In this paper, we derived and studied the discrete version of a continuous fractional-order predator-prey system with constant-yield prey harvest and a monotonically increasing function response, as well as a fear effect of the predator on the bait. After studying in detail the existence and local stability of the fixed points of the system, some favorable conditions for the occurrence of its Neimark–Sacker bifurcation and period-doubling bifurcation were obtained by using the central manifold theorem and bifurcation theory. Finally, numerical simulations carried out using Matlab software illustrate the theoretical results previously obtained and reveal its some new dynamics–the chaotic occurrence.
Citation: Dengfeng Wang, Xianyi Li, Xiao Zhu, Enrui Zhang. Complex dynamics for a discretized fractional-order predator-prey system with constant-yield prey harvesting and fear effect[J]. Mathematical Modelling and Control, 2025, 5(3): 305-320. doi: 10.3934/mmc.2025021
In this paper, we derived and studied the discrete version of a continuous fractional-order predator-prey system with constant-yield prey harvest and a monotonically increasing function response, as well as a fear effect of the predator on the bait. After studying in detail the existence and local stability of the fixed points of the system, some favorable conditions for the occurrence of its Neimark–Sacker bifurcation and period-doubling bifurcation were obtained by using the central manifold theorem and bifurcation theory. Finally, numerical simulations carried out using Matlab software illustrate the theoretical results previously obtained and reveal its some new dynamics–the chaotic occurrence.
| [1] |
A. H. Holt, Z. G. Davies, C. Tyler, S. Staddon, Meta-analysis of the effects of predation on animal prey abundance: evidence from UK vertebrates, PLoS ONE, 3 (2008), e2400. https://doi.org/10.1371/journal.pone.0002400 doi: 10.1371/journal.pone.0002400
|
| [2] |
R. K. Smith, A. S. Pullin, G. B. Stewart, W. J. Sutherland, Effectiveness of predator removal for enhancing bird populations, Conserv. Biol., 24 (2010), 820–829. http://doi.org/10.1111/j.1523-1739.2009.01421.x doi: 10.1111/j.1523-1739.2009.01421.x
|
| [3] |
S. Creel, D. Christianson, Relationships between direct predation and risk effects, Trends Ecol. Evol., 23 (2008), 194–201. http://doi.org/10.1016/j.tree.2007.12.004 doi: 10.1016/j.tree.2007.12.004
|
| [4] |
W. Cresswell, Non-lethal effects of predation risk in birds, IBIS, 150 (2008), 3–17. http://doi.org/10.1111/j.1474-919X.2007.00793.x doi: 10.1111/j.1474-919X.2007.00793.x
|
| [5] |
P. A. Abrams, Foraging time optimization and interactions on food webs, Am. Nat., 124 (1984), 80–96. https://doi.org/10.1086/284253 doi: 10.1086/284253
|
| [6] |
P. A. Abrams, Strengths of indirect effects generated by optimal foraging, Oikos, 62 (1991), 167–176. https://doi.org/10.2307/3545262 doi: 10.2307/3545262
|
| [7] |
M. Haque, A detailed study of the Beddington-DeAngelis predator-prey model, Math. Biosci., 234 (2011), 1–16. http://doi.org/10.1016/j.mbs.2011.07.003 doi: 10.1016/j.mbs.2011.07.003
|
| [8] |
M. T. Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13–22. http://doi.org/10.1016/j.jtbi.2017.02.002 doi: 10.1016/j.jtbi.2017.02.002
|
| [9] |
F. Capone, M. F. Carfora, R. De Luca, I. Torcicollo, Turing patterns in a reaction-diffusion system modeling hunting cooperation, Math. Comput. Simul., 165 (2019), 172–180. http://doi.org/10.1016/j.matcom.2019.03.010 doi: 10.1016/j.matcom.2019.03.010
|
| [10] |
Y. Chow, S. R. J. Jang, H. M. Wang, Cooperative hunting in a discrete predator-prey system, J. Biol. Dyn., 13 (2019), 247–264. http://doi.org/10.1080/17513758.2018.1555339 doi: 10.1080/17513758.2018.1555339
|
| [11] |
J. Duarte, C. Januario, N. Martins, J. Sardanys, Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach, Chaos, 19 (2009), 1–12. http://doi.org/10.1063/1.3243924 doi: 10.1063/1.3243924
|
| [12] |
S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex., 39 (2019), 1–18. http://doi.org/10.1016/j.ecocom.2019.100770 doi: 10.1016/j.ecocom.2019.100770
|
| [13] |
N. C. Pati, G. C. Layek, N. Pal, Bifurcations and organized structures in a predator-prey model with hunting cooperation, Chaos Soliton. Fract., 140 (2020), 1–11. https://doi.org/10.1016/j.chaos.2020.110184 doi: 10.1016/j.chaos.2020.110184
|
| [14] |
Z. Shang, Y. Qiao, L. Duan, J. Miao, Bifurcation analysis in a predator-prey system with an increasing functional response and constant-yield prey harvesting, Math. Comput. Simul., 190 (2021), 976–1002. http://doi.org/10.1016/j.matcom.2021.06.024 doi: 10.1016/j.matcom.2021.06.024
|
| [15] | J. Liouville, Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable, J. Math. Pures Appl., 2 (1837), 418–436. |
| [16] |
M. Riesz, L'intégrale de riemann-liouville et le problème de cauchy pour l'équation des ondes, Bull. Soc. Math. Fr., 67 (1939), 153–170. http://doi.org/10.24033/bsmf.1309 doi: 10.24033/bsmf.1309
|
| [17] |
M. Caputo, Linear models of dissipation whose $ q $ is almost frequency independent—Ⅱ, Geophys. J. Int., 13 (1967), 529–539. http://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
|
| [18] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Vol. 24, Elsevier, 2006. |
| [19] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, In: Mathematics in science and engineering, Elsevier, 1999. |
| [20] |
A. M. A El-Sayed, Fractional-order diffusion-wave equation, Int. J. Theor. Phys., 35 (1996), 311–322. http://doi.org/10.1007/bf02083817 doi: 10.1007/bf02083817
|
| [21] |
H. L. Li, Y. L. Jiang, Z. L. Wang, C. Hu, Global stability problem for feedback control systems of impulsive fractional differential equations on networks, Neurocomputing, 161 (2015), 155–161. http://doi.org/10.1016/j.neucom.2015.02.053 doi: 10.1016/j.neucom.2015.02.053
|
| [22] |
E. Ahmed, A. S. Elgazaar, On fractional order differential equations model for nonlocal epidemics, Phys. A: Stat. Mech. Appl., 379 (2007), 607–614. http://doi.org/10.1016/j.physa.2007.01.010 doi: 10.1016/j.physa.2007.01.010
|
| [23] |
S. Das, P. K. Gupta, A mathematical model on fractional Lotka–Volterra equations, J. Theor. Biol., 277 (2011), 1–6. http://doi.org/10.1016/j.jtbi.2011.01.034 doi: 10.1016/j.jtbi.2011.01.034
|
| [24] |
M. Javidi, N. Nyamoradi, Dynamic analysis of a fractional order prey–predator interaction with harvesting, Appl. Math. Model., 37 (2013), 8946–8956. http://doi.org/10.1016/j.apm.2013.04.024 doi: 10.1016/j.apm.2013.04.024
|
| [25] |
F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan, E. Ahmed, Fractional-order delayed predator–prey systems with Holling type-Ⅱ functional response, Nonlinear Dyn., 80 (2015), 777–789. http://doi.org/10.1007/s11071-015-1905-8 doi: 10.1007/s11071-015-1905-8
|
| [26] |
E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542–553. http://doi.org/10.1016/j.jmaa.2006.01.087 doi: 10.1016/j.jmaa.2006.01.087
|
| [27] |
S. Debnath, P. Majumdar, S. Sarkar, U. Ghosh, Memory effect on prey–predator dynamics: Exploring the role of fear effect, additional food and anti-predator behaviour of prey, J. Comput. Sci., 66 (2023), 101929. http://doi.org/10.1016/j.jocs.2022.101929 doi: 10.1016/j.jocs.2022.101929
|
| [28] |
A. Singh, V. S. Sharma, Bifurcations and chaos control in a discrete-time prey–predator model with Holling type-Ⅱ functional response and prey refuge, J. Comput. Appl. Math., 418 (2023), 114666. http://doi.org/10.1016/j.cam.2022.114666 doi: 10.1016/j.cam.2022.114666
|
| [29] |
S. Kumar, R. Kumar, C. Cattani, B. Samet, Chaotic behaviour of fractional predator-prey dynamical system, Chaos Soliton. Fract., 135 (2020), 109811. https://doi.org/10.1016/j.chaos.2020.109811 doi: 10.1016/j.chaos.2020.109811
|
| [30] |
P. Majumdar, B. Mondal, S. Debnath, U. Ghosh, Controlling of periodicity and chaos in a three dimensional prey-predator model introducing the memory effect, Chaos Soliton. Fract., 164 (2022), 112585. http://doi.org/10.1016/j.chaos.2022.112585 doi: 10.1016/j.chaos.2022.112585
|
| [31] |
A. M. Yousef, S. Z. Rida, Y. G. Gouda, A. S. Zaki, Dynamical behaviors of a fractional-order predator–prey model with Holling type Ⅳ, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 125–136. http://doi.org/10.1515/ijnsns-2017-0152 doi: 10.1515/ijnsns-2017-0152
|
| [32] | K. Diethelm, The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, Springer, 2010. http://doi.org/10.1007/978-3-642-14574-2 |
| [33] |
W. Li, X. Li, Neimark–Sacker bifurcation of a semi-discrete hematopoiesis model, J. Appl. Anal. Comput., 8 (2018), 1679–1693. http://doi.org/10.11948/2018.1679 doi: 10.11948/2018.1679
|