Research article

Iterative learning control optimization strategy for feedback control systems with varying tasks

  • Published: 25 September 2025
  • Iterative learning control (ILC) combined with feedback control is a common approach to repetitive systems with external disturbances, as it enables high tracking performance and guarantees time-domain stability. However, the variation of the reference trajectory in practical repetitive operations often degrades the control performance. To this end, this paper develops a feedback-based ILC to transfer the experience of repetitively operating a certain task to a brand new task without restriction on its time duration. This two-dimensional (2-D) design employs a parallel structure, where the ILC and the feedback controller are designed separately to achieve performance optimization. Then, the feedback plus feedforward controller is integrated into a new feedback controller with learning-based parameters. The convergence and robustness analysis of the design is given. Finally, numerical simulation experiments of a DC motor position control system verify the proposed scheme's effectiveness and robustness.

    Citation: Fangmei Chen, Hongfeng Tao, Zhihe Zhuang, Wojciech Paszke, Vladimir Stojanovic. Iterative learning control optimization strategy for feedback control systems with varying tasks[J]. Mathematical Modelling and Control, 2025, 5(3): 321-337. doi: 10.3934/mmc.2025022

    Related Papers:

  • Iterative learning control (ILC) combined with feedback control is a common approach to repetitive systems with external disturbances, as it enables high tracking performance and guarantees time-domain stability. However, the variation of the reference trajectory in practical repetitive operations often degrades the control performance. To this end, this paper develops a feedback-based ILC to transfer the experience of repetitively operating a certain task to a brand new task without restriction on its time duration. This two-dimensional (2-D) design employs a parallel structure, where the ILC and the feedback controller are designed separately to achieve performance optimization. Then, the feedback plus feedforward controller is integrated into a new feedback controller with learning-based parameters. The convergence and robustness analysis of the design is given. Finally, numerical simulation experiments of a DC motor position control system verify the proposed scheme's effectiveness and robustness.



    加载中


    [1] S. Arimoto, S. Kawamura, F. Miyazaki, Bettering operation of robots by learning, J. Robot. Syst., 1 (1984), 123–140. https://doi.org/10.1002/rob.4620010203 doi: 10.1002/rob.4620010203
    [2] J. Lu, Z. Cao, Q. Hu, Z. Xu, W. Du, F. Gao, Optimal iterative learning control for batch processes in the presence of time-varying dynamics, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 680–692. https://doi.org/10.1109/TSMC.2020.3031669 doi: 10.1109/TSMC.2020.3031669
    [3] C. E. Boudjedir, M. Bouri, D. Boukhetala, Model-free iterative learning control with nonrepetitive trajectories for second-order mimo nonlinear systems—application to a delta robot, IEEE Trans. Ind. Electron., 68 (2021), 7433–7443. https://doi.org/10.1109/TIE.2020.3007091 doi: 10.1109/TIE.2020.3007091
    [4] R. Zhou, C. Hu, Z. Wang, Y. Zhu, M. Tomizuka, Real-time iterative compensation control using plant-injection feedforward architecture with application to ultraprecision wafer stages, IEEE Trans. Ind. Inf., 20 (2024), 11708–11719. https://doi.org/10.1109/TII.2024.3413294 doi: 10.1109/TII.2024.3413294
    [5] K. Qian, Z. Li, S. Chakrabarty, Z. Zhang, S. Q. Xie, Robust iterative learning control for pneumatic muscle with uncertainties and state constraints, IEEE Trans. Ind. Electron., 70 (2023), 1802–1810. https://doi.org/10.1109/TIE.2022.3159970 doi: 10.1109/TIE.2022.3159970
    [6] D. A. Bristow, M. Tharayil, A. G. Alleyne, A survey of iterative learning control, IEEE Control Syst. Mag., 26 (2006), 96–114. https://doi.org/10.1109/MCS.2006.1636313 doi: 10.1109/MCS.2006.1636313
    [7] H. S. Ahn, Y. Q. Chen, K. L. Moore, Iterative learning control: brief survey and categorization, IEEE Trans. Syst., Man, Cybern. C, 37 (2007), 1099–1121. https://doi.org/10.1109/TSMCC.2007.905759
    [8] D. Shen, Y. Wang, Survey on stochastic iterative learning control, J. Process Control, 12 (2014), 64–77. https://doi.org/10.1016/j.jprocont.2014.04.013 doi: 10.1016/j.jprocont.2014.04.013
    [9] K. L. Barton, A. G. Alleyne, A norm optimal approach to time-varying ilc with application to a multi-axis robotic testbed, IEEE Trans. Control Syst. Technol., 19 (2011), 166–180. https://doi.org/10.1109/TCST.2010.2040476 doi: 10.1109/TCST.2010.2040476
    [10] R. Chi, Z. Hou, S. Jin, A data-driven adaptive ilc for a class of nonlinear discrete time systems with random initial states and iteration-varying target trajectory, J. Frankl. Inst., 352 (2015), 2407–2424. https://doi.org/10.1016/j.jfranklin.2015.03.014 doi: 10.1016/j.jfranklin.2015.03.014
    [11] Z. Zhuang, H. Tao, Y. Chen, V. Stojanovic, W. Paszke, An optimal iterative learning control approach for linear systems with nonuniform trial lengths under input constraints, IEEE Trans. Syst. Man, Cybern.: Syst., 53 (2023), 3461–3473. https://doi.org/10.1109/TSMC.2022.3225381 doi: 10.1109/TSMC.2022.3225381
    [12] C. Zhou, L. Jia, J. Li, Y. Chen, Data-driven two-dimensional integrated control for nonlinear batch processes, J. Process Control, 135 (2024), 103160. https://doi.org/10.1016/j.jprocont.2023.103160 doi: 10.1016/j.jprocont.2023.103160
    [13] I. Chin, S. J. Qin, K. S. Lee, M. Cho, A two-stage iterative learning control technique combined with real-time feedback for independent disturbance rejection, Automatic, 40 (2004), 1913–1922. https://doi.org/10.1016/j.automatica.2004.05.011 doi: 10.1016/j.automatica.2004.05.011
    [14] Y. Wang, H. Zhang, S. Wei, D. Zhou, B. Huang, Control performance assessment for ilc-controlled batch processes in a 2-d system framework, IEEE Trans. Syst. Man, Cybern.: Syst., 48 (2018), 1493–1504. https://doi.org/10.1109/TSMC.2017.2672563 doi: 10.1109/TSMC.2017.2672563
    [15] C. Chen, Z. Xiong, Y. Zhong, Design and analysis of integrated predictive iterative learning control for batch process based on two-dimensional system theory, Chin. J. Chem. Eng., 22 (2014), 762–768. https://doi.org/10.1016/j.cjche.2014.05.008 doi: 10.1016/j.cjche.2014.05.008
    [16] L. Zhou, L. Jia, Y. L. Wang, D. Peng, W. Tan, An integrated robust iterative learning control strategy for batch processes based on 2d system, J. Process Control, 85 (2020), 136–148. https://doi.org/10.1016/j.jprocont.2019.11.011 doi: 10.1016/j.jprocont.2019.11.011
    [17] X. Liu, L. Ma, X. Kong, K. Y. Lee, Robust model predictive iterative learning control for iteration-varying-reference batch processes, IEEE Trans. Syst., Man, Cybern.: Syst., 51 (2021), 4238–4250. https://doi.org/10.1109/TSMC.2019.2931314 doi: 10.1109/TSMC.2019.2931314
    [18] L. Song, J. Shi, Adaptive pi control of ultrasonic motor using iterative learning methods, ISA Trans., 139 (2023), 499–509. https://doi.org/10.1016/j.isatra.2023.03.032 doi: 10.1016/j.isatra.2023.03.032
    [19] R. Chi, H. Li, D. Shen, Z. Hou, B. Huang, Enhanced p-type control: indirect adaptive learning from set-point updates, IEEE Trans. Autom. Control, 68 (2023), 1600–1613. https://doi.org/10.1109/TAC.2022.3154347 doi: 10.1109/TAC.2022.3154347
    [20] G. Sebastian, Y. Tan, D. Oetomo, Convergence analysis of feedback-based iterative learning control with input saturation, Automatica, 101 (2019), 44–52. https://doi.org/10.1016/j.automatica.2018.11.045 doi: 10.1016/j.automatica.2018.11.045
    [21] K. K. Tan, S. Zhao, K. Y. Chua, W. K. Ho, W. W. Tan, Iterative learning approach toward closed-loop automatic tuning of pid controllers, Ind. Eng. Chem. Res., 45 (2006), 4093–4100. https://doi.org/10.1021/ie060093e doi: 10.1021/ie060093e
    [22] T. Liu, X. Z. Wang, J. Chen, Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties, J. Process Control, 24 (2014), 95–106. https://doi.org/10.1016/j.jprocont.2014.07.002 doi: 10.1016/j.jprocont.2014.07.002
    [23] S. Hao, T. Liu, E. Rogers, Extended state observer based indirect-type ILC for single-input single-output batch processes with time-and batch-varying uncertainties, Automatica, 112 (2020), 108673. https://doi.org/10.1016/j.automatica.2019.108673 doi: 10.1016/j.automatica.2019.108673
    [24] M. Li, J. Xiong, R. Cheng, Y. Zhu, K. Yang, F. Sun, Rational feedforward tuning using variance-optimal instrumental variables method based on dual-loop iterative learning control, IEEE Trans. Ind. Inf., 19 (2023), 2585–2595. https://doi.org/10.1109/TII.2022.3166590 doi: 10.1109/TII.2022.3166590
    [25] N. Amann, D. H. Owens, E. Rogers, Iterative learning control using optimal feedback and feedforward actions, Int. J. Control, 65 (1996), 277–293. https://doi.org/10.1080/00207179608921697 doi: 10.1080/00207179608921697
    [26] J. V. Zundert, J. Bolder, T. Oomen, Optimality and flexibility in iterative learning control for varying tasks, Automatica, 67 (2016), 295–302. https://doi.org/10.1016/j.automatica.2016.01.026 doi: 10.1016/j.automatica.2016.01.026
    [27] H. Liu, Y. Li, Y. Zhang, Y. Chen, Z. Song, Z. Wang, et al., Intelligent tuning method of pid parameters based on iterative learning control for atomic force microscopy, Micron, 104 (2018), 26–36. https://doi.org/10.1016/j.micron.2017.09.009 doi: 10.1016/j.micron.2017.09.009
    [28] F. Memon, C. Shao, An optimal a pproach to online tuning method for pid type iterative learning control, Int. J. Control Autom. Syst., 18 (2020), 1926–1935. https://doi.org/10.1007/s12555-018-0840-0 doi: 10.1007/s12555-018-0840-0
    [29] M. Li, Y. Zhu, K. Yang, L. Yang, C. Hu, H. Mu, Convergence rate oriented iterative feedback tuning with application to an ultraprecision wafer stage, IEEE Trans. Ind. Electron., 66 (2019), 1993–2003. https://doi.org/10.1109/TIE.2018.2838110 doi: 10.1109/TIE.2018.2838110
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1524) PDF downloads(77) Cited by(3)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog