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1. Introduction

With the continuous development of human
society and civilization progress, resource consumption and
These

present significant consequences, including frequent natural

environmental pollution have steadily increased.
disasters and widespread viral outbreaks. Consequently,
it is increasingly critical to look for strategies to address
these environmental challenges. Mathematical modeling
serves as a powerful tool in understanding and predicting
the natural phenomena, offering valuable insights into
ecological stability. As a result, there is a growing interest
among researchers in employing mathematical approaches
to study and resolve issues related to ecological balance.

Generally speaking, the classical predator-prey model has

the following structure:

d
f = f(x)x - g(x,y)y,
(1.1)

dy x.y)
— = eg(x, - uy,
m 8X,y)y — 1y

where x(7) and y(¢) represent the population densities of prey
and predator in time ¢, respectively, f(x) is the net growth
rate of prey without predator, g(x, y) is the consumption rate
of prey by the predator, € and u are the positive constants
respectively representing the conversion rate of captured
prey into predator and the mortality of predator, respectively.
In order to show the crowding effect, when the number of
prey is large, the prey growth rate f(x) in model (1.1) is
usually a negative value. The most famous example of xf(x)

XX rx l ’ 12

where the positive constants r and K represent the inherent
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growth rate of the prey and the carrying capacity of
environment to the prey without the predator, respectively.
However, in the natural world, the factors influencing
prey growth rate are not only limited to environmental
carrying capacity K. The study of predator-prey interactions
has become a significant research area because of its
widespread occurrence.  Numerous papers have been
published, employing mathematical modeling to understand
the complex dynamics of predator-prey systems. Predators
have been observed to influence prey dynamics through
direct predation [1, 2]. However, the impact of such
predation on prey population is minimal [3,4]. Although
predators affect prey populations in various ways, the
fear of predation leads to a significant decrease in the
adaptive capacity of large populations [5, 6], even without
predators killing individual members of the prey population.
Moreover, fear alters prey behavior, which, in turn, can
reduce reproductive output. Additionally, the presence
of predator may change the behavioral patterns and
physiological functions of prey, sometimes with more severe
consequences than direct predation. In this paper, we
assume that xf(x) follows a logistic form influenced by the

fear parameter f, as given by (1.3).

roXx

xf() = 7 f =

—dx—- — (1.3)
where ry denotes the reproductive efficiency of the prey, f
is the fear level caused by the predator to the prey, d is the
natural mortality rate of the prey, and r; denotes the natural
growth rate of the prey. Consequently, model (1.1) reads as

dx  rox d rix? .y)

a - Txfy T Tg CESYY 14)
4 .
% = €g(x, y)y — uy-

The behavioral characteristics of the predator species
can be reflected by the key element g(x,y), referred
to as the functional response or nutritional function.
Ultimately, the functional response plays an important role
in determining various dynamical behaviors, such as steady
state, oscillation, bifurcation, and chaos [7]. In this paper,
we choose the functional response function g(x,y) = mx,
where m denotes the predator’s capture rate. So our model
is as follows
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dt 1+ fy K ’ (15)
dy
o YT
A common phenomenon in predator-prey models is
known as cooperative hunting among predators. This

phenomenon causes the encountering rate between predators
and prey to change with the number of predators [8—10].
Moreover, the efficiency of hunting may exhibit nonlinear
dynamics as predator numbers increase [11-13]. However,
when encountering a large aggregation of prey, extreme
phenomena may occur, potentially leading to the extinction
of the predator species.
and Miao [14] added the constant yield harvest H to the

Therefore, Shang, Qiao, Duan,

first equation of model (1.5) to study the arrangement of

renewable resources that ensures the coexistence of the two

species.
d 2
& —dx—ﬂ—mxy—H,
dt 1+ fy K (1.6)
dy
— = emxy — [y,
ar Y~y

where the meanings of all parameters are presented in
Table 1.

Table 1. Biological meanings of parameters in
system (1.6).

Parameter Meaning

X Prey population density

y Predator population density

ro >0 Birth rate of prey population

f>0 The level of fear by predator

d>0 Death rate of prey population

rp >0 Natality of prey population

K>0 Carrying capacity of the environment to prey
m>0 Predator’s capture rate

H>0 The constant yield harvest

€e>0 Conversion rate of prey into predator
u>0 Death rate of predator

Since the death rate of the prey population in model (1.6)
is given by d = ry — ry, we will replace d with ry — rj in the

subsequent models. By using the transformations x = K%,

m . — Kem = 4 = K
€T T T akr 8T

=Y i ,_np_
y_f’t_ro’a_ro’b_
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and dropping the bars in the above alphabets, we get the
following predator-prey system:

d

@ ! —x+ax—ax2—bxy—h,

dat  1+y (1.7)
dy

—= =cxy - gy.

dr Yy —8Y

But considering the memorial nature of biological species,
it is more suitable to adopt a fractional derivative to model
the prey-predator system.

The concept of the fractional derivative dates back
to the 18th century, with Liouville being the first
In the 20th century,

Riesz made further advancements by referencing the concept

mathematician to propose it [15].
and exploring its properties [16]. His work, combined
with that of Liouville, led to the establishment of the
Riesz-Liouville definition of the fractional derivative, which
remains in use today. Subsequently, Caputo introduced an
alternative definition, now known as the Caputo fractional

derivative [17], as follows:

Definition 1.1. Denote

SDIf(0) =IO, a>0,

where fO denotes the derivative of f with order I, 1 is the
nearest integer to «, and J? is the operator of the Riemann—

Liouville integral of q order:

1

Jq/’l(t) = @

!
f (t -0 " h(r)dx,
0
where T'(q) is Euler’s Gamma function. The alpha-order
Caputo differential operator is the term used to describe the

Cna
operator ; Dy

Fractional-order differential equations have attracted
significant attention due to their capability to precisely
describe various nonlinear phenomena. The development
of models based on fractional-order differential equations
has become increasingly popular in the study of dynamical
[18, 19].
mathematical tools for describing systems with memory

systems These models provide powerful

effects and hereditary properties [20, 21].  Recently,
an increasing number of researchers have focused on
[22, 23],
because these equations inherently correspond to systems

fractional-order biological models primarily

Mathematical Modelling and Control

with memory—an essential characteristic of most biological
systems—and are closely associated with fractals, which
are prevalent in biological contexts [24,25]. However, due
to the limited theoretical tools available for analyzing the
dynamics of fractional-order systems, the stability theory
of fractional-order predator-prey models is still in its early
stage.

In 2007, Ahmed [26] considered the following fractional-

order predator-prey system:

$DIx(1) = x(r — ax — by),

o (1.8)
o Diy(@) = y(=d + cx),
where 0 < g < 1, gD,q is the fractional derivative in the sense
of Caputo, x and y represent prey and predator densities,
respectively, and all constants r, a, b, ¢, and d are positive.
From a biological

perspective,  incorporating a

fractional-order  predator-prey system is justified.

In fractional calculus, the rate of change at any
the

derivative—depends on population density over a certain

given moment—represented by fractional-order
time interval. This makes the fractional-order predator-prey
model particularly effective for describing memory effect in
a population.

Over the past two decades, the advantages of fractional
derivative in capturing memory effects within ecological
systems have attracted considerable attention from
researchers, leading to extensive studies on fractional-order
ecological models and the discovery of various dynamical
properties [27-29]. Furthermore, fractional-order models
offer distinct advantages in describing ecological processes
with hereditary properties, yet their accuracy critically
depends on the consistency with observational data.
Although a relatively comprehensive framework has been
established for integer-order ecosystems, the research on
fractional-order ecosystems is still in an early stage. In
this paper, we introduce the Caputo fractional derivative
into system (1.7) and extend it into a fractional-order
ecological model. Consequently, we obtain the following

fractional-order predator-prey model
CDY(r) = X —x+ax—ax’> —bxy—h
0t I1+y ’

(1.9)
§Dy(t) = cxy — gy,
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which incorporates both fear effect and fixed harvest.
Currently, comprehensive dynamical analysis methods
for continuous

fractional-order predator-prey systems

are lacking.  Generally speaking, obtaining an exact
solution for a complex differential equation or system is
impossible. For example, as noted in [30], the analysis
of fractional-order systems has primarily focused on the
global asymptotic stability of the predator-extinction fixed
point. Consequently, many researchers derive approximate
solutions of corresponding systems by using computational
methods.

Noticing that computers work on discrete points, it

is practical and logical to discretize the corresponding

continuous model. In [31], the authors examined
various discretized predator-prey models and observed
that these discrete models, compared with their

continuous counterparts, demonstrate a broader range
of dynamical behaviors and offer advantages in numerical
simulations. In [32], the authors used the piecewise
constant approximation (PCA) method to discretize a
continuous fractional-order predator-prey system, analyzed
its dynamical properties, and discussed the types of
its bifurcations observed in the system. Their work
motivates us to study the discrete version of system (1.9).
Simultaneously, the advantages of the Predictor-Corrector
Algorithm (PCA) for fractional-order ordinary differential
dynamical systems are particularly remarkable. First, PCA
avoids direct handling of the complex fractional-order
integral kernel by transforming it into discrete summation.
Second, for fractional-order systems, the PCA method
exhibits superior numerical stability. Third, it supports
variable step sizes and can be easily extended to higher-
order approximations. Therefore, in this paper, we employ
the PCA method to discretize model (1.9), with the steps
outlined as follows.

Assume that the initial conditions of system (1.9) are

x(0) = xp and y(0) = yy. For a given step length p, denote

x(np) = x, and y(np) = y, forn = 0,1,2,.... The PCA
method applied to system (1.9) is as follows:

SDIx(r) = _Melp) [t/p]) + ax(plt/p]

ot 1+ y(olt/p) (plt/p (plt/pD)

— a(x(plt/pD)? - bx(plt/pD)y(plt/p]) — h,
SDy(1) = ex(plt/p))y(plt/p]) — gy(plt/p).
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First, let 7 € [0, p), then é € [0, 1). Thus

OCD;lxo(t) =M Xo + axg — axé — bxpyo — h,
I+ 0 (1.20)
6 Di'yo(1) = cxoy0 — &o.

Therefore, we obtain

x() = xg +j(‘)’p (%Oyo — X + axg — ax(z) — bxoyo — h)

= xo + —x0+ax0—ax(2)—bx0yo—h),

1 X0
al'(@) \ 1 +y
y(®) = yo + T, (cxoyo0 — &Y0)

104

al'(a)

=yo+ (cxoyo — gYo) -

Second, let 7 € [p, 2p), then é €[1,2). So,

(C)‘D;yxl(t) — L — X1 +ax; —ax% —bxl)’l —h,
1 +y (1.21)

SDyi(t) = cxiy1 — gy1.

After simplifying (1.21), we can obtain the following

solution:
x) =x1+9° L—)c +ax; —ax> —bx;y, —h
1 e \T+y, 1 1 1 1
t—p)?
+( p) al —x1+ax1—ax%—bx1y1—h,
al'(@) \1+y
y(#) =y1 + T, (cxiyr — gy1)
(04
= 31+ 2 (exiyi — gy1),
al'(a)
1 _ 1o\
where J! = ﬁfkp(t -7 ldr = (;r';’;)) ,for0<a <1,

t € [kp,(k + )pl, k = 0,1,2,.... After n repetitions, we

obtain
(t—-np)* [ x

x(H) = x, + T(ap) 1+"yn — X, + ax, —axi—bx,,y,,—h s
(t — np)”

V0 = Yo+ P (cxayn = gy),

al'(a)

where t € [np, (n + 1)p). Letting t — ((n + 1)p)~, the above
system reads

+ P n + 2 _p h
Xppl = X+ ————— — X, +ax, —ax; — bx,y, — h|,
n+1 n F(Q T l) 1+ Vi n n n nYn

o
Yne1 =Yn t m (CXpYn — &Yn) -

(1.22)

Volume 5, Issue 3, 305-320.



309

System (1.22) is the model under discussion in this paper,
where the parameters are the new dimensionless parameters
derived from those mentioned in Table 1. The dynamical
behavior of system (1.6) is similar to that of system (1.7) in
phase space, due to their topological equivalence. Therefore,
the study of the dimensionless system (1.7) will yield some
properties that are equivalent to those of system (1.6).

The structure of this paper is outlined as follows: In
Section 2, we provide some preliminaries, including some
definitions, lemmas, and theorems that will be used to
analyze the dynamical properties of system (1.22). In
Section 3, we investigate the existence and stability of the
fixed points of system (1.22). In Section 4, we demonstrate
that, under certain parameter conditions, system (1.22)
exhibits both a Neimark—Sacker bifurcation and a period-
doubling bifurcation. In Section 5, we perform numerical
simulations to validate the results of our theoretical analysis.
Finally, in Section 6, we draw some interesting conclusions

based on the findings presented in the previous sections.
2. Preliminaries

Definition 2.1. ( [32]) Under the definition of Caputo
fractional derivative, the fractional derivative of function
f(€) € AC™([0, +o0], R) is given as

Crye ey SO @)
Ofo(g) - f I'(n—a)é- ﬁ)a—n+1 dd,

where « represents the order of the fractional derivative and

n is the nearest integer to « satisfyingn < a <n+ 1.
When n = 1, the fractional derivative OCDg f(&) takes the

form of

cp e [ LD
so0r00= [ el

Definition 2.2. ( [32]) The Mittag-Leffler function M;, when
the order i of M; is positive, is defined as

NG |
Mi(f)—;m, jeC

when the series converges.

Definition 2.3. ( [33]) Let Q(x,y) be a fixed point of
system (1.6) with multipliers 1, and A,.
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(i) If |4l < 1 and |A2| < 1, then the fixed point Q(x,y)
is called a sink, and a sink is locally asymptotically
stable.

(ii) If |41] > 1 and |A2| > 1, then the fixed point Q(x,y) is
called a source, and a source is locally unstable.

(iii) If |4| < 1 and |A2| > 1 (or|44| > 1 and |A;| < 1), then
the fixed point Q(x, ) is called a saddle.
(iv) If either |A1| = 1 or |A2| = 1, then the fixed point Q(x,y)

is called non-hyperbolic.

Lemma 2.1. Let F(1) = A2+ BA+C, where B and C are two
real constants. Suppose A, and A, are two roots of F(4) = 0.
Then the following statements hold.

(i) If F(1) > 0, then

(i.1) || < 1 and |A2| < 1 ifand only if F(—1) > 0 and
C<1;

(i.2) 4y = =l and 2, # —1 if and only if F(-1) = 0
and B # 2;

(i.3) |41l < Land|A3| > 1 if and only if F(—1) < 0;

(i.4) || > 1 and |A2| > 1 if and only if F(—1) > 0 and
C>1;

(i.5) Ay and Ay are a pair of conjugate complex roots
and |41| = |A42| = lifand only if =2 < B < 2 and
c=1;

(i.6) 4y = =—-1lifandonly if F(-1) =0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(1) = 0, then
the other root A satisfies || = (>,<)1 if and only if

ICl = (>, <)L

(iii) If F(1) < O, then F(2) = 0 has one root lying in (1, o).

Moreover,

(iii.1) The other root A satisfies A = (>, <)—1 if and only
fF(-1) = (><0;

(iii.2) The other root —1 < A < 1 if and only if F(—1) >
0.

3. Existence and stability of fixed points

3.1. Existence of fixed points

In this section, we first consider the existence of fixed
points of system (1.22) and then analyze the local stability
of these fixed points.
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The fixed points of system (1.22) satisfy the following

equations
p” X 2
=x+———x+ax- —bxy - h|,
X=X TatD\Tty X+ ax—ax Xy
y=y+p—a(cxy—gy),
T'a+1)
(3.1
namely,
X 2
—— —x+ax—ax —bxy—h=0,
I+y (3.2)
cxy—gy = 0.

Considering the biological meanings of system (1.22),
we only take into account its nonnegative fixed points.
Proceeding step by step, we begin with the relatively simple
boundary fixed points. Because i > 0, it follows from the
first equation of (3.2) that system (1.22) has no boundary
fixed points of type (0,y). Now consider boundary fixed
points of type (x, 0).

When y = 0, in the view of the first equation in (3.2), one
has ax — ax?> — h = 0. Therefrom, we have,

@ if » > ¢,
hence system (1.22) has no boundary fixed points of
type (x, 0);

(i) if h = ¢, then ax — ax*> — h = 0 if and only if x = %,

then ax — ax> — h < 0 for any x > O,

so system (1.22) has a unique predator-free fixed point

Eo(3,0);
(iii) if 0 < h < ¢, then ax—ax*—h = 0 has two positive roots
11— %
X = 5>—=, hence system (1.22) has two boundary

—Af1-4 \/1-4
fixed points E; (1 21 “ ,O) and E, (¥,O).

2

Therefore, for boundary fixed points of system (1.22), one

has the following result.

Theorem 3.1. System (1.22) has no boundary fixed points

of type (0,y). As for boundary fixed point of type (x,0), for
h > 4, system (1.22) has no boundary fixed points of type

(x,0); for h = 4, system (1.22) has a unique predator-free

fixed point E (%O) for 0 < h < g, system (1.22) has two

Y ey —a
boundary fixed point E; (l 21 <, 0) and E, (%

W
a ,0).

Next, we analyze the existence of positive fixed points

of system (1.22). When y > 0, it follows from the second

equation of (3.2) that x = &

pg

Substituting this expression into
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the first equation of (3.2), we obtain the following quadratic

equation
b+1
V' +(P+ T)y+P=0, (3.3)
where P = %‘f“zh. Obviously, the discriminant quantity

of 33)A = (P+ %) —4p = (P + 52> + > 0. So the
Eq (3.3) always has two real roots. We are only interested in
its positive roots.

Notice P = —agreg’+ch

— — ) a8c=g)
heg > (=90 & h > (5,9~
Then,

(i) forc < gorc > gand h > @,P > 0. So,
system (1.22) has no positive fixed points.

(i) for c > gand 0 < h < “S&8 P < 0. Then
system (1.22) has a unique positive fixed point Ej
(5 31(P+ Bl 4P — (224 P))

Summarizing the above analysis, we have

ag(c=g)
2

Theorem 3.2. When ¢ < gorc > gand h >

system (1.22) has no positive fixed points; for ¢ > g and
0<h< @ system (1.22) has a unique positive fixed

point E (£, %[\/(P"' by _4p — (2L + P))), where P =

—acg+ag®+c2h . I .
—grag e n b‘;ﬁ) ==, The existence conditions for all nonnegative

fixed points of system (1.22) are summarized in Table 2.

Table 2. The existence of fixed point.

Conditions Type of fixed point Coordinate of fixed point

h>4 nonexistence of type (x,0)

h=¢ a unique predator-free fixed point  Eq (%,0)

_yitE N
0<h<t two boundary fixed point E (' (o ,0), Ez(“ L \o)
c<gore>gandh > “S8 o positive fixed point
c>gand0<h< ¥ a unique positive fixed point E3 (S [\ J(P+ 212 —ap— (2L 4 p)))

3.2. Stability of fixed points

Now, we begin to analyze the stability of these fixed
points. The Jacobian matrix J of system (1.22) at a fixed

point E(x,y) is presented as follows:

L+oyi(y)  —oxya(y)
J(E) = , (3.4)
ocy 1+d6(cx—g)
here 6= —£ - iia-2ax-b
where —r(a+1),¢’1(y)— Tyt 2ax-by,
ll’z(y):erb-
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The characteristic equation of the Jacobian matrix J(E)

can be written as

2= p(x, )+ q(x,y) = 0, (3.5)

here, p(x,y) = tr(E) while g(x, y) is the determinant of J(E):

p(x,y)=2+r(;;il)(%+y—l+a—2ax—by+cx—g),
P’ 1
C](X,)’)=1+Ha—m(l—”—l+a—2ax—by+cx—g)
+—r2(/;2j_1)(%ﬂ)—1+a—2ax—by)(cx—g)
2a
" F;Ea/j-yl)((l-fy)z +bx)'
Now, denote 6 = ﬁ For the stability of

2 2

— _4h _4h
fixed points Eo (£,0), E; (‘— Lt 0), E (“— L 0), and

E3(%,3[ /(P + 212 — 4P — (2 + P)]), we can easily get

the following Theorems 3.3-3.5, respectively.

Theorem 3.3. The fixed point Ey = (%, O) of system (1.22)

is non-hyperbolic.

Theorem 3.4. For 0 < h < §, the boundary fixed point

. 1+4/1-% .
(i) For § < —5—*, the related conclusions are presented

in Table 4.

Table 4. Properties of the fixed point £, when

Loy

g
c < 2
Conditions Eigenvalues Properties
0<6< F{M 4> 1,4 < 1 saddle
g _ 1l+y/1-% _ 5 _ _ .
<—5—= 4= —_— [l =Tor|d] =1 non-hyperbolic
\,% <6 4> 1,4 > 1 unstable node
.. 1+4/1-% . .
(ii) for % = —5—=, the boundary fixed point E, is non-
hyperbolic.
1+4/1-4 .
(iii) for % > —5—=, the related conclusions are presented
in Table 5.

Table 5. Properties of the fixed point E; when

Le\TE

1-4/1-%
Ei(x1,0) = E, (T“,O

) of system (1.22) occurs. The

results in the following Table 3 about the fixed point E| are

true.
Table 3. Properties of the fixed point E;.
Conditions Eigenvalues Properties
g 1-VI-%
< 5 A > 1, |42 > 1 unstable node
/1=
f =! 2] = |21l =T1or|d] =1 non-hyperbolic
0<6< gj:,n Al > 1, 1 <1 saddle
g o =VI-F 2 :
> 5 0= o |[41l=1or|A] =1 non-hyperbolic
5> 2 > 1 > 1 source
g—cxy

Theorem 3.5. For 0 < h < %, system (1.22) has the

_4h

a
4

boundary fixed point E,(x,0)

b}

following results are valid for the fixed point E.

Mathematical Modelling and Control

¢> 3
Conditions Eigenvalues Properties
0<6< \/ﬁ < 1,]1:) < 1 stable node
5= \ﬁ |Jtil=1or|d] =1 non-hyperbolic
grep<Na—dah 2 <5< 2o Juyl>LIbl<1 saddle
d= gi‘ |41l =lor|d| =1 non-hyperbolic
o <9 [1]> 1,142 > 1 unstable node
0<6<27%X) [l < 1,12 < 1 stable node
g—cxy = Va*—4ah 5= . :ah |[lil=1or|d| =1 non-hyperbolic
‘ﬁ <6 il > 1,12 > 1 unstable node
0<6< qj} < 1,]1;) < 1 stable node
6= \ﬁ |Jtil=1or|dl =1 non-hyperbolic
gmen> N —dah 2o <5< 2 Jyl>LIbl<1  saddle
§= «2274/ [l =1or|dyl =1 non-hyperbolic
T <0 [411> 1,142 >1  unstable node

Theorem 3.6. For ¢ > gand 0 < h < “S& he
unique positive fixed point E3 of system (1.22) occurs. Put
E3(x3,y3) = Es(3,3[\J(P+ 512 4P — (5L + P))), A =

he ag and B = 8)3

ra (T+y3)?

Table 6 are true.

+ bgys. Then the results stated in the
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Table 6. Properties of the fixed point E3 of
system (1.22).

Conditions Eigenvalues Properties
h< “%’ [ > 1, > 1 unstable node
0<5<4 il <11l <1 stable node
4B>A? 5= % [l =1or | =1 non-hyperbolic
% <6 [ > 1, | >1 unstable node
0<6<% [l <1, <1 stable node
4B=A? §= % [Ail=T1or|d =1 non-hyperbolic
h> s 4<s ] > 1,4 > 1 unstable node
0<o< AVETR Pl <1 stable node
6= Ai@ [l =1or |l =1 non-hyperbolic
A-\A-B4 <5

| < (>)1, |l > ()1 saddle
4B <42 <A+m ] < ()1, |22 > (<)

5= MNUBN Il =1or | = 1

non-hyperbolic

<6 [l > 1, | >1 unstable node

Proof. Notice thatc > gand 0 < h < @ imply B > 0.
The condition A > (=, <)0 depends on h > (=, <)%
The Jacobian matrix of system (1.22) at the fixed point E3
may be simplified into
HEy = [1 748 Oy - k) ’
ocy3 1

hence we obtain the characteristic polynomial of the
Jacobian matrix J(E3)

FQ) =A% —-pl+g,

where
p=2-A5 q=1-A6+Bs.

It is clear that
F(1)=B5>>0 and F(~1) = B§*> — 2A6 + 4.

When i < QC%Z,A < 0. At this time, g > 1, F(-1) > 0 and
o> % are obvious. Therefore, according to Lemma 2.1, we
know that E5 is an unstable node, i.e., a source.

When h > aci; A > 0 and ¢ > 2g. Notice that g > (=, <
)N = 6> (=,<)%. Now, consider the following three
cases.

Case 1: B > %2. Then F(—1) > 0 always holds. Consider
the following three subcases:

Subcase 1: § < 4. Then, ¢ < 1. Lemma 2.1 reads || < 1
and |A,| < 1. Thus, E3 is a stable node, i.e., a sink.
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Subcase 2: 6§ = 4. Then, ¢ = 1, -2 < p < 2, Thus,
|[41] = 1 or |[1;| = 1, so E3 is non-hyperbolic.

Subcase 3: § > 4. Then, ¢ > 1. Thus, |4] > 1, || > 1,
indicating E3 is an unstable node, i.e., a source.

Case2: B = ATZ. Consider the following three subcases:

Subcase 1: 6 < 4. Then, F(-1) > 0, ¢ < 1. Hence,
|[41] < 1, |A3] < 1, which shows that E3 is a stable node, i.e.,
a sink.

Subcase 2: § = 4. Then, F(-1) = 0, Thus, |4;| = 1 or
|42] = 1, implying E3 is non-hyperbolic.

Subcase 3: § > %. Then, F(—1) > 0 and ¢ > 1. It follows
from Lemma 2.1 (i.4) that |4;]| > 1 and |A,| > 1. Thus, E5 is
an unstable node, i.e., a source.

Case3: B < ATZ. Consider the following five subcases:

Subcase 1: 0 < § < A“/@. Then, F(-1) >0, ¢ < 1,
indicating |4,| < 1, |[42| < 1. Hence, Ej is a stable node, i.e.,
a sink.

Subcase 2: 6 = @. Then, F(~1) = 0, Thus, || =
1 or |2;| = 1, means that reads E3 is non-hyperbolic.

Subcase 3: A‘@ <6< A“@. Then, F(~1) < 0.
Hence, Ej5 is a saddle.

Subcase 4: 6 = &VA4B Then F(-1) = 0, Thus, |4,| =
1 or |1;| = 1, hence Ej3 is non-hyperbolic.

Subcase 5: 6 > 4YA48 Then F(-1)> 0,4 > 1 and so

|[41] > 1, |A3] > 1. Therefore, E3 is an unstable node, i.c., a

source. The proof is finished. O
4. Bifurcation analysis

In this section, we apply the center manifold theorem
and local bifurcation theory to primarily study the local
bifurcation problems of system (1.22) at the fixed point
Es(x3,y3), considering its practical biological meaning.

4.1. Neimark—Sacker bifurcation at the fixed point E

From Case 1 in the proof of Theorem 3.6 for the stability
of the positive fixed point E3(x3,y3), we see that the
dimension numbers for the stable manifold and unstable
manifold of system (1.22) at the positive fixed point Ej
change when ¢ varies in the vicinity of ¢ (correspondingly,
p varies in the vicinity of pg) for 4B > A2, where

A i
, po=T(a+ 1)dg)e . 4.1

6()=§
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Thus, a bifurcation, to be shown to be a Neimark—Sacker among which

bifurcation later, may occur. Denote (00 + p*)°
P =2-A8(p"), ¢ = 1-AS(p")+B5(p*)%, S(p*) = =L
5 ag(c _ g) A2 F(a + 1)
S={@a,b,c,g,h,a,p) e Rilc > g,0<h < —2,B >—1.
¢ 4 Evidently,

To analyze the Neimark—Sacker bifurcation, we perform . >
_ Pp7) £ iy4q(p") = p*(p")

2

the following process. A12(07)
Let X,, = x, — x3 and Y,, = y,, — y3, which transforms the

fixed point E3 to the origin O(0, 0). Assume that p* is a small Moreover,

perturbation of p, i.e., p* = p — pg, with 0 < |[p*| < 1. After (120 Wm0 = ’_q )
20)Dp=0 = (o
shifting and perturbation, system (1.22) takes the following

=1
p*=0 |

form

= 0.
dp* Mo+l

(dml,z(p*n) _apy'A
p=0

X1 = X, +

+p0)% Xn+
(Po P)( X, 4 x)

IlMa+ D) \1+Y,+ys3 .
It is obvious that 4] ,(0) # 1 for i = 1,2,3,4. Thus,

2
+a(Xy, + x3) —a(Xy + x3)” = b(Xy + x3)(Yy, + y3) — h)’ the transversal and nondegenerate conditions hold for a

) . B . .
Yo=Y, + (oo ,01) (X, + 13)(¥y + y3) — 8(¥, +v3)) . Neimark Sacker‘blfurcatlon to occur.
Ia+1) 42) In order to derive the normal form of system (4.3), let
Taylor expanding of system (4.2) at (X, Y) = (0,0) [O ao1 ]
T = s
Xos1 = a10X, + ao1 Yy + a2 Xz + anX, Y, + apnY: pol-w

+ a30X3 + aZer%Yn + alzXan + aO3Y3 + O(P?)’ in which w = —@, U= W/w' Then, we have
Yor1 = b1oXy + bor Yy + b X7 + b11 X, Y, + bpo Yy o
+b3X> + by X2V, + baX, Y2 + bosY? + 0(p)), 771 = (@ g)
(4.3)

aol

Take the following transformation:

where p; = X2 + Y2,

o | X' =1W.V,
a10=—( p (Zax3—y——a+by3+1)—1),
3

T+ 1 then, system (4.3) takes the following form
an = — 'Da 3 + bx
U Te+D\@gs+2 ) U\ (w-u w\(U) ((FUV)
P @ - + +o(py)|, (44
an=__rr4 P X v u  w)\v G(U,V)
T e+ )T T T+ ) (s + 1)

ax =0, a —_p—aL where py = +/x2 + y2,
30 =Y, dp3 = T+ 1) (s + DY

(02

1 F(U, V) = C20X2 + C“XY + C02Y2 + C30X3
_ (b+ 2),@1 _o, i e @)
F(a+ 1) (y3 + 1) +cn XY + cp XY +C03Y s

__p 1 _oyp” b = cp”
- 2° 10 — s 11 = )
IFla+D @+ 1) I'a+1) IN'a+1)

ar

ags

G(U,V) = doX* + dii XY + dpp¥* + dzoX°
bo1 = by = boz = b3p = boz = by1 = b1 = 0. (V) = dao . 0 30 4.2)
+ d21X2Y + d12XY2 + d03Y3,
The characteristic equation of linearized equation .
associated with Eq (4.3) at (0, 0) is with X = ag Vand ¥ = pU + (1 - w)V,

.. . o= @@= bo o de@-—1)  bo
F(/l) =21 —P(P )/1"‘61(}0 )’ 20 Hapi u ’ 02 Map M ’
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_apnw-1) ay _a(w—1) by
= ———+—,01 = ——— + —,
Haol H Haol H
_axplw—1) by _ap(w—1)  bps
Gy=—""""+—cp=—_—"+—,
Hao1 H Haoy H
ap(w-1) b an ag ap
Clp=———+—,dy=—,dp=—,d;1 = —,
Mdaoy M aol aol aol
aso ao3 azg an
dyo=—, dpz=—, dy=—, dp=—.
ao1 ao1 ao1 ao1
Moreover,

Fuuloo = 2coi’s Fuvloo) = cridoii + 2coou(l — w),
Fyvloo) = 2¢20a3, + 2¢11a01(1 — w), Fuyuloo) = 6cosit’,
Fuuvloo = 2caamu® + 6cosp* (1 — w),
Fuyvloo = 2ca1ag,p + depagp(l — w) + 6coau(l — w)?,
Fyvvloo = 4(1 — w)’ + 6¢c30a3,
+4e21ad (1 = w) + 6¢cp2a1 (1 — w)2,
Guuloo = 2dot’,  Guvloo = diraoip + 2depu(l - w),
Gyvlo0) = 2daoaor + 2d11a0i (1 — ), Gyuuloo) = 6dopai’,
Guuvloo = 2daanu® + 6dosp’(1 - w),
Guvvloo) = 2daiad,p + 4dipag (1 — w) + 6dpu(l — w)?,
Gvvvloo) = 4(1 - w)* + 6dsap,
+4dyiag, (1 — w) + 6dipag (1 - w)*.
In order to ensure that system (1.22) undergoes a
Neimark-Sacker bifurcation and to determine the stability

and direction of the bifurcation curve, the discriminant L

must be calculated and should not be equal to zero, where

- —Re((l - 2/11)/15‘1'207'11]

-1
1
=5 [muP - ol +Re(hman)].  (45)
1 .
=g [Fxx — Fyy + 2Gxy + i(Gxx — Gyy — 2Fxy)] 0,0 »
1 .
=g [Fxx + Fyy + i(Gxx + Gyy)lop) »
1 .
T =g [Fxx — Fyy —2Gxy + i(Gxx — Gyy + 2Fxy)]l 0,0 »
1
T2 = E{[Fxxx + Fxyy + Gxxy + Gyyy

+ i(Gxxx + Gxyy — Fxxy — FYYY)]}
0,0

We now come to the following conclusion as a result of
the analysis derived above.
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Theorem 4.1. Let the parameters (a,b,c, g, h,a,p) € S and
0o and pg be defined as in (4.1). If the parameter p varies in
a vicinity of py (correspondingly, 6 varies around 6y) and
L # 0, then system (1.22) undergoes a Neimark—Sacker
bifurcation at the fixed point point Es(x3,y3). Moreover,
if L < (>)0, then a stable (an unstable) smooth closed
invariant curve can be bifurcated out and the bifurcation is

supercritical (subcritical).

4.2. Period-doubling bifurcation at the fixed point E;

From Case 3 in the proof of Theorem 3.6 for the
stability of the positive fixed point E3, one can see that
the dimension numbers change for the stable manifold and
unstable manifold of system (1.22) at the fixed point Ej
when ¢ varies in the vicinity of §; (correspondingly, p varies

in the vicinity of pg) for 4B < A%, where

A+ VA2 -4B 1
1= p=C@+ D).  (@46)
Hence, a bifurcation may occur. Noting that 1; = —1 and

|[42] # 1 for 6 = §;, we show that this bifurcation is a period-

doubling one. Let

S = {(a,b,c,g,h,cv,p)e]Rfr | c>g,

A2 @43
7

period-doubling  bifurcation

ag(c—g)

O<h< 5 ,4B <
C

To the of
system (1.22) at the fixed point Ej, it suffices for us to

PV remr

consider J to vary in the neighborhood of 6, = 3

A-AFA
B

analyze

The proof for the case where 6; = is completely
similar and will be omitted here.

Now, proceed in the following way. Put X, = x, — x3
and Y, = y, — y3, which transforms the fixed point E3 to
the origin O(0, 0). Consider p* as a small perturbation of p,
namely, p* = p — pg, with 0 < |[p*| < 1. The perturbation

takes system (1.22) into

Xn + X3

X1 = X, + LOHP) — (X, +x3)
Ta+1) \1+Y,+y;
+a(X, + x3)% = b(X, + x3)(Yy +y3) = I,
+ 0.)%
Yot = Yo + % (X, + 33)(Y + y3) — (¥ + 330,

4.7
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Taylor expanding of the system (4.7) at (X,Y,p") =
(0,0, 0) takes the form

_ 2 o

X1 = a100X, + ao10Y, + apo1p,, + ax00X; + aoxY;
2 3
+aonp;” + a110Xn Y, + ai01 X, + ao11 Yup, + azeX;

2 2 % 2
+a030Y; + aoo3p; + a210X2 Y, + a1 X205 + a100 X0}

Yur1 = b1ooXn + bo10Yn + boo10}, + baooX> + boooY?

+bon2 (0} + b110Xn Y + b101 X0, + bo11 Y8 + b3oo X,

+b3oY; + b111XuYup), + bo12Xa Y + boa1 Yap;, + O(p)),

* ok
pn+] _pn’

where py = X2 + Y2 + (0})?,

oy (I =3 +1)Q2axz —a+bys + 1))
I'a+ D+ 1)

(4.8)

a100:1+

s

P (g +bxs)

= — = 0’ = O,
anio F(a T 1) 5 anoi ap2
e = — apy - 05 X3
W7 Tae+ ) T T T+ Dy + 13
1 X
— Py (b + i) S Py (b3 + )
1o Ta+1) =~ M T(a+ 1) po
. __apg(ZaX3—ﬁ—a+by3+1) I
101 = r(a T 1)p0 5 300 — Y,
X304
R L — =0,
anso F(a T 1) (y3 n 1)4 ano3
@ 1
L (b + 5or) =0
111 F(Q T 1),00 . 210 5
ax) = _ 2% P apo = —,Og
T M@+ Doy P T T+ Ds+ D
. X3 @ p)
021 = 5
L(a+ 1)po (y3 + 1)
P (bxs + @3X+31>2)(ﬁ - ﬁ)
dor2 = T(a+1) ’
a| _a a 1
p() (% - ;%)(20)63 - m —a+by3 + 1)
o2 = T+ 1) ‘
cy3pg
biogo = ———, boio=1, by =0,
100 r(a T 1) 010 001
cpy
b0 =0, bpo=0, byp=0, bjjg=—",
200 020 002 110 F((Z T 1)
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2 2 2 4
+aio X, Yy + ainXuYup;, + aon XYy, + a1 Y, 0, + O(0)),

+boo3pl> + ba10X2 Yy + bao1 X205 + D102 Xup}2 + b120X, Y2

acysp
bioj = ——————, bo11 =0, by =0, by =0,
0= Fo T 1 011 300 030
boos =0, brio=0, by =0, by =0,
2
cwspf (s - )
bo1 =0, by = T : D ==, by =0.
- [ ap1o ao1o ]
~1-aio L-a)

which is invertible. Now, using the transformation
X, 7 it ’
Y,

ftpe1 = —ity, + M(X,, Ymp:)»

<1

system (4.8) becomes

4.9
‘7n+] = /12‘711 + N(Xn’ Yn’p:)

System (4.9) has a center manifold W¢(0, 0, 0) at (0, 0) in the
neighborhood of p* = 0, which can be deduced using the

center manifold theorem and is essentially expressed as
W(0,0,0) = {({y, 7, p*) € R :
B = iy + Maitp” + o (] + o)},
where

ao1o ((1 + a100)a200 + bozo(1 + 0100)2)

m= 1 /1%
_ (I +ago)(@rio(l + aioo) + @oi0bii0))
1- 2 '

_ (I +aipo)aori (1 + aioo) + aoioborr)
- apio(1 + 22)?
_ (I +ajpo)(@io1 + aoiobion)
apro(1 + )2
So, system (4.9) restrained on the center manifold
Ww<(0, 0, 0) has the form:

llys1 = ity + 01720 + i, 0" + 03012
+ Oty (p°) + Oiiy + o (il + 107])°)
= Z(ﬁmp*),
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where

_ (A2 = pDazoo — m2baoo) + booo(1 +11)?
B 1+,
(1 +11) (A2 = n1)aio — m2biio)

B 1+ 4, ’
(b —maior — mbio
B 1+,

N (1 +m) (A2 — n)aorr — mborr)

m(l + 4p)

_ (A2 = aipo)maior — aoiobion
B 1+ A

N (A2 — ar00)aot1 — 12bo11)(A2 — aip0)m

aoio(1 + 12)?

_ (A2 — aro0)ario — aorob110)(A2 — 1 — 2ay00)
B 1+

N 2bwon2(1 + ai00)(A2 — aioo)

1+ A ’

_ 2ag10m ((A2 = a100)az00 — @o10b200)
a 1+,

N (A — 1 = 2ajg0)azio — aOlObZIO'

1+ A,

01

0>

)

0;

[l

04

0s

In order for the period-doubling bifurcation to occur, the
two determinating quantities {; and £, must both be nonzero,

where

4= rz 10282
" \ouop " 2 0p* gi

10z (15727Y
6 0i® 2 0ii?

Finally, the outcome of the above analysis is summarized

0,0

2=

0.0)

as follows.

Theorem 4.2. Suppose the parameters (a,b,c, g, h,a,p) €
S| and 6, and py are defined as in (4.6). If the parameter
p varies in a neighborhood of py (correspondingly, o
# 0, then system (1.22)
undergoes a period-doubling bifurcation at the fixed point
E;.
bifurcates from Ej is stable (unstable).

varies around 1) and &1{

Furthermore, for {, > (<)0, the period-two orbit that

5. Numerical simulation

In this section, we perform numerical simulations for the
dynamical behaviors of system (1.22) using Matlab, aiming
to provide readers with a more intuitive understanding of the
dynamics of system (1.22).
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Firstly, fix the parameter values @ = 0.6,a = 5,b =
0.8,c = 0.6,g = 0.12,h = 0.15, and let p € (0.1,5).
Figure 1 shows the bifurcation diagram of system (1.22)
starting from the point (x3,y3) = (0.4,0.8), and it is clear
that system (1.22) undergoes a Neimark—Sacker bifurcation

at the critical value py = 0.316.

0.35

0.3

0.25

0.2

0.15

0.1

0.1 0.2 0.3 0.4 0.5 0.8
2

Figure 1. The existence of a Neimark—Sacker
bifurcation of system (1.22) with the p taking

values from 0.1 to 5.

With the values of @ = 0.6,a = 5,b = 0.8,¢c = 0.08,¢ =
0.12, and 2 = 0.12, Figure 2 is the bifurcation diagram of
system (1.22) starting from the point (x3,y3) = (0.4,0.8).
We can clearly observe that system (1.22) undergoes a
period-doubling bifurcation at the critical value py = 0.2005.

0.2

0.8

0.7

0.6

0.5

0.4

0.05 01 0.15 0.2 0.256 0.3

Figure 2. The existence of a period-doubling
bifurcation of system (1.22) with the p taking

values from 0.01 to 5.

Figures 3-8 depict the phase diagram of system (1.22)
starting from the point (xg, yp) = (0.22605, 3.25610) with the
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parameters @ = 0.6,a = 5,b = 0.8,¢c = 0.6,g = 0.12,h =
0.15. We can observe that, as p increases, the fixed point
gradually transits from stable state to unstable state, and an

invariant closed curve emerges.

3.4
335
33
3.25
32 o
315 1 -
.

3.06

2.95

29

014 0.18 0.18 0.2 0.22 0.24 0.28

Figure 3. p = 0.3.

3.3

3.2

31

29

28

01 0.15 02 0.25 0.3 0.35
X

Figure 4. p = 0.5.

3.3
3.25
3.2
3.15
31

3.05

2.95

29

0.14 016 018 02 022 024 026 028 03 032
X

Figure 5. p = 0.525.
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3.3

3.2

3.1

29

2.8

0.1

0.15 0.2 0.25 0.3
X

Figure 6. p = 0.55.

33

32

31

29

28

0.156 0.2 0.25 0.3 0.35
x

Figure 7. p = 0.575.

3.4

3.3

3.2

3.1

0.15 0.2 0.25 0.3 0.35
X

Figure 8. p = 0.6.

Figures 3—8 show system (1.22) with @ = 0.6,a = 5,b =
0.8,c = 0.6,g = 0.12,h = 0.15 and different p when the
initial value (xg, yo) = (0.22605, 3.25610).
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6. Conclusions

In this paper, we investigate the discrete version of
a fractional-order predator—prey model incorporating fear
effect and constant harvesting. In system (1.1), we consider
that the fear effect induced by the predator also influences
the prey population. Consequently, we refine the net growth
rate function of the traditional logistic model. Furthermore,
by introducing a constant harvest in system (1.5), our
Due

to the current lack of effective methods for studying

model more accurately reflects natural dynamics.

the dynamics of fractional-order differential systems, we
employ the piecewise constant approximation method to
discretize the continuous fractional-order predator—prey
system (1.22), analyze the system’s dynamical properties,
and discuss the types of bifurcations that may occur.
Given parameter conditions, we completely formulate
the existence and stability of nonnegative fixed points

—4/1-41 \/1-41
Ey = (3,0), E (ﬁ,O), Eg(%,O) and Ej

2

—acg+ag®+c*h

(2L + 5507 = 4P = (% + P)]) where P = =430

forc>gand0 < h < @

We not only derive some sufficient conditions for the
Neimark-Sacker bifurcation and period-doubling bifurcation
to occur at the fixed points E3 in certain parameter spaces,
but also state the stability and direction of the closed
bifurcated orbits.  Finally, some interesting dynamical
properties for Neimark-Sacker bifurcation and period-
doubling bifurcation are illustrated through the application

of numerical simulations.
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