0°/30°] | 2.06E−07 | 188.8223 | 59.9691 | 129.9897 | 75.9990 | 24.3419 | 8.2395 | 12.4625 | 6.7458 | |
[45°/0°/45°] | 1.98E−07 | 118.8191 | 37.7501 | 121.8943 | 119.3034 | 38.1318 | 9.3731 | 11.1544 | 6.2335 | |
[60°/0°/60°] | 2.03E−07 | 76.3067 | 24.8855 | 110.2294 | 189.6396 | 62.3118 | 8.8632 | 10.8669 | 4.5299 | |
[90°/0°/90°] | 2.06E−07 | 19.2816 | 6.2762 | 102.4880 | 304.6326 | 102.3482 | 6.3685 | 5.4941 | 1.7139 |
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [0°/0°/0°] | 0.3184 | 0.5296 | 0.6699 | 0.8151 |
[30°/0°/30°] | 0.3568 | 0.5996 | 0.7204 | 0.8591 | |
[45°/0°/45°] | 0.3759 | 0.6251 | 0.7582 | 0.8795 | |
[60°/0°/60°] | 0.3727 | 0.6052 | 0.7736 | 0.8715 | |
[90°/0°/90°] | 0.3535 | 0.5501 | 0.7645 | 0.8537 | |
10 | [0°/0°/0°] | 0.1104 | 0.1660 | 0.2795 | 0.2838 |
[30°/0°/30°] | 0.1174 | 0.1997 | 0.2832 | 0.3055 | |
[45°/0°/45°] | 0.1212 | 0.2137 | 0.2866 | 0.3167 | |
[60°/0°/60°] | 0.1203 | 0.2082 | 0.2999 | 0.3166 | |
[90°/0°/90°] | 0.1172 | 0.1828 | 0.3005 | 0.3164 | |
20 | [0°/0°/0°] | 0.0321 | 0.0464 | 0.0768 | 0.1016 |
[30°/0°/30°] | 0.0329 | 0.0569 | 0.0900 | 0.0933 | |
[45°/0°/45°] | 0.0336 | 0.0615 | 0.0900 | 0.0949 | |
[60°/0°/60°] | 0.0332 | 0.0601 | 0.0949 | 0.0957 | |
[90°/0°/90°] | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
From Table 14 it is possible to conclude that angle-ply and cross-ply three-layered laminates perform more conservatively specially for thick and moderately thick laminates. The results obtained for the stresses’ components are in accordance with this.
The natural frequencies in Table 15 present a consistent trend with the Table 14 results.
When the outer plies do not follow the same unidirectional angle of the core, the fundamental frequency, as well as the other higher order frequencies, becomes higher, being higher in the case of the 45º outer plies’ laminate. Again this effect is more significant for thicker plates. From these results, one may conclude that the better stacking sequence concerning the minimum transverse deformation and the maximum fundamental frequency is presented the [45º/0º/45º] laminate. In Table 16, we can now observe the static response of the plates that possess a symmetric orientation angle in the outer layers.
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [−30°/0°/30°] | 1.36E−09 | 10.6046 | 2.2560 | 6.1698 | 4.5360 | 0.9185 | 1.0381 | 2.2967 | 1.6094 |
[−45°/0°/45°] | 1.20E−09 | 7.2749 | 1.7780 | 3.3350 | 7.2567 | 1.8070 | 1.4519 | 1.9979 | 1.4215 | |
[−60°/0°/60°] | 1.31E−09 | 4.3180 | 1.2189 | 2.7765 | 10.6534 | 3.4639 | 1.3589 | 1.6848 | 1.1015 | |
10 | [−30°/0°/30°] | 1.18E−08 | 39.0379 | 12.3092 | 21.9477 | 15.7575 | 4.7019 | 3.4992 | 5.0932 | 3.5805 |
[−45°/0°/45°] | 1.05E−08 | 26.9461 | 10.9467 | 14.2479 | 27.2759 | 11.0915 | 5.0608 | 4.4088 | 3.0320 | |
[−60°/0°/60°] | 1.17E−08 | 15.6310 | 6.4519 | 14.7755 | 40.0437 | 18.3180 | 4.6169 | 3.7081 | 2.2366 | |
20 | [−30°/0°/30°] | 1.43E−07 | 154.4374 | 52.6199 | 80.4305 | 59.8252 | 19.7365 | 11.5330 | 10.6298 | 9.9229 |
[−45°/0°/45°] | 1.29E−07 | 107.6135 | 45.2929 | 59.0214 | 108.8538 | 45.8082 | 16.5644 | 9.1362 | 8.0365 | |
[−60°/0°/60°] | 1.44E−07 | 60.4675 | 25.1479 | 61.1296 | 158.0092 | 71.2223 | 15.0004 | 7.7873 | 5.3613 |
From Table 16 we see that when the angles of the outer layers are symmetrical, the laminate presents a stiffer behavior, when compared to the configuration in Table 14. One may also conclude that the better stacking sequence concerning the minimum transverse deflection is given by the [−45º/0º/45º] configuration. In Table 17, for the same laminates, we may conclude on a similar pattern in the opposite sense (maximum frequencies values) concerning the natural frequencies.
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [−30°/0°/30°] | 0.3976 | 0.6774 | 0.7444 | 0.9865 |
[−45°/0°/45°] | 0.4220 | 0.7353 | 0.7778 | 1.0323 | |
[−60°/0°/60°] | 0.4050 | 0.6630 | 0.8061 | 0.9850 | |
10 | [−30°/0°/30°] | 0.1361 | 0.2424 | 0.2994 | 0.3875 |
[−45°/0°/45°] | 0.1441 | 0.2859 | 0.2915 | 0.4243 | |
[−60°/0°/60°] | 0.1368 | 0.2458 | 0.3171 | 0.3849 | |
20 | [−30°/0°/30°] | 0.0393 | 0.0737 | 0.0999 | 0.1216 |
[−45°/0°/45°] | 0.0415 | 0.0906 | 0.0914 | 0.1458 | |
[−60°/0°/60°] | 0.0392 | 0.0757 | 0.1013 | 0.1267 |
Next, in Table 18, we present, the non-dimensional maximum deflection and stress components for the [−θº/90º/θº] lamination, where the lamination [−45º/90º/45º] shows to be more favorable, similarly with the results in Table 16, due to the equal thicknesses configuration considered.
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [0°/90°/0°] | 1.72E−09 | 16.7142 | 6.2640 | 0.4399 | 1.9373 | 0.5558 | 9.1840 | 3.2748 | 1.8389 |
[−30°/90°/30°] | 1.31E−09 | 10.6534 | 3.4639 | 1.3589 | 4.3180 | 1.2189 | 2.7765 | 2.6221 | 1.8097 | |
[−45°/90°/45°] | 1.20E−09 | 7.2567 | 1.8070 | 1.4519 | 7.2749 | 1.7780 | 3.3350 | 2.1744 | 1.6364 | |
[−60°/90°/60°] | 1.36E−09 | 4.5360 | 0.9185 | 1.0381 | 10.6046 | 2.2560 | 6.1698 | 1.7903 | 1.2796 | |
10 | [0°/90°/0°] | 1.59E−08 | 73.8013 | 25.3755 | 1.6389 | 5.4659 | 1.6997 | 27.4375 | 6.8049 | 3.8884 |
[−30°/90°/30°] | 1.17E−08 | 40.0437 | 18.3180 | 4.6169 | 15.6310 | 6.4519 | 14.7755 | 5.3656 | 4.9047 | |
[−45°/90°/45°] | 1.05E−08 | 27.2759 | 11.0915 | 5.0608 | 26.9461 | 10.9467 | 14.2479 | 4.4455 | 4.3578 | |
[−60°/90°/60°] | 1.18E−08 | 15.7575 | 4.7019 | 3.4992 | 39.0379 | 12.3092 | 21.9477 | 3.4952 | 2.9696 | |
20 | [0°/90°/0°] | 2.06E−07 | 304.6326 | 102.3482 | 6.3685 | 19.2816 | 6.2762 | 102.4880 | 13.7655 | 7.9295 |
[−30°/90°/30°] | 1.44E−07 | 158.0092 | 71.2223 | 15.0004 | 60.4675 | 25.1479 | 61.1296 | 10.8575 | 14.2759 | |
[−45°/90°/45°] | 1.29E−07 | 108.8538 | 45.8082 | 16.5644 | 107.6135 | 45.2929 | 59.0214 | 9.0321 | 12.3551 | |
[−60°/90°/60°] | 1.43E−07 | 59.8252 | 19.7365 | 11.5330 | 154.4374 | 52.6199 | 80.4305 | 7.0534 | 7.9900 |
A similar conclusion concerning the more favorable stacking configuration, may be drawn for the fundamental frequency and higher ones, in Table 19.
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [0°/90°/0°] | 0.3535 | 0.5501 | 0.7645 | 0.8537 |
[−30°/90°/30°] | 0.4050 | 0.6630 | 0.8061 | 0.9850 | |
[−45°/90°/45°] | 0.4220 | 0.7353 | 0.7778 | 1.0323 | |
[−60°/90°/60°] | 0.3976 | 0.6774 | 0.7444 | 0.9865 | |
10 | [0°/90°/0°] | 0.1172 | 0.1828 | 0.3005 | 0.3164 |
[−30°/90°/30°] | 0.1368 | 0.2458 | 0.3171 | 0.3849 | |
[−45°/90°/45°] | 0.1441 | 0.2859 | 0.2915 | 0.4243 | |
[−60°/90°/60°] | 0.1361 | 0.2424 | 0.2994 | 0.3875 | |
20 | [0°/90°/0°] | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
[−30°/90°/30°] | 0.0392 | 0.0757 | 0.1013 | 0.1267 | |
[−45°/90°/45°] | 0.0415 | 0.0906 | 0.0914 | 0.1458 | |
[−60°/90°/60°] | 0.0393 | 0.0737 | 0.0999 | 0.1216 |
In Figure 8, by comparing the three sets of the previous deflection results for an aspect ratio a/h = 10, we conclude that for the studied laminations, the solution [−45º/0º/45º] provide a stiffer plate.
Similarly for the non-dimensional fundamental frequency, presented in Figure 9, we arrive at a similar conclusion, concerning the maximization of that frequency.
From the different configurations considered, it is possible to conclude that stacking sequences [−45º/90º/45º] and [−45º/0º/45º] would perform better.
In this case study, one intends to assess the static and free vibration behavior of three-layered plates, having the same matrix phase and different reinforcement fibers. To the purpose of this study we have considered a fixed stacking sequence, namely [30º/0º/30º] maintaining the same equal thickness in all layers. The boundary conditions, loading and the discretization used are identical to the ones in the previous case studies. The material properties used in the present case, are shown in Table 1. Again the results are presented in a non-dimensional form. The results obtained can be observed in Table 20 and in Figure 10 and 11, respectively for the static and free vibrations analyses. In Table 20, GE and CE represent respectively the glass-epoxy and the carbon-epoxy composite.
Vf = 0.6 | a/h | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
GE | 5 | 2.01E−09 | 8.8353 | 2.0988 | 2.7273 | 6.0754 | 1.6864 | 1.3079 | 2.3512 | 1.4542 |
10 | 2.33E−08 | 35.5669 | 11.0048 | 14.5513 | 22.3650 | 7.1129 | 5.0361 | 5.0489 | 2.9002 | |
20 | 3.36E−07 | 142.3576 | 46.6049 | 61.7848 | 87.3974 | 28.7909 | 19.9212 | 10.4751 | 5.8138 | |
CE | 5 | 1.70E−09 | 12.0237 | 3.3023 | 4.3633 | 5.5495 | 1.3426 | 0.5884 | 2.5117 | 1.6649 |
10 | 1.60E−08 | 47.4375 | 12.7804 | 27.0856 | 19.6930 | 5.5572 | 2.1496 | 5.7971 | 3.3289 | |
20 | 2.06E−07 | 188.8223 | 59.9691 | 129.9897 | 75.9990 | 24.3419 | 8.2395 | 12.4625 | 6.7458 |
From Table 20 we conclude that, as expected the carbon-epoxy composite provides a stiffer plate when compared to the glass-epoxy composite laminated plate. As previously, as the aspect ratio increases, the deflection follows the same increasing trend. The stress components accompany an identical behavior to that one already observed.
Concerning to Figure 10, it is important to note that the results are presented in a non-dimensional form (Eqn. 16). So, assuming that the linear elastic operating conditions of the structure would be not compromised, if we considered further increases in the aspect ratio, this doesn’t means that the frequencies would be the same, irrespective to the material nature. As expected, also in Figure 11 we may conclude on the stiffening effect of the carbon in the composite, yielding higher fundamental frequencies regardless the aspect ratio value.
In the legend of Figure 11, GE and CE stand respectively for glass-epoxy and carbon-epoxy. From this figure we may see extended to the higher vibration modes, the conclusion that the carbon-epoxy plates present higher frequencies’ values when compared to the glass-epoxy ones. It is also possible to globally observe that the natural frequencies present a decreasing trend for higher aspect ratios.
This work presents a study on the static and free vibrations response of sandwich and laminated composite plates, carried out through a first order shear deformation layerwise theory. The parametric analyses carried out allowed characterizing the influence of material and geometrical properties of these plates. Summarizing the results obtained in the different parametric studies carried out, it is possible to conclude on the importance of the sandwich core stiffness as well as on the nature of the reinforcement fiber and on the stacking sequence in the case of the three-layered fiber reinforced composite. The influence of the geometrical parameters considered namely the plate’s aspect ratio and the layers thicknesses was also verified in both cases. Globally, one considers that the results obtained in this parametric study, contributes to the understanding of the static and free vibrations behavior of sandwich and three-layered composite plates. It is also relevant to add that this layerwise theory, besides the achievement of a detailed kinematics description, may be computationally less expensive when compared to other equivalent single-layer higher order theories.
The authors acknowledge the support of FCT/MEC through the Project LAETA UID/EMS/50022/2013.
All authors declare no conflict of interest.
[1] |
Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117: 145–152. doi: 10.1016/S0165-3806(99)00113-3
![]() |
[2] |
Ginhoux F, Greter M, Leboeuf M, et al. (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330: 841–845. doi: 10.1126/science.1194637
![]() |
[3] | Gomez Perdiguero E, Klapproth K, Schulz C, et al. (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518: 547–551. |
[4] |
Tay TL, Hagemeyer N, Prinz M (2016) The force awakens: Insights into the origin and formation of microglia. Curr Opin Neurobiol 39: 30–37. doi: 10.1016/j.conb.2016.04.003
![]() |
[5] |
Tay TL, Savage JC, Hui CW, et al. (2017) Microglia across the lifespan: From origin to function in brain development, plasticity and cognition. J Physiol 595: 1929–1945. doi: 10.1113/JP272134
![]() |
[6] |
Askew K, Li K, Olmos-Alonso A, et al. (2017) Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18: 391–405. doi: 10.1016/j.celrep.2016.12.041
![]() |
[7] |
Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48: 405–415. doi: 10.1016/0306-4522(92)90500-2
![]() |
[8] |
Réu P, Khosravi A, Bernard S, et al. (2017) The lifespan and turnover of microglia in the human brain. Cell Rep 20: 779–784. doi: 10.1016/j.celrep.2017.07.004
![]() |
[9] |
Tay TL, Mai D, Dautzenberg J, et al. (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20: 793–803. doi: 10.1038/nn.4547
![]() |
[10] |
Davalos D, Grutzendler J, Yang G, et al. (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8: 752–758. doi: 10.1038/nn1472
![]() |
[11] |
Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318. doi: 10.1126/science.1110647
![]() |
[12] |
Kettenmann H, Hanisch UK, Noda M, et al. (2011) Physiology of microglia. Physiol Rev 91: 461. doi: 10.1152/physrev.00011.2010
![]() |
[13] |
Arnoux I, Hoshiko M, Mandavy L, et al. (2013) Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory "barrel" cortex. Glia 61: 1582–1594. doi: 10.1002/glia.22503
![]() |
[14] |
Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, et al. (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35: 4552–4570. doi: 10.1523/JNEUROSCI.2061-14.2015
![]() |
[15] |
Li Y, Du XF, Liu CS, et al. (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23: 1189–1202. doi: 10.1016/j.devcel.2012.10.027
![]() |
[16] |
Schafer DP, Lehrman EK, Kautzman AG, et al. (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74: 691–705. doi: 10.1016/j.neuron.2012.03.026
![]() |
[17] |
Arnò B, Grassivaro F, Rossi C, et al. (2014) Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat Commun 5: 5611. doi: 10.1038/ncomms6611
![]() |
[18] |
Hagemeyer N, Hanft KM, Akriditou MA, et al. (2017) Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 134: 441–458. doi: 10.1007/s00401-017-1747-1
![]() |
[19] |
Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, et al. (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34: 2231–2243. doi: 10.1523/JNEUROSCI.1619-13.2014
![]() |
[20] |
Ueno M, Fujita Y, Tanaka T, et al. (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16: 543–551. doi: 10.1038/nn.3358
![]() |
[21] |
Hoshiko M, Arnoux I, Avignone E, et al. (2012) Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 32: 15106–15111. doi: 10.1523/JNEUROSCI.1167-12.2012
![]() |
[22] |
Paolicelli RC, Bolasco G, Pagani F, et al. (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333: 1456–1458. doi: 10.1126/science.1202529
![]() |
[23] |
Zhan Y, Paolicelli RC, Sforazzini F, et al. (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17: 400–406. doi: 10.1038/nn.3641
![]() |
[24] |
Cunningham CL, Martínez-Cerde?o V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33: 4216–4233. doi: 10.1523/JNEUROSCI.3441-12.2013
![]() |
[25] |
Marín-Teva JL, Dusart I, Colin C, et al. (2004) Microglia promote the death of developing Purkinje cells. Neuron 41: 535–547. doi: 10.1016/S0896-6273(04)00069-8
![]() |
[26] |
Peri F, Nüsslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133: 916–927. doi: 10.1016/j.cell.2008.04.037
![]() |
[27] |
Swinnen N, Smolders S, Avila A, et al. (2013) Complex invasion pattern of the cerebral cortex by microglial cells during development of the mouse embryo. Glia 61: 150–163. doi: 10.1002/glia.22421
![]() |
[28] |
Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15: 209–216. doi: 10.1038/nrn3710
![]() |
[29] |
Ahlers KE, Kara?ay B, Fuller L, et al. (2015) Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration. Glia 63: 1694–1713. doi: 10.1002/glia.22835
![]() |
[30] |
Anacker C, Hen R (2017) Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci 18: 335–346. doi: 10.1038/nrn.2017.45
![]() |
[31] | Sierra A, Beccari S, Diaz-Aparicio I, et al. (2014) Surveillance, phagocytosis, and inflammation: How never-resting microglia influence adult hippocampal neurogenesis. Neural Plast 2014: 610343. |
[32] |
Sierra A, Encinas JM, Deudero JJP, et al. (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7: 483–495. doi: 10.1016/j.stem.2010.08.014
![]() |
[33] |
Ribeiro Xavier AL, Kress BT, Goldman SA, et al. (2015) A distinct population of microglia supports adult neurogenesis in the subventricular zone. J Neurosci 35: 11848–11861. doi: 10.1523/JNEUROSCI.1217-15.2015
![]() |
[34] |
Gu Y, Arruda-Carvalho M, Wang J, et al. (2012) Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15: 1700–1706. doi: 10.1038/nn.3260
![]() |
[35] |
Nakashiba T, Cushman JD, Pelkey KA, et al. (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149: 188–201. doi: 10.1016/j.cell.2012.01.046
![]() |
[36] |
Bachstetter AD, Morganti JM, Jernberg J, et al. (2011) Fractalkine and CXCR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32: 2030–2044. doi: 10.1016/j.neurobiolaging.2009.11.022
![]() |
[37] |
Rogers JT, Morganti JM, Bachstetter AD, et al. (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31: 16241–16250. doi: 10.1523/JNEUROSCI.3667-11.2011
![]() |
[38] |
Sellner S, Paricio-Montesinos R, Spie? A, et al. (2016) Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol Commun 4: 102. doi: 10.1186/s40478-016-0374-8
![]() |
[39] |
Citri A, Malenka RC (2008) Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 33: 18–41. doi: 10.1038/sj.npp.1301559
![]() |
[40] |
Neves G, Cooke SF, Bliss TVP (2008) Synaptic plasticity, memory and the hippocampus: A neural network approach to causality. Nat Rev Neurosci 9: 65–75. doi: 10.1038/nrn2303
![]() |
[41] |
Roumier A, Béchade C, Poncer JC, et al. (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24: 11421–11428. doi: 10.1523/JNEUROSCI.2251-04.2004
![]() |
[42] |
Roumier A, Pascual O, Béchade C, et al. (2008) Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One 3: e2595. doi: 10.1371/journal.pone.0002595
![]() |
[43] |
Costello DA, Lyons A, Denieffe S, et al. (2011) Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: A role for Toll-like receptor activation. J Biol Chem 286: 34722–34732. doi: 10.1074/jbc.M111.280826
![]() |
[44] |
Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440: 1054–1059. doi: 10.1038/nature04671
![]() |
[45] |
Santello M, Volterra A (2012) TNFα in synaptic function: Switching gears. Trends Neurosci 35: 638–647. doi: 10.1016/j.tins.2012.06.001
![]() |
[46] |
Arisi GM (2014) Nervous and immune systems signals and connections: Cytokines in hippocampus physiology and pathology. Epilepsy Behav 38: 43–47. doi: 10.1016/j.yebeh.2014.01.017
![]() |
[47] |
McAfoose J, Baune BT (2009) Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 33: 355–366. doi: 10.1016/j.neubiorev.2008.10.005
![]() |
[48] |
Williamson LL, Sholar PW, Mistry RS, et al. (2011) Microglia and memory: Modulation by early-life infection. J Neurosci 31: 15511–15521. doi: 10.1523/JNEUROSCI.3688-11.2011
![]() |
[49] |
Caraci F, Gulisano W, Guida CA, et al. (2015) A key role for TGF-β1 in hippocampal synaptic plasticity and memory. Sci Rep 5: 11252. doi: 10.1038/srep11252
![]() |
[50] |
Butovsky O, Jedrychowski MP, Moore CS, et al. (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17: 131–143. doi: 10.1038/nn.3599
![]() |
[51] |
Sanes JR, Yamagata M (2009) Many paths to synaptic specificity. Annu Rev Cell Dev Biol 25: 161–195. doi: 10.1146/annurev.cellbio.24.110707.175402
![]() |
[52] |
Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10: 647–658. doi: 10.1038/nrn2699
![]() |
[53] |
Holtmaat AJGD, Trachtenberg JT, Wilbrecht L, et al. (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45: 279–291. doi: 10.1016/j.neuron.2005.01.003
![]() |
[54] |
Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: Regulation and functions. Nat Rev Neurosci 13: 478–490. doi: 10.1038/nrn3258
![]() |
[55] |
Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 85: 145–157. doi: 10.1007/BF00325030
![]() |
[56] |
Trapp BD, Wujek JR, Criste GA, et al. (2007) Evidence for synaptic stripping by cortical microglia. Glia 55: 360–368. doi: 10.1002/glia.20462
![]() |
[57] |
Wake H, Moorhouse AJ, Jinno S, et al. (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29: 3974–3980. doi: 10.1523/JNEUROSCI.4363-08.2009
![]() |
[58] |
Tremblay Mè, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8: e1000527. doi: 10.1371/journal.pbio.1000527
![]() |
[59] |
Ji K, Akgul G, Wollmuth LP, et al. (2013) Microglia actively regulate the number of functional synapses. PLoS One 8: e56293. doi: 10.1371/journal.pone.0056293
![]() |
[60] |
Torres L, Danver J, Ji K, et al. (2016) Dynamic microglial modulation of spatial learning and social behavior. Brain Behav Immun 55: 6–16. doi: 10.1016/j.bbi.2015.09.001
![]() |
[61] |
Lowery RL, Tremblay Mè, Hopkins BE, et al. (2017) The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system. Glia 65: 1744–1761. doi: 10.1002/glia.23192
![]() |
[62] |
Dalmau I, Finsen B, Zimmer J, et al. (1998) Development of microglia in the postnatal rat hippocampus. Hippocampus 8: 458–474. doi: 10.1002/(SICI)1098-1063(1998)8:5<458::AID-HIPO6>3.0.CO;2-N
![]() |
[63] |
Squarzoni P, Oller G, Hoeffel G, et al. (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8: 1271–1279. doi: 10.1016/j.celrep.2014.07.042
![]() |
[64] |
Bessis A, Béchade C, Bernard D, et al. (2007) Microglial control of neuronal death and synaptic properties. Glia 55: 233–238. doi: 10.1002/glia.20459
![]() |
[65] |
Parkhurst CN, Yang G, Ninan I, et al. (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155: 1596–1609. doi: 10.1016/j.cell.2013.11.030
![]() |
[66] |
Bennett ML, Bennett FC, Liddelow SA, et al. (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113: E1738–E1746. doi: 10.1073/pnas.1525528113
![]() |
[67] |
Miyamoto A, Wake H, Ishikawa AW, et al. (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 7: 12540. doi: 10.1038/ncomms12540
![]() |
[68] |
Chugh D, Nilsson P, Afjei SA, et al. (2013) Brain inflammation induces post-synaptic changes during early synapse formation in adult-born hippocampal neurons. Exp Neurol 250: 176–188. doi: 10.1016/j.expneurol.2013.09.005
![]() |
[69] | Cardona SM, Mendiola AS, Yang YC, et al. (2015) Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina. ASN Neuro 7: 1–18. |
[70] |
Moran LB, Graeber MB (2004) The facial nerve axotomy model. Brain Res Rev 44: 154–178. doi: 10.1016/j.brainresrev.2003.11.004
![]() |
[71] |
Chamak B, Dobbertin A, Mallat M (1995) Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 69: 177–187. doi: 10.1016/0306-4522(95)00236-C
![]() |
[72] |
Christopherson KS, Ullian EM, Stokes CCA, et al. (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120: 421–433. doi: 10.1016/j.cell.2004.12.020
![]() |
[73] |
M?ller JC, Klein MA, Haas S, et al. (1996) Regulation of thrombospondin in the regenerating mouse facial motor nucleus. Glia 17: 121–132. doi: 10.1002/(SICI)1098-1136(199606)17:2<121::AID-GLIA4>3.0.CO;2-5
![]() |
[74] |
Morris GP, Clark IA, Zinn R, et al. (2013) Microglia: A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105: 40–53. doi: 10.1016/j.nlm.2013.07.002
![]() |
[75] | Schwarz JM, Sholar PW, Bilbo SD (2012) Sex differences in microglial colonization of the developing rat brain. J Neurochem 120: 948–963. |
[76] |
Lenz KM, Nugent BM, Haliyur R, et al. (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33: 2761–2772. doi: 10.1523/JNEUROSCI.1268-12.2013
![]() |
[77] |
Sorge RE, Mapplebeck JCS, Rosen S, et al. (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18: 1081–1083. doi: 10.1038/nn.4053
![]() |
[78] |
Wu MV, Shah NM (2011) Control of masculinization of the brain and behavior. Curr Opin Neurobiol 21: 116–123. doi: 10.1016/j.conb.2010.09.014
![]() |
[79] |
Mendez P, Garcia-Segura LM, Muller D (2011) Estradiol promotes spine growth and synapse formation without affecting pre-established networks. Hippocampus 21: 1263–1267. doi: 10.1002/hipo.20875
![]() |
[80] |
Nelson LH, Warden S, Lenz KM (2017) Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun 64: 11–22. doi: 10.1016/j.bbi.2017.03.010
![]() |
[81] |
Bettis TJ, Jacobs LF (2009) Sex-specific strategies in spatial orientation in C57BL/6J mice. Behav Processes 82: 249–255. doi: 10.1016/j.beproc.2009.07.004
![]() |
[82] |
Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7: 477–484. doi: 10.1038/nrn1909
![]() |
[83] |
Rademakers R, Baker M, Nicholson AM, et al. (2012) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44: 200–205. doi: 10.1038/ng.1027
![]() |
[84] |
Bianchin MM, Capella HM, Chaves DL, et al. (2004) Nasu-Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy-PLOSL): A dementia associated with bone cystic lesions. Cell Mol Neurobiol 24: 1–24. doi: 10.1023/B:CEMN.0000012721.08168.ee
![]() |
[85] |
Paloneva J, Kestil? M, Wu J, et al. (2000) Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25: 357–361. doi: 10.1038/77153
![]() |
[86] |
Paloneva J, Manninen T, Christman G, et al. (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71: 656–662. doi: 10.1086/342259
![]() |
[87] | Hakola HP (1972) Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr Scand Suppl 232: 1–173. |
[88] | Nasu T, Tsukahara Y, Terayama K (1973) A lipid metabolic disease-"membranous lipodystrophy" -an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Pathol Jpn 23: 539–558. |
[89] |
Takahashi K, Rochford CDP, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201: 647–657. doi: 10.1084/jem.20041611
![]() |
[90] |
Wakselman S, Béchade C, Roumier A, et al. (2008) Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 28: 8138–8143. doi: 10.1523/JNEUROSCI.1006-08.2008
![]() |
[91] | Axelsson R, R?ytt? M, Sourander P, et al. (1984) Hereditary diffuse leucoencephalopathy with spheroids. Acta Psychiatr Scand Suppl 314: 1–65. |
[92] |
Elmore MRP, Najafi AR, Koike MA, et al. (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82: 380–397. doi: 10.1016/j.neuron.2014.02.040
![]() |
[93] | Erblich B, Zhu L, Etgen AM, et al. (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6: e26317. |
[94] | Greter M, Lelios I, Pelczar P, et al. (2012) Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37: 1050–1060. |
[95] | Wang Y, Szretter KJ, Vermi W, et al. (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13: 753–760. |
[96] | Otero K, Turnbull IR, Poliani PL, et al. (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat Immunol 10: 734–743. |
[97] |
Konno T, Tada M, Tada M, et al. (2014) Haploinsufficiency of CSF-1R and clinicopathologic characterization in patients with HDLS. Neurology 82: 139–148. doi: 10.1212/WNL.0000000000000046
![]() |
[98] |
Sundal C, Lash J, Aasly J, et al. (2012) Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS): A misdiagnosed disease entity. J Neurol Sci 314: 130–137. doi: 10.1016/j.jns.2011.10.006
![]() |
[99] |
Matcovitch-Natan O, Winter DR, Giladi A, et al. (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353: aad8670. doi: 10.1126/science.aad8670
![]() |
[100] |
Schaafsma W, Basterra LB, Jacobs S, et al. (2017) Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol Dis 106: 291–300. doi: 10.1016/j.nbd.2017.07.017
![]() |
[101] |
Bilbo SD, Levkoff LH, Mahoney JH, et al. (2005) Neonatal infection induces memory impairments following an immune challenge in adulthood. Behav Neurosci 119: 293–301. doi: 10.1037/0735-7044.119.1.293
![]() |
[102] |
Bilbo SD, Biedenkapp JC, Der-Avakian A, et al. (2005) Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. J Neurosci 25: 8000–8009. doi: 10.1523/JNEUROSCI.1748-05.2005
![]() |
[103] |
Osborne BF, Caulfield JI, Solomotis SA, et al. (2017) Neonatal infection produces significant changes in immune function with no associated learning deficits in juvenile rats. Dev Neurobiol 77: 1221–1236. doi: 10.1002/dneu.22512
![]() |
[104] |
Knuesel I, Chicha L, Britschgi M, et al. (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10: 643–660. doi: 10.1038/nrneurol.2014.187
![]() |
[105] |
Boitard C, Cavaroc A, Sauvant J, et al. (2014) Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 40: 9–17. doi: 10.1016/j.bbi.2014.03.005
![]() |
[106] |
Hsu TM, Konanur VR, Taing L, et al. (2015) Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 25: 227–239. doi: 10.1002/hipo.22368
![]() |
[107] |
De Luca SN, Ziko I, Sominsky L, et al. (2016) Early life overfeeding impairs spatial memory performance by reducing microglial sensitivity to learning. J Neuroinflammation 13: 1–15. doi: 10.1186/s12974-015-0467-5
![]() |
[108] |
Hao S, Dey A, Yu X, et al. (2016) Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun 51: 230–239. doi: 10.1016/j.bbi.2015.08.023
![]() |
[109] |
Tanaka S, Ide M, Shibutani T, et al. (2006) Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats. J Neurosci Res 83: 557–566. doi: 10.1002/jnr.20752
![]() |
[110] |
Riazi K, Galic MA, Kuzmiski JB, et al. (2008) Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U.S.A 105: 17151–17156. doi: 10.1073/pnas.0806682105
![]() |
[111] |
Riazi K, Galic MA, Kentner AC, et al. (2015) Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci 35: 4942–4952. doi: 10.1523/JNEUROSCI.4485-14.2015
![]() |
[112] |
D'Mello C, Riazi K, Le T, et al. (2013) P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci 33: 14878–14888. doi: 10.1523/JNEUROSCI.1329-13.2013
![]() |
[113] |
Vasek MJ, Garber C, Dorsey D, et al. (2016) A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 534: 538–543. doi: 10.1038/nature18283
![]() |
[114] |
Minami M, Kuraishi Y, Yamaguchi T, et al. (1991) Immobilization stress induces interleukin-1 beta mRNA in the rat hypothalamus. Neurosci Lett 123: 254–256. doi: 10.1016/0304-3940(91)90944-O
![]() |
[115] | Nguyen KT, Deak T, Owens SM, et al. (1998) Exposure to acute stress induces brain interleukin-1beta protein in the rat. J Neurosci 18: 2239–2246. |
[116] |
Pugh CR, Nguyen KT, Gonyea JL, et al. (1999) Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav Brain Res 106: 109–118. doi: 10.1016/S0166-4328(99)00098-4
![]() |
[117] |
Sugama S, Fujita M, Hashimoto M, et al. (2007) Stress induced morphological microglial activation in the rodent brain: Involvement of interleukin-18. Neuroscience 146: 1388–1399. doi: 10.1016/j.neuroscience.2007.02.043
![]() |
[118] |
Li S, Wang C, Wang W, et al. (2008) Chronic mild stress impairs cognition in mice: From brain homeostasis to behavior. Life Sci 82: 934–942. doi: 10.1016/j.lfs.2008.02.010
![]() |
[119] |
Frank MG, Baratta MV, Sprunger DB, et al. (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21: 47–59. doi: 10.1016/j.bbi.2006.03.005
![]() |
[120] |
Ohgidani M, Kato TA, Sagata N, et al. (2016) TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice. Brain Behav Immun 55: 17–24. doi: 10.1016/j.bbi.2015.08.022
![]() |
[121] |
Hinwood M, Morandini J, Day TA, et al. (2012) Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 22: 1442–1454. doi: 10.1093/cercor/bhr229
![]() |
[122] |
Kreisel T, Frank MG, Licht T, et al. (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19: 699–709. doi: 10.1038/mp.2013.155
![]() |
[123] |
Sugama S (2009) Stress-induced microglial activation may facilitate the progression of neurodegenerative disorders. Med Hypotheses 73: 1031–1034. doi: 10.1016/j.mehy.2009.02.047
![]() |
[124] | Diz-Chaves Y, Pernía O, Carrero P, et al. (2012) Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation 9: 1–10. |
[125] |
Frank MG, Thompson BM, Watkins LR, et al. (2012) Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav Immun 26: 337–345. doi: 10.1016/j.bbi.2011.10.005
![]() |
[126] |
Jauregui-Huerta F, Ruvalcaba-Delgadillo Y, Gonzalez-Casta?eda R, et al. (2010) Responses of glial cells to stress and glucocorticoids. Curr Immunol Rev 6: 195–204. doi: 10.2174/157339510791823790
![]() |
[127] |
Dantzer R, O'Connor JC, Freund GG, et al. (2008) From inflammation to sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci 9: 46–56. doi: 10.1038/nrn2297
![]() |
[128] |
Bachtell R, Hutchinson MR, Wang X, et al. (2015) Targeting the toll of drug abuse: The translational potential of Toll-like receptor 4. CNS Neurol Disord Drug Targets 14: 692–699. doi: 10.2174/1871527314666150529132503
![]() |
[129] | Nadjar A, Wigren HKM, Tremblay Mè (2017) Roles of microglial phagocytosis and inflammatory mediators in the pathophysiology of sleep disorders. Front Cell Neurosci 11: 250. |
[130] |
Liu MC, Liu XQ, Wang W, et al. (2012) Involvement of microglia activation in the lead induced long-term potentiation impairment. PLoS One 7: e43924. doi: 10.1371/journal.pone.0043924
![]() |
[131] |
Akinrinade ID, Memudu AE, Ogundele OM, et al. (2015) Interplay of glia activation and oxidative stress formation in fluoride and aluminium exposure. Pathophysiology 22: 39–48. doi: 10.1016/j.pathophys.2014.12.001
![]() |
[132] |
Hefendehl JK, Neher JJ, Sühs RB, et al. (2014) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13: 60–69. doi: 10.1111/acel.12149
![]() |
[133] |
Ritzel RM, Patel AR, Pan S, et al. (2015) Age- and location-related changes in microglial function. Neurobiol Aging 36: 2153–2163. doi: 10.1016/j.neurobiolaging.2015.02.016
![]() |
[134] |
Streit WJ, Sammons NW, Kuhns AJ, et al. (2004) Dystrophic microglia in the aging human brain. Glia 45: 208–212. doi: 10.1002/glia.10319
![]() |
[135] |
Streit WJ, Braak H, Xue QS, et al. (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathol 118: 475–485. doi: 10.1007/s00401-009-0556-6
![]() |
[136] |
Tremblay Mè, Zettel ML, Ison JR, et al. (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60: 541–558. doi: 10.1002/glia.22287
![]() |
[137] | Njie EG, Boelen E, Stassen FR, et al. (2012) Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 33: 195.e1–195.e12. |
[138] |
Bisht K, Sharma KP, Lecours C, et al. (2016) Dark microglia: A new phenotype predominantly associated with pathological states. Glia 64: 826–839. doi: 10.1002/glia.22966
![]() |
[139] | Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 88: 594–604. |
[140] |
Sierra A, Gottfried-Blackmore AC, McEwen BS, et al. (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55: 412–424. doi: 10.1002/glia.20468
![]() |
[141] |
Stichel CC, Luebbert H (2007) Inflammatory processes in the aging mouse brain: Participation of dendritic cells and T-cells. Neurobiol Aging 28: 1507–1521. doi: 10.1016/j.neurobiolaging.2006.07.022
![]() |
[142] |
Füger P, Hefendehl JK, Veeraraghavalu K, et al. (2017) Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging. Nat Neurosci 20: 1371–1376. doi: 10.1038/nn.4631
![]() |
[143] |
Cartier N, Lewis CA, Zhang R, et al. (2014) The role of microglia in human disease: Therapeutic tool or target? Acta Neuropathol 128: 363–380. doi: 10.1007/s00401-014-1330-y
![]() |
[144] |
Cunningham C (2013) Microglia and neurodegeneration: The role of systemic inflammation. Glia 61: 71–90. doi: 10.1002/glia.22350
![]() |
[145] |
Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10: 217–224. doi: 10.1038/nrneurol.2014.38
![]() |
[146] |
Solano Fonseca R, Mahesula S, Apple DM, et al. (2016) Neurogenic niche microglia undergo positional remodeling and progressive activation contributing to age-associated reductions in neurogenesis. Stem Cells Dev 25: 542–555. doi: 10.1089/scd.2015.0319
![]() |
[147] |
Shi Q, Colodner KJ, Matousek SB, et al. (2015) Complement C3-deficient mice fail to display age-related hippocampal decline. J Neurosci 35: 13029–13042. doi: 10.1523/JNEUROSCI.1698-15.2015
![]() |
[148] |
Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362: 329–344. doi: 10.1056/NEJMra0909142
![]() |
[149] |
Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci U.S.A 87: 5827–5831. doi: 10.1073/pnas.87.15.5827
![]() |
[150] | Serrano-Pozo A, Frosch MP, Masliah E, et al. (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1: a006189. |
[151] |
Akiyama H, Barger S, Barnum S, et al. (2000) Inflammation and Alzheimer's disease. Neurobiol Aging 21: 383–421. doi: 10.1016/S0197-4580(00)00124-X
![]() |
[152] |
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 297: 353–356. doi: 10.1126/science.1072994
![]() |
[153] |
Alzheimer A, Stelzmann RA, Schnitzlein HN, et al. (1995) An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat 8: 429–431. doi: 10.1002/ca.980080612
![]() |
[154] |
Bolmont T, Haiss F, Eicke D, et al. (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28: 4283–4292. doi: 10.1523/JNEUROSCI.4814-07.2008
![]() |
[155] |
Meyer-Luehmann M, Spires-Jones TL, Prada C, et al. (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451: 720–724. doi: 10.1038/nature06616
![]() |
[156] |
Wisniewski HM, Wegiel J, Wang KC, et al. (1989) Ultrastructural studies of the cells forming amyloid fibers in classical plaques. Can J Neurol Sci 16: 535–542. doi: 10.1017/S0317167100029887
![]() |
[157] |
Bornemann KD, Wiederhold KH, Pauli C, et al. (2001) Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice. Amer J Pathol 158: 63–73. doi: 10.1016/S0002-9440(10)63945-4
![]() |
[158] | Floden AM, Combs CK (2011) Microglia demonstrate age-dependent interaction with amyloid-β fibrils. J Alzheimers Dis 25: 279–293. |
[159] |
Hickman SE, Allison EK, Khoury JE (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci 28: 8354–8360. doi: 10.1523/JNEUROSCI.0616-08.2008
![]() |
[160] |
Paolicelli RC, Jawaid A, Henstridge CM, et al. (2017) TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron 95: 297–308. doi: 10.1016/j.neuron.2017.05.037
![]() |
[161] |
Hong S, Beja-Glasser VF, Nfonoyim BM, et al. (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352: 712–716. doi: 10.1126/science.aad8373
![]() |
[162] |
Shi Q, Chowdhury S, Ma R, et al. (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 9: eaaf6295. doi: 10.1126/scitranslmed.aaf6295
![]() |
[163] |
Bertram L, Lange C, Mullin K, et al. (2008) Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE. Am J Hum Genet 83: 623–632. doi: 10.1016/j.ajhg.2008.10.008
![]() |
[164] |
Lambert JC, Heath S, Even G, et al. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41: 1094–1099. doi: 10.1038/ng.439
![]() |
[165] |
Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45: 1452–1458. doi: 10.1038/ng.2802
![]() |
[166] |
Jonsson T, Stefansson H, Steinberg S, et al. (2013) Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med 368: 107–116. doi: 10.1056/NEJMoa1211103
![]() |
[167] |
Naj AC, Jun G, Beecham GW, et al. (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet 43: 436–441. doi: 10.1038/ng.801
![]() |
[168] |
Zhang B, Gaiteri C, Bodea LG, et al. (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153: 707–720. doi: 10.1016/j.cell.2013.03.030
![]() |
[169] |
Frank S, Burbach GJ, Bonin M, et al. (2008) TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56: 1438–1447. doi: 10.1002/glia.20710
![]() |
[170] |
Guerreiro R, Wojtas A, Bras J, et al. (2013) TREM2 variants in Alzheimer's disease. N Engl J Med 368: 117–127. doi: 10.1056/NEJMoa1211851
![]() |
[171] |
Keren-Shaul H, Spinrad A, Weiner A, et al. (2017) A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169: 1276. doi: 10.1016/j.cell.2017.05.018
![]() |
[172] | Melchior B, Garcia AE, Hsiung BK, et al. (2010) Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: Implications for vaccine-based therapies for Alzheimer's disease. ASN Neuro 2: e00037. |
[173] |
Krasemann S, Madore C, Cialic R, et al. (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47: 566–581. doi: 10.1016/j.immuni.2017.08.008
![]() |
[174] |
Wang Y, Ulland TK, Ulrich JD, et al. (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213: 667–675. doi: 10.1084/jem.20151948
![]() |
[175] |
Yuan P, Condello C, Keene CD, et al. (2016) TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90: 724–739. doi: 10.1016/j.neuron.2016.05.003
![]() |
[176] |
Kleinberger G, Brendel M, Mracsko E, et al. (2017) The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J 36: 1837–1853. doi: 10.15252/embj.201796516
![]() |
[177] |
Jay TR, Hirsch AM, Broihier ML, et al. (2017) Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer's disease. J Neurosci 37: 637–647. doi: 10.1523/JNEUROSCI.2110-16.2016
![]() |
[178] |
Wang Y, Cella M, Mallinson K, et al. (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160: 1061–1071. doi: 10.1016/j.cell.2015.01.049
![]() |
[179] |
Jay TR, Miller CM, Cheng PJ, et al. (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med 212: 287–295. doi: 10.1084/jem.20142322
![]() |
[180] |
Ulrich JD, Finn MB, Wang Y, et al. (2014) Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener 9: 1–9. doi: 10.1186/1750-1326-9-1
![]() |
[181] |
Ulland TK, Song WM, Huang SCC, et al. (2017) TREM2 maintains microglial metabolic fitness in Alzheimer's disease. Cell 170: 649. doi: 10.1016/j.cell.2017.07.023
![]() |
[182] | Mazaheri F, Snaidero N, Kleinberger G, et al. (2017) TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep 18: 1186–1198. |
[183] |
Leyns CEG, Ulrich JD, Finn MB, et al. (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U.S.A 114: 11524–11529. doi: 10.1073/pnas.1710311114
![]() |
[184] |
Fuhrmann M, Bittner T, Jung CKE, et al. (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat Neurosci 13: 411–413. doi: 10.1038/nn.2511
![]() |
[185] |
Lee S, Varvel NH, Konerth ME, et al. (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. Amer J Pathol 177: 2549–2562. doi: 10.2353/ajpath.2010.100265
![]() |
[186] |
Liu Z, Condello C, Schain A, et al. (2010) CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J Neurosci 30: 17091–17101. doi: 10.1523/JNEUROSCI.4403-10.2010
![]() |
[187] |
Bhaskar K, Konerth M, Kokiko-Cochran ON, et al. (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68: 19–31. doi: 10.1016/j.neuron.2010.08.023
![]() |
[188] |
Cho SH, Sun B, Zhou Y, et al. (2011) CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286: 32713–32722. doi: 10.1074/jbc.M111.254268
![]() |
[189] |
Maphis N, Xu G, Kokiko-Cochran ON, et al. (2015) Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138: 1738–1755. doi: 10.1093/brain/awv081
![]() |
[190] |
Diaz-Aparicio I, Beccari S, Abiega O, et al. (2016) Clearing the corpses: Regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain. Neural Regen Res 11: 1533–1539. doi: 10.4103/1673-5374.193220
![]() |
[191] |
Abiega O, Beccari S, Diaz-Aparicio I, et al. (2016) Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biol 14: e1002466. doi: 10.1371/journal.pbio.1002466
![]() |
[192] |
Qian Z, Gilbert ME, Colicos MA, et al. (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361: 453–457. doi: 10.1038/361453a0
![]() |
[193] |
Wu YP, Siao CJ, Lu W, et al. (2000) The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J Cell Biol 148: 1295–1304. doi: 10.1083/jcb.148.6.1295
![]() |
[194] |
Abraham J, Fox PD, Condello C, et al. (2012) Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures. Neurobiol Dis 46: 425–430. doi: 10.1016/j.nbd.2012.02.006
![]() |
[195] |
Wang N, Mi X, Gao B, et al. (2015) Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 287: 144–156. doi: 10.1016/j.neuroscience.2014.12.021
![]() |
[196] |
Nowak M, Strzelczyk A, Reif PS, et al. (2012) Minocycline as potent anticonvulsant in a patient with astrocytoma and drug resistant epilepsy. Seizure 21: 227–228. doi: 10.1016/j.seizure.2011.12.009
![]() |
[197] |
Gass J, Prudencio M, Stetler C, et al. (2012) Progranulin: An emerging target for FTLD therapies. Brain Res 1462: 118–128. doi: 10.1016/j.brainres.2012.01.047
![]() |
[198] |
Krabbe G, Minami SS, Etchegaray JI, et al. (2017) Microglial NFκB-TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc Natl Acad Sci U S A 114: 5029–5034. doi: 10.1073/pnas.1700477114
![]() |
[199] | DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72: 245–256. |
[200] | Vance C, Al-Chalabi A, Ruddy D, et al. (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain 129: 868–876. |
[201] | Borroni B, Ferrari F, Galimberti D, et al. (2014) Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol Aging 35: 7–10. |
[202] | Guerreiro R, Bilgic B, Guven G, et al. (2013) Novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiol Aging 34: 2890.e1–2890.e5. |
[203] | Le Ber I, De Septenville A, Guerreiro R, et al. (2014) Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol Aging 35: 2419.e23–2419.e25. |
[204] | Thelen M, Razquin C, Hernández I, et al. (2014) Investigation of the role of rare TREM2 variants in frontotemporal dementia subtypes. Neurobiol Aging 35: 2657.e13–2657.e19. |
[205] |
Mackenzie IR, Rademakers R (2008) The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21: 693–700. doi: 10.1097/WCO.0b013e3283168d1d
![]() |
[206] |
Neumann M, Sampathu DM, Kwong LK, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133. doi: 10.1126/science.1134108
![]() |
[207] |
Xia Q, Hu Q, Wang H, et al. (2015) Induction of COX-2-PGE2 synthesis by activation of the MAPK/ERK pathway contributes to neuronal death triggered by TDP-43-depleted microglia. Cell Death Dis 6: e1702. doi: 10.1038/cddis.2015.69
![]() |
[208] | Benitez BA, Cooper B, Pastor P, et al. (2013) TREM2 is associated with the risk of Alzheimer's disease in Spanish population. Neurobiol Aging 34: 1711.e15–1711.e17. |
[209] | Rayaprolu S, Mullen B, Baker M, et al. (2013) TREM2 in neurodegeneration: Evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease. Mol Neurodegener 8: 19. |
[210] |
Gerhard A, Pavese N, Hotton G, et al. (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol Dis 21: 404–412. doi: 10.1016/j.nbd.2005.08.002
![]() |
[211] |
McGeer PL, Itagaki S, Boyes BE, et al. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38: 1285–1291. doi: 10.1212/WNL.38.8.1285
![]() |
[212] | Nagatsu T, Mogi M, Ichinose H, et al. (2000) Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl 80: 277–290. |
[213] | Mengel D, Thelen M, Balzer-Geldsetzer M, et al. (2016) TREM2 rare variant p.R47H is not associated with Parkinson's disease. Parkinsonism Relat Disord 23: 109–111. |
[214] |
Tay TL, Béchade C, D'Andrea I, et al. (2018) Microglia gone rogue: Impacts on psychiatric disorders across the lifespan. Front Mol Neurosci 10: 421. doi: 10.3389/fnmol.2017.00421
![]() |
[215] |
Pascual O, Ben Achour S, Rostaing P, et al. (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109: E197–E205. doi: 10.1073/pnas.1111098109
![]() |
[216] |
Liddelow SA, Guttenplan KA, Clarke LE, et al. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481–487. doi: 10.1038/nature21029
![]() |
[217] |
Goldmann T, Wieghofer P, Müller PF, et al. (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16: 1618–1626. doi: 10.1038/nn.3531
![]() |
[218] |
Yona S, Kim KW, Wolf Y, et al. (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38: 79–91. doi: 10.1016/j.immuni.2012.12.001
![]() |
[219] |
Voronova A, Yuzwa SA, Wang BS, et al. (2017) Migrating interneurons secrete fractalkine to promote oligodendrocyte formation in the developing mammalian brain. Neuron 94: 500. doi: 10.1016/j.neuron.2017.04.018
![]() |
[220] |
Garré JM, Silva HM, Lafaille JJ, et al. (2017) CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat Med 23: 714–722. doi: 10.1038/nm.4340
![]() |
[221] |
Goldmann T, Wieghofer P, Jord?o MJC, et al. (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17: 797–805. doi: 10.1038/ni.3423
![]() |
[222] |
Buttgereit A, Lelios I, Yu X, et al. (2016) Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol 17: 1397–1406. doi: 10.1038/ni.3585
![]() |
[223] |
Koso H, Tsuhako A, Lai CY, et al. (2016) Conditional rod photoreceptor ablation reveals Sall1 as a microglial marker and regulator of microglial morphology in the retina. Glia 64: 2005–2024. doi: 10.1002/glia.23038
![]() |
[224] | VanRyzin JW, Yu SJ, Perez-Pouchoulen M, et al. (2016) Temporary depletion of microglia during the early postnatal period induces lasting sex-dependent and sex-independent effects on behavior in rats. eNeuro 3: ENEURO.0297–16.2016. |
[225] |
Grathwohl SA, K?lin RE, Bolmont T, et al. (2009) Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12: 1361–1363. doi: 10.1038/nn.2432
![]() |
[226] |
Dagher NN, Najafi AR, Kayala KMN, et al. (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12: 139. doi: 10.1186/s12974-015-0366-9
![]() |
[227] |
Spangenberg EE, Lee RJ, Najafi AR, et al. (2016) Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139: 1265–1281. doi: 10.1093/brain/aww016
![]() |
[228] |
Olmos-Alonso A, Schetters STT, Sri S, et al. (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain 139: 891–907. doi: 10.1093/brain/awv379
![]() |
[229] |
Asai H, Ikezu S, Tsunoda S, et al. (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18: 1584–1593. doi: 10.1038/nn.4132
![]() |
[230] |
Zhao R, Hu W, Tsai J, et al. (2017) Microglia limit the expansion of β-amyloid plaques in a mouse model of Alzheimer's disease. Mol Neurodegener 12: 47. doi: 10.1186/s13024-017-0188-6
![]() |
[231] |
Condello C, Yuan P, Schain A, et al. (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun 6: 6176. doi: 10.1038/ncomms7176
![]() |
1. | Pavan Kumar, CV Srinivasa, On buckling and free vibration studies of sandwich plates and cylindrical shells: A review, 2020, 33, 0892-7057, 673, 10.1177/0892705718809810 | |
2. | Rebai Billel, Contribution to study the effect of (Reuss, LRVE, Tamura) models on the axial and shear stress of sandwich FGM plate (Ti–6A1–4V/ZrO2) subjected on linear and nonlinear thermal loads, 2023, 10, 2372-0484, 26, 10.3934/matersci.2023002 |
Vf = 60% | E1 (GPa) | E2 (GPa) | G12 (GPa) | υ12 | ($\rho $ kg/m3) |
Glass-Epoxy | 45.0 | 12.0 | 4.5 | 0.3 | 2080 |
Carbon-Epoxy | 134.0 | 7.0 | 4.2 | 0.25 | 1530 |
H35 | H45 | H60 | H80 | H100 | H130 | H160 | H200 | H250 | |
Young’s modulus (MPa) | 49 | 55 | 75 | 95 | 130 | 175 | 205 | 250 | 320 |
Poisson’s ratio | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Density (kg/m3) | 38 | 48 | 60 | 80 | 100 | 130 | 160 | 200 | 250 |
A | B | C | D | E | F |
$w\left( {\frac{l}{2},\frac{l}{2},0} \right)$ | ${\sigma _x^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{h}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{h}{2}} \right)}$ | ${\sigma _x^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ | ${\sigma _x^{(2)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ | ${\tau _{xz}^{(2)}\left( {0,\frac{l}{2},0} \right)}$ | ${\tau _{xz}^{(2)}\left( {0,\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 256.13 | 62.38 | 46.91 | 9.382 | 38.93 | 30.33 | 6.065 | 3.089 | 2.566 |
Exact [31] | 258.97 | 60.353 | 46.623 | 9.34 | 38.491 | 30.097 | 6.161 | 4.3641 | 3.2675 |
Ferreira [32] | 258.834 | 60.088 | 46.372 | 9.274 | - | - | - | 3.880 | 1.731 |
Ferreira [27] | 258.180 | 60.0262 | 46.3926 | 9.2785 | 38.3644 | 30.0294 | 6.0059 | 4.095 | 2.0418 |
Q4,(4 × 4) | 259.5352 | 55.923 | 42.7778 | 8.5556 | 36.8245 | 28.6415 | 5.7283 | 2.9135 | 1.2510 |
Q4,(10 × 10) | 258.8336 | 59.5704 | 45.9692 | 9.1938 | 38.2179 | 29.8914 | 5.9783 | 3.6289 | 1.5831 |
Q4,(12 × 12) | 258.8424 | 59.8026 | 46.1183 | 9.2237 | 38.3128 | 29.9483 | 5.9897 | 3.7122 | 1.6286 |
Q4,(20 × 20) | 258.8342 | 60.0881 | 46.3718 | 9.2744 | 38.4267 | 30.0523 | 6.0105 | 3.8804 | 1.7314 |
Q9,(4 × 4) | 258.5895 | 60.3915 | 46.942 | 9.3884 | 38.6598 | 30.4271 | 6.0854 | 4.0522 | 1.8705 |
Q9,(10 × 10) | 258.8281 | 60.2736 | 46.556 | 9.3112 | 38.4985 | 30.127 | 6.0254 | 4.0669 | 1.9366 |
Q9,(12 × 12) | 258.8314 | 60.2689 | 46.5404 | 9.3081 | 38.4972 | 30.1202 | 6.024 | 4.0719 | 1.952 |
Q9,(20 × 20) | 258.8342 | 60.2607 | 46.5197 | 9.3039 | 38.4959 | 30.1124 | 6.0225 | 4.0841 | 1.9826 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 152.33 | 64.65 | 51.31 | 5.131 | 42.83 | 33.97 | 3.397 | 3.147 | 2.587 |
Exact [31] | 159.38 | 65.332 | 48.857 | 4.903 | 43.566 | 33.413 | 3.5 | 4.0959 | 3.5154 |
Ferreira [32] | 159.476 | 65.047 | 48.576 | 4.858 | - | - | - | 3.792 | 1.928 |
Ferreira [27] | 158.9117 | 64.9927 | 48.6009 | 4.8601 | 43.4907 | 33.4089 | 3.3409 | 3.9803 | 2.3325 |
Q4,(4 × 4) | 162.0181 | 60.543 | 44.4486 | 4.4449 | 41.9587 | 31.8772 | 3.1877 | 2.8323 | 1.3629 |
Q4,(10 × 10) | 159.6822 | 64.4631 | 48.1314 | 4.8131 | 43.3636 | 33.2797 | 3.328 | 3.5483 | 1.747 |
Q4,(12 × 12) | 159.6097 | 64.7366 | 48.2823 | 4.8282 | 43.4708 | 33.3274 | 3.3327 | 3.6295 | 1.8016 |
Q4,(20 × 20) | 159.4757 | 65.0473 | 48.5758 | 4.8576 | 43.5805 | 33.4408 | 3.3441 | 3.7918 | 1.9279 |
Q9,(4 × 4) | 159.3758 | 65.4971 | 49.2619 | 4.9262 | 43.932 | 33.9226 | 3.3923 | 3.8726 | 2.007 |
Q9,(10 × 10) | 159.4047 | 65.2546 | 48.782 | 4.8782 | 43.6564 | 33.5212 | 3.3521 | 3.9533 | 2.1755 |
Q9,(12 × 12) | 159.4053 | 65.2476 | 48.7654 | 4.8765 | 43.6535 | 33.5134 | 3.3513 | 3.9621 | 2.2073 |
Q9,(20 × 20) | 159.4058 | 65.2373 | 48.7433 | 4.8743 | 43.6505 | 33.5042 | 3.3504 | 3.9779 | 2.2689 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 110.43 | 66.62 | 51.97 | 3.465 | 44.92 | 35.41 | 2.361 | 3.035 | 2.691 |
Exact [31] | 121.72 | 66.787 | 48.299 | 3.238 | 46.424 | 34.955 | 2.494 | 3.9638 | 3.5768 |
Ferreira [32] | 121.871 | 66.490 | 48.000 | 3.200 | - | - | - | 3.730 | 2.019 |
Ferreira [27] | 121.3474 | 66.4362 | 48.0104 | 3.2007 | 46.3849 | 34.9650 | 2.331 | 3.9024 | 2.4811 |
Q4,(4 × 4) | 125.0593 | 61.9463 | 43.5915 | 2.9061 | 44.8984 | 33.3497 | 2.2233 | 2.7739 | 1.4016 |
Q4,(10 × 10) | 122.1499 | 65.8759 | 47.5395 | 3.1693 | 46.2623 | 34.8631 | 2.3242 | 3.4912 | 1.8158 |
Q4,(12 × 12) | 122.0484 | 66.1709 | 47.6863 | 3.1791 | 46.3774 | 34.9007 | 2.3267 | 3.5712 | 1.8766 |
Q4,(20 × 20) | 121.8709 | 66.4903 | 48.0001 | 3.2 | 46.4797 | 35.0191 | 2.3346 | 3.7297 | 2.0192 |
Q9,(4 × 4) | 121.8099 | 67.0141 | 48.6933 | 3.2462 | 46.8978 | 35.5358 | 2.3691 | 3.7749 | 2.0626 |
Q9,(10 × 10) | 121.7767 | 66.7069 | 48.2131 | 3.2142 | 46.5567 | 35.1012 | 2.3401 | 3.8804 | 2.3078 |
Q9,(12 × 12) | 121.7766 | 66.6983 | 48.1976 | 3.2132 | 46.5525 | 35.0931 | 2.3395 | 3.8899 | 2.3516 |
Q9,(20 × 20) | 121.7765 | 66.6866 | 48.1768 | 3.2118 | 46.5478 | 35.0835 | 2.3389 | 3.9054 | 2.433 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
R = 5 | |||||||||
Exact [31] | 258.97 | 60.353 | 46.623 | 9.34 | 38.491 | 30.097 | 6.161 | 4.3641 | 3.2675 |
Ferreira [32] | 258.834 | 60.088 | 46.372 | 9.274 | - | - | - | 3.880 | 1.731 |
Ferreira [27] | 258.180 | 60.0262 | 46.3926 | 9.2785 | 38.3644 | 30.0294 | 6.0059 | 4.095 | 2.0418 |
Q4 | 258.8342 | 60.0881 | 46.3718 | 9.2744 | 38.4267 | 30.0523 | 6.0105 | 3.8804 | 1.7314 |
Q9 | 258.8342 | 60.2607 | 46.5197 | 9.3039 | 38.4959 | 30.1124 | 6.0225 | 4.0841 | 1.9826 |
Q4,k = 5/6 | 267.1507 | 59.9246 | 45.9070 | 9.1814 | 38.7909 | 30.2055 | 6.0411 | 3.8675 | 1.7430 |
Q9,k = 5/6 | 267.1177 | 60.0977 | 46.0558 | 9.2112 | 38.8587 | 30.2646 | 6.0529 | 4.0667 | 1.9980 |
R = 10 | |||||||||
Exact [31] | 159.38 | 65.332 | 48.857 | 4.903 | 43.566 | 33.413 | 3.5 | 4.0959 | 3.5154 |
Ferreira [32] | 159.476 | 65.047 | 48.576 | 4.858 | - | - | - | 3.792 | 1.928 |
Ferreira [27] | 158.9117 | 64.9927 | 48.6009 | 4.8601 | 43.4907 | 33.4089 | 3.3409 | 3.9803 | 2.3325 |
Q4 | 159.4757 | 65.0473 | 48.5758 | 4.8576 | 43.5805 | 33.4408 | 3.3441 | 3.7918 | 1.9279 |
Q9 | 159.4058 | 65.2373 | 48.7433 | 4.8743 | 43.6505 | 33.5042 | 3.3504 | 3.9779 | 2.2689 |
Q4,k = 5/6 | 167.4872 | 64.7566 | 47.6721 | 4.7672 | 44.2484 | 33.6886 | 3.3689 | 3.7697 | 1.9447 |
Q9,k = 5/6 | 167.3863 | 64.9468 | 47.8409 | 4.7841 | 44.3164 | 33.7511 | 3.3751 | 3.9513 | 2.2977 |
R = 15 | |||||||||
Exact [31] | 121.72 | 66.787 | 48.299 | 3.238 | 46.424 | 34.955 | 2.494 | 3.9638 | 3.5768 |
Ferreira [32] | 121.871 | 66.490 | 48.000 | 3.200 | - | - | - | 3.730 | 2.019 |
Ferreira [27] | 121.3474 | 66.4362 | 48.0104 | 3.2007 | 46.3849 | 34.9650 | 2.331 | 3.9024 | 2.4811 |
Q4 | 121.8709 | 66.4903 | 48.0001 | 3.2 | 46.4797 | 35.0191 | 2.3346 | 3.7297 | 2.0192 |
Q9 | 121.7765 | 66.6866 | 48.1768 | 3.2118 | 46.5478 | 35.0835 | 2.3389 | 3.9054 | 2.433 |
Q4,k=5/6 | 129.7105 | 66.1127 | 46.7050 | 3.1137 | 47.4140 | 35.3295 | 2.3553 | 3.6995 | 2.0400 |
Q9,k=5/6 | 129.5865 | 66.3085 | 46.8830 | 3.1255 | 47.4803 | 35.3936 | 2.3596 | 3.8704 | 2.4703 |
k | Method | 10 | 20 | 30 | 40 |
1 | Liew et al. [33] | 8.2924 | 9.5613 | 10.320 | 10.849 |
Khdeir et al. [34] | 8.2982 | 9.5671 | 10.326 | 10.854 | |
Ferreira et al. [28] | 8.5846 | 9.8384 | 10.5695 | 10.0649 | |
1 | Present (11 × 11) | 8.4255 | 9.5735 | 10.2072 | 10.62 |
Present (15 × 15) | 8.4244 | 9.5724 | 10.2063 | 10.6192 | |
Present (19 × 19) | 8.4241 | 9.5722 | 10.2061 | 10.619 | |
5/6 | Present (11 × 11) | 8.14 | 9.1314 | 9.6646 | 10.0078 |
Present (15 × 15) | 8.1389 | 9.1305 | 9.6638 | 10.0071 | |
Present (19 × 19) | 8.1387 | 9.1303 | 9.6636 | 10.0069 |
Method | (1,1) | (1,2) | (2,1) | (2,2) | (1,3) | (2,3) | (3,1) | (3,2) |
Exact [35] | 0.0672 | 0.1281 | 0.1722 | 0.2080 | - | - | - | - |
Nosier et al. [22] | 0.0672 | 0.1282 | 0.1723 | 0.2081 | - | - | - | - |
Ferreira et al. [27] | 0.0681 | 0.1322 | 0.1762 | 0.2150 | 0.2376 | 0.2954 | 0.3009 | 0.3288 |
Present,(4 × 4) | 0.0687 | 0.1277 | 0.1829 | 0.2166 | 0.2263 | 0.2882 | 0.3175 | 0.3397 |
Present,(10 × 10) | 0.0687 | 0.127 | 0.1817 | 0.2155 | 0.2195 | 0.2836 | 0.3099 | 0.3286 |
Present,(12 × 12) | 0.0687 | 0.1269 | 0.1817 | 0.2155 | 0.2194 | 0.2836 | 0.3098 | 0.3281 |
Present,(20 × 20) | 0.0687 | 0.1269 | 0.1817 | 0.2155 | 0.2193 | 0.2835 | 0.3097 | 0.3277 |
Core Id. | Material Id. | Deflection | Vibration modes | ||||
(1, 1) | (2, 1) | (1, 2) | (2, 2) | (3, 1) | |||
1 | H35 | 2.35E−07 | 0.0303 | 0.0489 | 0.0619 | 0.0723 | 0.0736 |
2 | H45 | 2.16E−07 | 0.0316 | 0.0511 | 0.064 | 0.0758 | 0.0765 |
3 | H60 | 1.72E−07 | 0.0354 | 0.0576 | 0.0707 | 0.085 | 0.0859 |
4 | H80 | 1.45E−07 | 0.0385 | 0.0629 | 0.0767 | 0.0924 | 0.0944 |
5 | H100 | 1.16E−07 | 0.0431 | 0.0703 | 0.0858 | 0.1034 | 0.1067 |
6 | H130 | 9.43E−08 | 0.0478 | 0.0777 | 0.0959 | 0.1153 | 0.1193 |
7 | H160 | 8.47E−08 | 0.0504 | 0.0817 | 0.1019 | 0.1222 | 0.1263 |
8 | H200 | 7.41E−08 | 0.0539 | 0.0869 | 0.1101 | 0.1314 | 0.1354 |
9 | H250 | 6.32E−08 | 0.0584 | 0.0934 | 0.1213 | 0.1438 | 0.1469 |
Core Id. | Material Id. | Deflection | Vibration modes | ||||
1 | H35 | 2.64E−07 | 0.0285 | 0.0465 | 0.0541 | 0.0659 | 0.0688 |
2 | H45 | 2.41E−07 | 0.0298 | 0.0487 | 0.0565 | 0.0689 | 0.0722 |
3 | H60 | 1.91E−07 | 0.0335 | 0.0550 | 0.0639 | 0.0779 | 0.0822 |
4 | H80 | 1.60E−07 | 0.0366 | 0.0600 | 0.0702 | 0.0856 | 0.0906 |
5 | H100 | 1.27E−07 | 0.0411 | 0.0671 | 0.0799 | 0.0969 | 0.1024 |
6 | H130 | 1.03E−07 | 0.0456 | 0.0740 | 0.0903 | 0.1089 | 0.1144 |
7 | H160 | 9.28E−08 | 0.0481 | 0.0778 | 0.0965 | 0.1158 | 0.1210 |
8 | H200 | 8.13E−08 | 0.0514 | 0.0826 | 0.1048 | 0.1250 | 0.1295 |
9 | H250 | 6.94E−08 | 0.0557 | 0.0887 | 0.1161 | 0.1373 | 0.1403 |
a/h | hk | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | h/6 | 1.48E−09 | 19.5679 | 13.0317 | 0.8189 | 1.3064 | 0.7513 | 11.3281 | 2.4376 | 1.2329 |
h/5 | 1.50E−09 | 18.5382 | 11.2410 | 0.7236 | 1.3899 | 0.7205 | 11.1640 | 2.6190 | 1.3573 | |
h/4 | 1.57E−09 | 17.5487 | 9.1203 | 0.6083 | 1.5917 | 0.6740 | 10.7743 | 2.8794 | 1.5397 | |
h/3 | 1.72E−09 | 16.7142 | 6.2640 | 0.4399 | 1.9373 | 0.5558 | 9.1840 | 3.2748 | 1.8389 | |
10 | h/6 | 1.50E−08 | 78.2689 | 52.1422 | 3.3108 | 4.8995 | 3.1501 | 48.0947 | 4.8990 | 2.4775 |
h/5 | 1.51E−08 | 76.6934 | 46.1283 | 2.9489 | 4.9249 | 2.8708 | 44.1609 | 5.3622 | 2.7893 | |
h/4 | 1.53E−08 | 75.1630 | 37.9595 | 2.4446 | 4.9481 | 2.4378 | 37.7885 | 5.9820 | 3.2284 | |
h/3 | 1.59E−08 | 73.8013 | 25.3755 | 1.6389 | 5.4659 | 1.6997 | 27.4375 | 6.8049 | 3.8884 | |
20 | h/6 | 2.05E−07 | 313.4683 | 208.9234 | 13.3188 | 19.4379 | 12.8451 | 196.9901 | 9.8338 | 4.9746 |
h/5 | 2.05E−07 | 311.7869 | 187.1772 | 11.9098 | 19.1397 | 11.4128 | 174.6566 | 10.8530 | 5.6574 | |
h/4 | 2.05E−07 | 309.2712 | 155.0268 | 9.8104 | 18.4756 | 9.2265 | 141.4401 | 12.1659 | 6.5958 | |
h/3 | 2.06E−07 | 304.6326 | 102.3482 | 6.3685 | 19.2816 | 6.2762 | 102.4880 | 13.7655 | 7.9295 |
a/h | hk | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | h/6 | 0.3811 | 0.6345 | 0.8080 | 0.9135 |
h/5 | 0.3774 | 0.6037 | 0.8158 | 0.8883 | |
h/4 | 0.3694 | 0.5804 | 0.7996 | 0.8661 | |
h/3 | 0.3535 | 0.5501 | 0.7645 | 0.8537 | |
10 | h/6 | 0.1216 | 0.2339 | 0.3189 | 0.3812 |
h/5 | 0.1211 | 0.2222 | 0.3223 | 0.3631 | |
h/4 | 0.1199 | 0.2054 | 0.3228 | 0.3365 | |
h/3 | 0.1172 | 0.1828 | 0.3005 | 0.3164 | |
20 | h/6 | 0.0331 | 0.0725 | 0.0993 | 0.1216 |
h/5 | 0.0331 | 0.0671 | 0.1024 | 0.1211 | |
h/4 | 0.0330 | 0.0600 | 0.1052 | 0.1090 | |
h/3 | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [0°/0°/0°] | 2.14E−09 | 18.8606 | 2.2167 | 2.2167 | 2.5442 | 0.7787 | 0.7787 | 3.0414 | 1.9686 |
[30°/0°/30°] | 1.70E−09 | 12.0237 | 3.3023 | 4.3633 | 5.5495 | 1.3426 | 0.5884 | 2.5117 | 1.6649 | |
[45°/0°/45°] | 1.53E−09 | 8.1046 | 2.3263 | 3.4907 | 8.3541 | 2.5853 | 0.5242 | 2.2195 | 1.4765 | |
[60°/0°/60°] | 1.56E−09 | 5.1650 | 1.1668 | 5.3923 | 12.4994 | 3.1178 | 0.4897 | 1.9449 | 1.1327 | |
[90°/0°/90°] | 1.72E−09 | 1.9373 | 0.5558 | 9.1840 | 16.7142 | 6.2640 | 0.4399 | 1.3839 | 0.6264 | |
10 | [0°/0°/0°] | 1.78E−08 | 76.2657 | 20.5571 | 20.5571 | 6.5166 | 2.0940 | 2.0940 | 6.8372 | 3.9905 |
[30°/0°/30°] | 1.60E−08 | 47.4375 | 12.7804 | 27.0856 | 19.6930 | 5.5572 | 2.1496 | 5.7971 | 3.3289 | |
[45°/0°/45°] | 1.50E−08 | 30.1627 | 8.2030 | 24.8592 | 30.6463 | 8.8301 | 2.3782 | 5.0787 | 2.9633 | |
[60°/0°/60°] | 1.53E−08 | 19.5482 | 5.9614 | 25.8571 | 48.5890 | 15.2072 | 2.3090 | 4.5459 | 2.2036 | |
[90°/0°/90°] | 1.59E−08 | 5.4659 | 1.6997 | 27.4375 | 73.8013 | 25.3755 | 1.6389 | 2.6868 | 0.9767 | |
20 | [0°/0°/0°] | 2.11E−07 | 303.6790 | 96.2366 | 96.2366 | 21.9219 | 7.2265 | 7.2265 | 14.1760 | 7.8875 |
[30°/0°/30°] | 2.06E−07 | 188.8223 | 59.9691 | 129.9897 | 75.9990 | 24.3419 | 8.2395 | 12.4625 | 6.7458 | |
[45°/0°/45°] | 1.98E−07 | 118.8191 | 37.7501 | 121.8943 | 119.3034 | 38.1318 | 9.3731 | 11.1544 | 6.2335 | |
[60°/0°/60°] | 2.03E−07 | 76.3067 | 24.8855 | 110.2294 | 189.6396 | 62.3118 | 8.8632 | 10.8669 | 4.5299 | |
[90°/0°/90°] | 2.06E−07 | 19.2816 | 6.2762 | 102.4880 | 304.6326 | 102.3482 | 6.3685 | 5.4941 | 1.7139 |
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [0°/0°/0°] | 0.3184 | 0.5296 | 0.6699 | 0.8151 |
[30°/0°/30°] | 0.3568 | 0.5996 | 0.7204 | 0.8591 | |
[45°/0°/45°] | 0.3759 | 0.6251 | 0.7582 | 0.8795 | |
[60°/0°/60°] | 0.3727 | 0.6052 | 0.7736 | 0.8715 | |
[90°/0°/90°] | 0.3535 | 0.5501 | 0.7645 | 0.8537 | |
10 | [0°/0°/0°] | 0.1104 | 0.1660 | 0.2795 | 0.2838 |
[30°/0°/30°] | 0.1174 | 0.1997 | 0.2832 | 0.3055 | |
[45°/0°/45°] | 0.1212 | 0.2137 | 0.2866 | 0.3167 | |
[60°/0°/60°] | 0.1203 | 0.2082 | 0.2999 | 0.3166 | |
[90°/0°/90°] | 0.1172 | 0.1828 | 0.3005 | 0.3164 | |
20 | [0°/0°/0°] | 0.0321 | 0.0464 | 0.0768 | 0.1016 |
[30°/0°/30°] | 0.0329 | 0.0569 | 0.0900 | 0.0933 | |
[45°/0°/45°] | 0.0336 | 0.0615 | 0.0900 | 0.0949 | |
[60°/0°/60°] | 0.0332 | 0.0601 | 0.0949 | 0.0957 | |
[90°/0°/90°] | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [−30°/0°/30°] | 1.36E−09 | 10.6046 | 2.2560 | 6.1698 | 4.5360 | 0.9185 | 1.0381 | 2.2967 | 1.6094 |
[−45°/0°/45°] | 1.20E−09 | 7.2749 | 1.7780 | 3.3350 | 7.2567 | 1.8070 | 1.4519 | 1.9979 | 1.4215 | |
[−60°/0°/60°] | 1.31E−09 | 4.3180 | 1.2189 | 2.7765 | 10.6534 | 3.4639 | 1.3589 | 1.6848 | 1.1015 | |
10 | [−30°/0°/30°] | 1.18E−08 | 39.0379 | 12.3092 | 21.9477 | 15.7575 | 4.7019 | 3.4992 | 5.0932 | 3.5805 |
[−45°/0°/45°] | 1.05E−08 | 26.9461 | 10.9467 | 14.2479 | 27.2759 | 11.0915 | 5.0608 | 4.4088 | 3.0320 | |
[−60°/0°/60°] | 1.17E−08 | 15.6310 | 6.4519 | 14.7755 | 40.0437 | 18.3180 | 4.6169 | 3.7081 | 2.2366 | |
20 | [−30°/0°/30°] | 1.43E−07 | 154.4374 | 52.6199 | 80.4305 | 59.8252 | 19.7365 | 11.5330 | 10.6298 | 9.9229 |
[−45°/0°/45°] | 1.29E−07 | 107.6135 | 45.2929 | 59.0214 | 108.8538 | 45.8082 | 16.5644 | 9.1362 | 8.0365 | |
[−60°/0°/60°] | 1.44E−07 | 60.4675 | 25.1479 | 61.1296 | 158.0092 | 71.2223 | 15.0004 | 7.7873 | 5.3613 |
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [−30°/0°/30°] | 0.3976 | 0.6774 | 0.7444 | 0.9865 |
[−45°/0°/45°] | 0.4220 | 0.7353 | 0.7778 | 1.0323 | |
[−60°/0°/60°] | 0.4050 | 0.6630 | 0.8061 | 0.9850 | |
10 | [−30°/0°/30°] | 0.1361 | 0.2424 | 0.2994 | 0.3875 |
[−45°/0°/45°] | 0.1441 | 0.2859 | 0.2915 | 0.4243 | |
[−60°/0°/60°] | 0.1368 | 0.2458 | 0.3171 | 0.3849 | |
20 | [−30°/0°/30°] | 0.0393 | 0.0737 | 0.0999 | 0.1216 |
[−45°/0°/45°] | 0.0415 | 0.0906 | 0.0914 | 0.1458 | |
[−60°/0°/60°] | 0.0392 | 0.0757 | 0.1013 | 0.1267 |
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [0°/90°/0°] | 1.72E−09 | 16.7142 | 6.2640 | 0.4399 | 1.9373 | 0.5558 | 9.1840 | 3.2748 | 1.8389 |
[−30°/90°/30°] | 1.31E−09 | 10.6534 | 3.4639 | 1.3589 | 4.3180 | 1.2189 | 2.7765 | 2.6221 | 1.8097 | |
[−45°/90°/45°] | 1.20E−09 | 7.2567 | 1.8070 | 1.4519 | 7.2749 | 1.7780 | 3.3350 | 2.1744 | 1.6364 | |
[−60°/90°/60°] | 1.36E−09 | 4.5360 | 0.9185 | 1.0381 | 10.6046 | 2.2560 | 6.1698 | 1.7903 | 1.2796 | |
10 | [0°/90°/0°] | 1.59E−08 | 73.8013 | 25.3755 | 1.6389 | 5.4659 | 1.6997 | 27.4375 | 6.8049 | 3.8884 |
[−30°/90°/30°] | 1.17E−08 | 40.0437 | 18.3180 | 4.6169 | 15.6310 | 6.4519 | 14.7755 | 5.3656 | 4.9047 | |
[−45°/90°/45°] | 1.05E−08 | 27.2759 | 11.0915 | 5.0608 | 26.9461 | 10.9467 | 14.2479 | 4.4455 | 4.3578 | |
[−60°/90°/60°] | 1.18E−08 | 15.7575 | 4.7019 | 3.4992 | 39.0379 | 12.3092 | 21.9477 | 3.4952 | 2.9696 | |
20 | [0°/90°/0°] | 2.06E−07 | 304.6326 | 102.3482 | 6.3685 | 19.2816 | 6.2762 | 102.4880 | 13.7655 | 7.9295 |
[−30°/90°/30°] | 1.44E−07 | 158.0092 | 71.2223 | 15.0004 | 60.4675 | 25.1479 | 61.1296 | 10.8575 | 14.2759 | |
[−45°/90°/45°] | 1.29E−07 | 108.8538 | 45.8082 | 16.5644 | 107.6135 | 45.2929 | 59.0214 | 9.0321 | 12.3551 | |
[−60°/90°/60°] | 1.43E−07 | 59.8252 | 19.7365 | 11.5330 | 154.4374 | 52.6199 | 80.4305 | 7.0534 | 7.9900 |
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [0°/90°/0°] | 0.3535 | 0.5501 | 0.7645 | 0.8537 |
[−30°/90°/30°] | 0.4050 | 0.6630 | 0.8061 | 0.9850 | |
[−45°/90°/45°] | 0.4220 | 0.7353 | 0.7778 | 1.0323 | |
[−60°/90°/60°] | 0.3976 | 0.6774 | 0.7444 | 0.9865 | |
10 | [0°/90°/0°] | 0.1172 | 0.1828 | 0.3005 | 0.3164 |
[−30°/90°/30°] | 0.1368 | 0.2458 | 0.3171 | 0.3849 | |
[−45°/90°/45°] | 0.1441 | 0.2859 | 0.2915 | 0.4243 | |
[−60°/90°/60°] | 0.1361 | 0.2424 | 0.2994 | 0.3875 | |
20 | [0°/90°/0°] | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
[−30°/90°/30°] | 0.0392 | 0.0757 | 0.1013 | 0.1267 | |
[−45°/90°/45°] | 0.0415 | 0.0906 | 0.0914 | 0.1458 | |
[−60°/90°/60°] | 0.0393 | 0.0737 | 0.0999 | 0.1216 |
Vf = 0.6 | a/h | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
GE | 5 | 2.01E−09 | 8.8353 | 2.0988 | 2.7273 | 6.0754 | 1.6864 | 1.3079 | 2.3512 | 1.4542 |
10 | 2.33E−08 | 35.5669 | 11.0048 | 14.5513 | 22.3650 | 7.1129 | 5.0361 | 5.0489 | 2.9002 | |
20 | 3.36E−07 | 142.3576 | 46.6049 | 61.7848 | 87.3974 | 28.7909 | 19.9212 | 10.4751 | 5.8138 | |
CE | 5 | 1.70E−09 | 12.0237 | 3.3023 | 4.3633 | 5.5495 | 1.3426 | 0.5884 | 2.5117 | 1.6649 |
10 | 1.60E−08 | 47.4375 | 12.7804 | 27.0856 | 19.6930 | 5.5572 | 2.1496 | 5.7971 | 3.3289 | |
20 | 2.06E−07 | 188.8223 | 59.9691 | 129.9897 | 75.9990 | 24.3419 | 8.2395 | 12.4625 | 6.7458 |
Vf = 60% | E1 (GPa) | E2 (GPa) | G12 (GPa) | υ12 | ($\rho $ kg/m3) |
Glass-Epoxy | 45.0 | 12.0 | 4.5 | 0.3 | 2080 |
Carbon-Epoxy | 134.0 | 7.0 | 4.2 | 0.25 | 1530 |
H35 | H45 | H60 | H80 | H100 | H130 | H160 | H200 | H250 | |
Young’s modulus (MPa) | 49 | 55 | 75 | 95 | 130 | 175 | 205 | 250 | 320 |
Poisson’s ratio | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Density (kg/m3) | 38 | 48 | 60 | 80 | 100 | 130 | 160 | 200 | 250 |
A | B | C | D | E | F |
$w\left( {\frac{l}{2},\frac{l}{2},0} \right)$ | ${\sigma _x^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{h}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{h}{2}} \right)}$ | ${\sigma _x^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ | ${\sigma _x^{(2)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ ${\sigma _y^{(1)}\left( {\frac{l}{2},\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ | ${\tau _{xz}^{(2)}\left( {0,\frac{l}{2},0} \right)}$ | ${\tau _{xz}^{(2)}\left( {0,\frac{l}{2},\frac{{{h_{core}}}}{2}} \right)}$ |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 256.13 | 62.38 | 46.91 | 9.382 | 38.93 | 30.33 | 6.065 | 3.089 | 2.566 |
Exact [31] | 258.97 | 60.353 | 46.623 | 9.34 | 38.491 | 30.097 | 6.161 | 4.3641 | 3.2675 |
Ferreira [32] | 258.834 | 60.088 | 46.372 | 9.274 | - | - | - | 3.880 | 1.731 |
Ferreira [27] | 258.180 | 60.0262 | 46.3926 | 9.2785 | 38.3644 | 30.0294 | 6.0059 | 4.095 | 2.0418 |
Q4,(4 × 4) | 259.5352 | 55.923 | 42.7778 | 8.5556 | 36.8245 | 28.6415 | 5.7283 | 2.9135 | 1.2510 |
Q4,(10 × 10) | 258.8336 | 59.5704 | 45.9692 | 9.1938 | 38.2179 | 29.8914 | 5.9783 | 3.6289 | 1.5831 |
Q4,(12 × 12) | 258.8424 | 59.8026 | 46.1183 | 9.2237 | 38.3128 | 29.9483 | 5.9897 | 3.7122 | 1.6286 |
Q4,(20 × 20) | 258.8342 | 60.0881 | 46.3718 | 9.2744 | 38.4267 | 30.0523 | 6.0105 | 3.8804 | 1.7314 |
Q9,(4 × 4) | 258.5895 | 60.3915 | 46.942 | 9.3884 | 38.6598 | 30.4271 | 6.0854 | 4.0522 | 1.8705 |
Q9,(10 × 10) | 258.8281 | 60.2736 | 46.556 | 9.3112 | 38.4985 | 30.127 | 6.0254 | 4.0669 | 1.9366 |
Q9,(12 × 12) | 258.8314 | 60.2689 | 46.5404 | 9.3081 | 38.4972 | 30.1202 | 6.024 | 4.0719 | 1.952 |
Q9,(20 × 20) | 258.8342 | 60.2607 | 46.5197 | 9.3039 | 38.4959 | 30.1124 | 6.0225 | 4.0841 | 1.9826 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 152.33 | 64.65 | 51.31 | 5.131 | 42.83 | 33.97 | 3.397 | 3.147 | 2.587 |
Exact [31] | 159.38 | 65.332 | 48.857 | 4.903 | 43.566 | 33.413 | 3.5 | 4.0959 | 3.5154 |
Ferreira [32] | 159.476 | 65.047 | 48.576 | 4.858 | - | - | - | 3.792 | 1.928 |
Ferreira [27] | 158.9117 | 64.9927 | 48.6009 | 4.8601 | 43.4907 | 33.4089 | 3.3409 | 3.9803 | 2.3325 |
Q4,(4 × 4) | 162.0181 | 60.543 | 44.4486 | 4.4449 | 41.9587 | 31.8772 | 3.1877 | 2.8323 | 1.3629 |
Q4,(10 × 10) | 159.6822 | 64.4631 | 48.1314 | 4.8131 | 43.3636 | 33.2797 | 3.328 | 3.5483 | 1.747 |
Q4,(12 × 12) | 159.6097 | 64.7366 | 48.2823 | 4.8282 | 43.4708 | 33.3274 | 3.3327 | 3.6295 | 1.8016 |
Q4,(20 × 20) | 159.4757 | 65.0473 | 48.5758 | 4.8576 | 43.5805 | 33.4408 | 3.3441 | 3.7918 | 1.9279 |
Q9,(4 × 4) | 159.3758 | 65.4971 | 49.2619 | 4.9262 | 43.932 | 33.9226 | 3.3923 | 3.8726 | 2.007 |
Q9,(10 × 10) | 159.4047 | 65.2546 | 48.782 | 4.8782 | 43.6564 | 33.5212 | 3.3521 | 3.9533 | 2.1755 |
Q9,(12 × 12) | 159.4053 | 65.2476 | 48.7654 | 4.8765 | 43.6535 | 33.5134 | 3.3513 | 3.9621 | 2.2073 |
Q9,(20 × 20) | 159.4058 | 65.2373 | 48.7433 | 4.8743 | 43.6505 | 33.5042 | 3.3504 | 3.9779 | 2.2689 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
HSDT [4] | 110.43 | 66.62 | 51.97 | 3.465 | 44.92 | 35.41 | 2.361 | 3.035 | 2.691 |
Exact [31] | 121.72 | 66.787 | 48.299 | 3.238 | 46.424 | 34.955 | 2.494 | 3.9638 | 3.5768 |
Ferreira [32] | 121.871 | 66.490 | 48.000 | 3.200 | - | - | - | 3.730 | 2.019 |
Ferreira [27] | 121.3474 | 66.4362 | 48.0104 | 3.2007 | 46.3849 | 34.9650 | 2.331 | 3.9024 | 2.4811 |
Q4,(4 × 4) | 125.0593 | 61.9463 | 43.5915 | 2.9061 | 44.8984 | 33.3497 | 2.2233 | 2.7739 | 1.4016 |
Q4,(10 × 10) | 122.1499 | 65.8759 | 47.5395 | 3.1693 | 46.2623 | 34.8631 | 2.3242 | 3.4912 | 1.8158 |
Q4,(12 × 12) | 122.0484 | 66.1709 | 47.6863 | 3.1791 | 46.3774 | 34.9007 | 2.3267 | 3.5712 | 1.8766 |
Q4,(20 × 20) | 121.8709 | 66.4903 | 48.0001 | 3.2 | 46.4797 | 35.0191 | 2.3346 | 3.7297 | 2.0192 |
Q9,(4 × 4) | 121.8099 | 67.0141 | 48.6933 | 3.2462 | 46.8978 | 35.5358 | 2.3691 | 3.7749 | 2.0626 |
Q9,(10 × 10) | 121.7767 | 66.7069 | 48.2131 | 3.2142 | 46.5567 | 35.1012 | 2.3401 | 3.8804 | 2.3078 |
Q9,(12 × 12) | 121.7766 | 66.6983 | 48.1976 | 3.2132 | 46.5525 | 35.0931 | 2.3395 | 3.8899 | 2.3516 |
Q9,(20 × 20) | 121.7765 | 66.6866 | 48.1768 | 3.2118 | 46.5478 | 35.0835 | 2.3389 | 3.9054 | 2.433 |
Models | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
R = 5 | |||||||||
Exact [31] | 258.97 | 60.353 | 46.623 | 9.34 | 38.491 | 30.097 | 6.161 | 4.3641 | 3.2675 |
Ferreira [32] | 258.834 | 60.088 | 46.372 | 9.274 | - | - | - | 3.880 | 1.731 |
Ferreira [27] | 258.180 | 60.0262 | 46.3926 | 9.2785 | 38.3644 | 30.0294 | 6.0059 | 4.095 | 2.0418 |
Q4 | 258.8342 | 60.0881 | 46.3718 | 9.2744 | 38.4267 | 30.0523 | 6.0105 | 3.8804 | 1.7314 |
Q9 | 258.8342 | 60.2607 | 46.5197 | 9.3039 | 38.4959 | 30.1124 | 6.0225 | 4.0841 | 1.9826 |
Q4,k = 5/6 | 267.1507 | 59.9246 | 45.9070 | 9.1814 | 38.7909 | 30.2055 | 6.0411 | 3.8675 | 1.7430 |
Q9,k = 5/6 | 267.1177 | 60.0977 | 46.0558 | 9.2112 | 38.8587 | 30.2646 | 6.0529 | 4.0667 | 1.9980 |
R = 10 | |||||||||
Exact [31] | 159.38 | 65.332 | 48.857 | 4.903 | 43.566 | 33.413 | 3.5 | 4.0959 | 3.5154 |
Ferreira [32] | 159.476 | 65.047 | 48.576 | 4.858 | - | - | - | 3.792 | 1.928 |
Ferreira [27] | 158.9117 | 64.9927 | 48.6009 | 4.8601 | 43.4907 | 33.4089 | 3.3409 | 3.9803 | 2.3325 |
Q4 | 159.4757 | 65.0473 | 48.5758 | 4.8576 | 43.5805 | 33.4408 | 3.3441 | 3.7918 | 1.9279 |
Q9 | 159.4058 | 65.2373 | 48.7433 | 4.8743 | 43.6505 | 33.5042 | 3.3504 | 3.9779 | 2.2689 |
Q4,k = 5/6 | 167.4872 | 64.7566 | 47.6721 | 4.7672 | 44.2484 | 33.6886 | 3.3689 | 3.7697 | 1.9447 |
Q9,k = 5/6 | 167.3863 | 64.9468 | 47.8409 | 4.7841 | 44.3164 | 33.7511 | 3.3751 | 3.9513 | 2.2977 |
R = 15 | |||||||||
Exact [31] | 121.72 | 66.787 | 48.299 | 3.238 | 46.424 | 34.955 | 2.494 | 3.9638 | 3.5768 |
Ferreira [32] | 121.871 | 66.490 | 48.000 | 3.200 | - | - | - | 3.730 | 2.019 |
Ferreira [27] | 121.3474 | 66.4362 | 48.0104 | 3.2007 | 46.3849 | 34.9650 | 2.331 | 3.9024 | 2.4811 |
Q4 | 121.8709 | 66.4903 | 48.0001 | 3.2 | 46.4797 | 35.0191 | 2.3346 | 3.7297 | 2.0192 |
Q9 | 121.7765 | 66.6866 | 48.1768 | 3.2118 | 46.5478 | 35.0835 | 2.3389 | 3.9054 | 2.433 |
Q4,k=5/6 | 129.7105 | 66.1127 | 46.7050 | 3.1137 | 47.4140 | 35.3295 | 2.3553 | 3.6995 | 2.0400 |
Q9,k=5/6 | 129.5865 | 66.3085 | 46.8830 | 3.1255 | 47.4803 | 35.3936 | 2.3596 | 3.8704 | 2.4703 |
k | Method | 10 | 20 | 30 | 40 |
1 | Liew et al. [33] | 8.2924 | 9.5613 | 10.320 | 10.849 |
Khdeir et al. [34] | 8.2982 | 9.5671 | 10.326 | 10.854 | |
Ferreira et al. [28] | 8.5846 | 9.8384 | 10.5695 | 10.0649 | |
1 | Present (11 × 11) | 8.4255 | 9.5735 | 10.2072 | 10.62 |
Present (15 × 15) | 8.4244 | 9.5724 | 10.2063 | 10.6192 | |
Present (19 × 19) | 8.4241 | 9.5722 | 10.2061 | 10.619 | |
5/6 | Present (11 × 11) | 8.14 | 9.1314 | 9.6646 | 10.0078 |
Present (15 × 15) | 8.1389 | 9.1305 | 9.6638 | 10.0071 | |
Present (19 × 19) | 8.1387 | 9.1303 | 9.6636 | 10.0069 |
Method | (1,1) | (1,2) | (2,1) | (2,2) | (1,3) | (2,3) | (3,1) | (3,2) |
Exact [35] | 0.0672 | 0.1281 | 0.1722 | 0.2080 | - | - | - | - |
Nosier et al. [22] | 0.0672 | 0.1282 | 0.1723 | 0.2081 | - | - | - | - |
Ferreira et al. [27] | 0.0681 | 0.1322 | 0.1762 | 0.2150 | 0.2376 | 0.2954 | 0.3009 | 0.3288 |
Present,(4 × 4) | 0.0687 | 0.1277 | 0.1829 | 0.2166 | 0.2263 | 0.2882 | 0.3175 | 0.3397 |
Present,(10 × 10) | 0.0687 | 0.127 | 0.1817 | 0.2155 | 0.2195 | 0.2836 | 0.3099 | 0.3286 |
Present,(12 × 12) | 0.0687 | 0.1269 | 0.1817 | 0.2155 | 0.2194 | 0.2836 | 0.3098 | 0.3281 |
Present,(20 × 20) | 0.0687 | 0.1269 | 0.1817 | 0.2155 | 0.2193 | 0.2835 | 0.3097 | 0.3277 |
Core Id. | Material Id. | Deflection | Vibration modes | ||||
(1, 1) | (2, 1) | (1, 2) | (2, 2) | (3, 1) | |||
1 | H35 | 2.35E−07 | 0.0303 | 0.0489 | 0.0619 | 0.0723 | 0.0736 |
2 | H45 | 2.16E−07 | 0.0316 | 0.0511 | 0.064 | 0.0758 | 0.0765 |
3 | H60 | 1.72E−07 | 0.0354 | 0.0576 | 0.0707 | 0.085 | 0.0859 |
4 | H80 | 1.45E−07 | 0.0385 | 0.0629 | 0.0767 | 0.0924 | 0.0944 |
5 | H100 | 1.16E−07 | 0.0431 | 0.0703 | 0.0858 | 0.1034 | 0.1067 |
6 | H130 | 9.43E−08 | 0.0478 | 0.0777 | 0.0959 | 0.1153 | 0.1193 |
7 | H160 | 8.47E−08 | 0.0504 | 0.0817 | 0.1019 | 0.1222 | 0.1263 |
8 | H200 | 7.41E−08 | 0.0539 | 0.0869 | 0.1101 | 0.1314 | 0.1354 |
9 | H250 | 6.32E−08 | 0.0584 | 0.0934 | 0.1213 | 0.1438 | 0.1469 |
Core Id. | Material Id. | Deflection | Vibration modes | ||||
1 | H35 | 2.64E−07 | 0.0285 | 0.0465 | 0.0541 | 0.0659 | 0.0688 |
2 | H45 | 2.41E−07 | 0.0298 | 0.0487 | 0.0565 | 0.0689 | 0.0722 |
3 | H60 | 1.91E−07 | 0.0335 | 0.0550 | 0.0639 | 0.0779 | 0.0822 |
4 | H80 | 1.60E−07 | 0.0366 | 0.0600 | 0.0702 | 0.0856 | 0.0906 |
5 | H100 | 1.27E−07 | 0.0411 | 0.0671 | 0.0799 | 0.0969 | 0.1024 |
6 | H130 | 1.03E−07 | 0.0456 | 0.0740 | 0.0903 | 0.1089 | 0.1144 |
7 | H160 | 9.28E−08 | 0.0481 | 0.0778 | 0.0965 | 0.1158 | 0.1210 |
8 | H200 | 8.13E−08 | 0.0514 | 0.0826 | 0.1048 | 0.1250 | 0.1295 |
9 | H250 | 6.94E−08 | 0.0557 | 0.0887 | 0.1161 | 0.1373 | 0.1403 |
a/h | hk | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | h/6 | 1.48E−09 | 19.5679 | 13.0317 | 0.8189 | 1.3064 | 0.7513 | 11.3281 | 2.4376 | 1.2329 |
h/5 | 1.50E−09 | 18.5382 | 11.2410 | 0.7236 | 1.3899 | 0.7205 | 11.1640 | 2.6190 | 1.3573 | |
h/4 | 1.57E−09 | 17.5487 | 9.1203 | 0.6083 | 1.5917 | 0.6740 | 10.7743 | 2.8794 | 1.5397 | |
h/3 | 1.72E−09 | 16.7142 | 6.2640 | 0.4399 | 1.9373 | 0.5558 | 9.1840 | 3.2748 | 1.8389 | |
10 | h/6 | 1.50E−08 | 78.2689 | 52.1422 | 3.3108 | 4.8995 | 3.1501 | 48.0947 | 4.8990 | 2.4775 |
h/5 | 1.51E−08 | 76.6934 | 46.1283 | 2.9489 | 4.9249 | 2.8708 | 44.1609 | 5.3622 | 2.7893 | |
h/4 | 1.53E−08 | 75.1630 | 37.9595 | 2.4446 | 4.9481 | 2.4378 | 37.7885 | 5.9820 | 3.2284 | |
h/3 | 1.59E−08 | 73.8013 | 25.3755 | 1.6389 | 5.4659 | 1.6997 | 27.4375 | 6.8049 | 3.8884 | |
20 | h/6 | 2.05E−07 | 313.4683 | 208.9234 | 13.3188 | 19.4379 | 12.8451 | 196.9901 | 9.8338 | 4.9746 |
h/5 | 2.05E−07 | 311.7869 | 187.1772 | 11.9098 | 19.1397 | 11.4128 | 174.6566 | 10.8530 | 5.6574 | |
h/4 | 2.05E−07 | 309.2712 | 155.0268 | 9.8104 | 18.4756 | 9.2265 | 141.4401 | 12.1659 | 6.5958 | |
h/3 | 2.06E−07 | 304.6326 | 102.3482 | 6.3685 | 19.2816 | 6.2762 | 102.4880 | 13.7655 | 7.9295 |
a/h | hk | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | h/6 | 0.3811 | 0.6345 | 0.8080 | 0.9135 |
h/5 | 0.3774 | 0.6037 | 0.8158 | 0.8883 | |
h/4 | 0.3694 | 0.5804 | 0.7996 | 0.8661 | |
h/3 | 0.3535 | 0.5501 | 0.7645 | 0.8537 | |
10 | h/6 | 0.1216 | 0.2339 | 0.3189 | 0.3812 |
h/5 | 0.1211 | 0.2222 | 0.3223 | 0.3631 | |
h/4 | 0.1199 | 0.2054 | 0.3228 | 0.3365 | |
h/3 | 0.1172 | 0.1828 | 0.3005 | 0.3164 | |
20 | h/6 | 0.0331 | 0.0725 | 0.0993 | 0.1216 |
h/5 | 0.0331 | 0.0671 | 0.1024 | 0.1211 | |
h/4 | 0.0330 | 0.0600 | 0.1052 | 0.1090 | |
h/3 | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [0°/0°/0°] | 2.14E−09 | 18.8606 | 2.2167 | 2.2167 | 2.5442 | 0.7787 | 0.7787 | 3.0414 | 1.9686 |
[30°/0°/30°] | 1.70E−09 | 12.0237 | 3.3023 | 4.3633 | 5.5495 | 1.3426 | 0.5884 | 2.5117 | 1.6649 | |
[45°/0°/45°] | 1.53E−09 | 8.1046 | 2.3263 | 3.4907 | 8.3541 | 2.5853 | 0.5242 | 2.2195 | 1.4765 | |
[60°/0°/60°] | 1.56E−09 | 5.1650 | 1.1668 | 5.3923 | 12.4994 | 3.1178 | 0.4897 | 1.9449 | 1.1327 | |
[90°/0°/90°] | 1.72E−09 | 1.9373 | 0.5558 | 9.1840 | 16.7142 | 6.2640 | 0.4399 | 1.3839 | 0.6264 | |
10 | [0°/0°/0°] | 1.78E−08 | 76.2657 | 20.5571 | 20.5571 | 6.5166 | 2.0940 | 2.0940 | 6.8372 | 3.9905 |
[30°/0°/30°] | 1.60E−08 | 47.4375 | 12.7804 | 27.0856 | 19.6930 | 5.5572 | 2.1496 | 5.7971 | 3.3289 | |
[45°/0°/45°] | 1.50E−08 | 30.1627 | 8.2030 | 24.8592 | 30.6463 | 8.8301 | 2.3782 | 5.0787 | 2.9633 | |
[60°/0°/60°] | 1.53E−08 | 19.5482 | 5.9614 | 25.8571 | 48.5890 | 15.2072 | 2.3090 | 4.5459 | 2.2036 | |
[90°/0°/90°] | 1.59E−08 | 5.4659 | 1.6997 | 27.4375 | 73.8013 | 25.3755 | 1.6389 | 2.6868 | 0.9767 | |
20 | [0°/0°/0°] | 2.11E−07 | 303.6790 | 96.2366 | 96.2366 | 21.9219 | 7.2265 | 7.2265 | 14.1760 | 7.8875 |
[30°/0°/30°] | 2.06E−07 | 188.8223 | 59.9691 | 129.9897 | 75.9990 | 24.3419 | 8.2395 | 12.4625 | 6.7458 | |
[45°/0°/45°] | 1.98E−07 | 118.8191 | 37.7501 | 121.8943 | 119.3034 | 38.1318 | 9.3731 | 11.1544 | 6.2335 | |
[60°/0°/60°] | 2.03E−07 | 76.3067 | 24.8855 | 110.2294 | 189.6396 | 62.3118 | 8.8632 | 10.8669 | 4.5299 | |
[90°/0°/90°] | 2.06E−07 | 19.2816 | 6.2762 | 102.4880 | 304.6326 | 102.3482 | 6.3685 | 5.4941 | 1.7139 |
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [0°/0°/0°] | 0.3184 | 0.5296 | 0.6699 | 0.8151 |
[30°/0°/30°] | 0.3568 | 0.5996 | 0.7204 | 0.8591 | |
[45°/0°/45°] | 0.3759 | 0.6251 | 0.7582 | 0.8795 | |
[60°/0°/60°] | 0.3727 | 0.6052 | 0.7736 | 0.8715 | |
[90°/0°/90°] | 0.3535 | 0.5501 | 0.7645 | 0.8537 | |
10 | [0°/0°/0°] | 0.1104 | 0.1660 | 0.2795 | 0.2838 |
[30°/0°/30°] | 0.1174 | 0.1997 | 0.2832 | 0.3055 | |
[45°/0°/45°] | 0.1212 | 0.2137 | 0.2866 | 0.3167 | |
[60°/0°/60°] | 0.1203 | 0.2082 | 0.2999 | 0.3166 | |
[90°/0°/90°] | 0.1172 | 0.1828 | 0.3005 | 0.3164 | |
20 | [0°/0°/0°] | 0.0321 | 0.0464 | 0.0768 | 0.1016 |
[30°/0°/30°] | 0.0329 | 0.0569 | 0.0900 | 0.0933 | |
[45°/0°/45°] | 0.0336 | 0.0615 | 0.0900 | 0.0949 | |
[60°/0°/60°] | 0.0332 | 0.0601 | 0.0949 | 0.0957 | |
[90°/0°/90°] | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [−30°/0°/30°] | 1.36E−09 | 10.6046 | 2.2560 | 6.1698 | 4.5360 | 0.9185 | 1.0381 | 2.2967 | 1.6094 |
[−45°/0°/45°] | 1.20E−09 | 7.2749 | 1.7780 | 3.3350 | 7.2567 | 1.8070 | 1.4519 | 1.9979 | 1.4215 | |
[−60°/0°/60°] | 1.31E−09 | 4.3180 | 1.2189 | 2.7765 | 10.6534 | 3.4639 | 1.3589 | 1.6848 | 1.1015 | |
10 | [−30°/0°/30°] | 1.18E−08 | 39.0379 | 12.3092 | 21.9477 | 15.7575 | 4.7019 | 3.4992 | 5.0932 | 3.5805 |
[−45°/0°/45°] | 1.05E−08 | 26.9461 | 10.9467 | 14.2479 | 27.2759 | 11.0915 | 5.0608 | 4.4088 | 3.0320 | |
[−60°/0°/60°] | 1.17E−08 | 15.6310 | 6.4519 | 14.7755 | 40.0437 | 18.3180 | 4.6169 | 3.7081 | 2.2366 | |
20 | [−30°/0°/30°] | 1.43E−07 | 154.4374 | 52.6199 | 80.4305 | 59.8252 | 19.7365 | 11.5330 | 10.6298 | 9.9229 |
[−45°/0°/45°] | 1.29E−07 | 107.6135 | 45.2929 | 59.0214 | 108.8538 | 45.8082 | 16.5644 | 9.1362 | 8.0365 | |
[−60°/0°/60°] | 1.44E−07 | 60.4675 | 25.1479 | 61.1296 | 158.0092 | 71.2223 | 15.0004 | 7.7873 | 5.3613 |
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [−30°/0°/30°] | 0.3976 | 0.6774 | 0.7444 | 0.9865 |
[−45°/0°/45°] | 0.4220 | 0.7353 | 0.7778 | 1.0323 | |
[−60°/0°/60°] | 0.4050 | 0.6630 | 0.8061 | 0.9850 | |
10 | [−30°/0°/30°] | 0.1361 | 0.2424 | 0.2994 | 0.3875 |
[−45°/0°/45°] | 0.1441 | 0.2859 | 0.2915 | 0.4243 | |
[−60°/0°/60°] | 0.1368 | 0.2458 | 0.3171 | 0.3849 | |
20 | [−30°/0°/30°] | 0.0393 | 0.0737 | 0.0999 | 0.1216 |
[−45°/0°/45°] | 0.0415 | 0.0906 | 0.0914 | 0.1458 | |
[−60°/0°/60°] | 0.0392 | 0.0757 | 0.1013 | 0.1267 |
a/h | Stacking sequence | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
5 | [0°/90°/0°] | 1.72E−09 | 16.7142 | 6.2640 | 0.4399 | 1.9373 | 0.5558 | 9.1840 | 3.2748 | 1.8389 |
[−30°/90°/30°] | 1.31E−09 | 10.6534 | 3.4639 | 1.3589 | 4.3180 | 1.2189 | 2.7765 | 2.6221 | 1.8097 | |
[−45°/90°/45°] | 1.20E−09 | 7.2567 | 1.8070 | 1.4519 | 7.2749 | 1.7780 | 3.3350 | 2.1744 | 1.6364 | |
[−60°/90°/60°] | 1.36E−09 | 4.5360 | 0.9185 | 1.0381 | 10.6046 | 2.2560 | 6.1698 | 1.7903 | 1.2796 | |
10 | [0°/90°/0°] | 1.59E−08 | 73.8013 | 25.3755 | 1.6389 | 5.4659 | 1.6997 | 27.4375 | 6.8049 | 3.8884 |
[−30°/90°/30°] | 1.17E−08 | 40.0437 | 18.3180 | 4.6169 | 15.6310 | 6.4519 | 14.7755 | 5.3656 | 4.9047 | |
[−45°/90°/45°] | 1.05E−08 | 27.2759 | 11.0915 | 5.0608 | 26.9461 | 10.9467 | 14.2479 | 4.4455 | 4.3578 | |
[−60°/90°/60°] | 1.18E−08 | 15.7575 | 4.7019 | 3.4992 | 39.0379 | 12.3092 | 21.9477 | 3.4952 | 2.9696 | |
20 | [0°/90°/0°] | 2.06E−07 | 304.6326 | 102.3482 | 6.3685 | 19.2816 | 6.2762 | 102.4880 | 13.7655 | 7.9295 |
[−30°/90°/30°] | 1.44E−07 | 158.0092 | 71.2223 | 15.0004 | 60.4675 | 25.1479 | 61.1296 | 10.8575 | 14.2759 | |
[−45°/90°/45°] | 1.29E−07 | 108.8538 | 45.8082 | 16.5644 | 107.6135 | 45.2929 | 59.0214 | 9.0321 | 12.3551 | |
[−60°/90°/60°] | 1.43E−07 | 59.8252 | 19.7365 | 11.5330 | 154.4374 | 52.6199 | 80.4305 | 7.0534 | 7.9900 |
a/h | Stacking sequence | (1, 1) | (2, 1) | (1, 2) | (2, 2) |
5 | [0°/90°/0°] | 0.3535 | 0.5501 | 0.7645 | 0.8537 |
[−30°/90°/30°] | 0.4050 | 0.6630 | 0.8061 | 0.9850 | |
[−45°/90°/45°] | 0.4220 | 0.7353 | 0.7778 | 1.0323 | |
[−60°/90°/60°] | 0.3976 | 0.6774 | 0.7444 | 0.9865 | |
10 | [0°/90°/0°] | 0.1172 | 0.1828 | 0.3005 | 0.3164 |
[−30°/90°/30°] | 0.1368 | 0.2458 | 0.3171 | 0.3849 | |
[−45°/90°/45°] | 0.1441 | 0.2859 | 0.2915 | 0.4243 | |
[−60°/90°/60°] | 0.1361 | 0.2424 | 0.2994 | 0.3875 | |
20 | [0°/90°/0°] | 0.0328 | 0.0513 | 0.0888 | 0.1067 |
[−30°/90°/30°] | 0.0392 | 0.0757 | 0.1013 | 0.1267 | |
[−45°/90°/45°] | 0.0415 | 0.0906 | 0.0914 | 0.1458 | |
[−60°/90°/60°] | 0.0393 | 0.0737 | 0.0999 | 0.1216 |
Vf = 0.6 | a/h | ${\bar w}$ | $\bar \sigma _x^1$ | $\bar \sigma _x^2$ | $\bar \sigma _x^3$ | $\bar \sigma _y^1$ | $\bar \sigma _y^2$ | $\bar \sigma _y^3$ | $\bar \tau _{xz}^1$ | $\bar \tau _{xz}^2$ |
GE | 5 | 2.01E−09 | 8.8353 | 2.0988 | 2.7273 | 6.0754 | 1.6864 | 1.3079 | 2.3512 | 1.4542 |
10 | 2.33E−08 | 35.5669 | 11.0048 | 14.5513 | 22.3650 | 7.1129 | 5.0361 | 5.0489 | 2.9002 | |
20 | 3.36E−07 | 142.3576 | 46.6049 | 61.7848 | 87.3974 | 28.7909 | 19.9212 | 10.4751 | 5.8138 | |
CE | 5 | 1.70E−09 | 12.0237 | 3.3023 | 4.3633 | 5.5495 | 1.3426 | 0.5884 | 2.5117 | 1.6649 |
10 | 1.60E−08 | 47.4375 | 12.7804 | 27.0856 | 19.6930 | 5.5572 | 2.1496 | 5.7971 | 3.3289 | |
20 | 2.06E−07 | 188.8223 | 59.9691 | 129.9897 | 75.9990 | 24.3419 | 8.2395 | 12.4625 | 6.7458 |