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1. Introduction

With the continuous development of human
society and civilization progress, resource consumption and
environmental pollution have steadily increased. These
present significant consequences, including frequent natural
disasters and widespread viral outbreaks. Consequently,
it is increasingly critical to look for strategies to address
these environmental challenges. Mathematical modeling
serves as a powerful tool in understanding and predicting
the natural phenomena, offering valuable insights into
ecological stability. As a result, there is a growing interest
among researchers in employing mathematical approaches
to study and resolve issues related to ecological balance.

Generally speaking, the classical predator-prey model has

the following structure:
dx
dt
= f (x)x − g(x, y)y,

dy
dt
= ϵg(x, y)y − µy,

(1.1)

where x(t) and y(t) represent the population densities of prey
and predator in time t, respectively, f (x) is the net growth
rate of prey without predator, g(x, y) is the consumption rate
of prey by the predator, ϵ and µ are the positive constants
respectively representing the conversion rate of captured
prey into predator and the mortality of predator, respectively.
In order to show the crowding effect, when the number of
prey is large, the prey growth rate f (x) in model (1.1) is
usually a negative value. The most famous example of x f (x)
is the logistic form:

x f (x) = rx
(
1 −

x
K

)
, (1.2)

where the positive constants r and K represent the inherent
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growth rate of the prey and the carrying capacity of
environment to the prey without the predator, respectively.

However, in the natural world, the factors influencing
prey growth rate are not only limited to environmental
carrying capacity K. The study of predator-prey interactions
has become a significant research area because of its
widespread occurrence. Numerous papers have been
published, employing mathematical modeling to understand
the complex dynamics of predator-prey systems. Predators
have been observed to influence prey dynamics through
direct predation [1, 2]. However, the impact of such
predation on prey population is minimal [3, 4]. Although
predators affect prey populations in various ways, the
fear of predation leads to a significant decrease in the
adaptive capacity of large populations [5, 6], even without
predators killing individual members of the prey population.
Moreover, fear alters prey behavior, which, in turn, can
reduce reproductive output. Additionally, the presence
of predator may change the behavioral patterns and
physiological functions of prey, sometimes with more severe
consequences than direct predation. In this paper, we
assume that x f (x) follows a logistic form influenced by the
fear parameter f , as given by (1.3).

x f (x) =
r0x

1 + f y
− dx −

r1x2

K
, (1.3)

where r0 denotes the reproductive efficiency of the prey, f

is the fear level caused by the predator to the prey, d is the
natural mortality rate of the prey, and r1 denotes the natural
growth rate of the prey. Consequently, model (1.1) reads as

dx
dt
=

r0x
1 + f y

− dx −
r1x2

K
− g(x, y)y,

dy
dt
= ϵg(x, y)y − µy.

(1.4)

The behavioral characteristics of the predator species
can be reflected by the key element g(x, y), referred
to as the functional response or nutritional function.
Ultimately, the functional response plays an important role
in determining various dynamical behaviors, such as steady
state, oscillation, bifurcation, and chaos [7]. In this paper,
we choose the functional response function g(x, y) = mx,
where m denotes the predator’s capture rate. So our model
is as follows


dx
dt
=

r0x
1 + f y

− dx −
r1x2

K
− mxy,

dy
dt
= ϵmxy − µy.

(1.5)

A common phenomenon in predator-prey models is
known as cooperative hunting among predators. This
phenomenon causes the encountering rate between predators
and prey to change with the number of predators [8–10].
Moreover, the efficiency of hunting may exhibit nonlinear
dynamics as predator numbers increase [11–13]. However,
when encountering a large aggregation of prey, extreme
phenomena may occur, potentially leading to the extinction
of the predator species. Therefore, Shang, Qiao, Duan,
and Miao [14] added the constant yield harvest H to the
first equation of model (1.5) to study the arrangement of
renewable resources that ensures the coexistence of the two
species. 

dx
dt
=

r0x
1 + f y

− dx −
r1x2

K
− mxy − H,

dy
dt
= ϵmxy − µy,

(1.6)

where the meanings of all parameters are presented in
Table 1.

Table 1. Biological meanings of parameters in
system (1.6).

Parameter Meaning
x Prey population density
y Predator population density
r0 > 0 Birth rate of prey population
f > 0 The level of fear by predator
d > 0 Death rate of prey population
r1 > 0 Natality of prey population
K > 0 Carrying capacity of the environment to prey
m > 0 Predator’s capture rate
H > 0 The constant yield harvest
ϵ > 0 Conversion rate of prey into predator
µ > 0 Death rate of predator

Since the death rate of the prey population in model (1.6)
is given by d = r0 − r1, we will replace d with r0 − r1 in the
subsequent models. By using the transformations x = Kx̃,
y = ỹ

f , t = t̃
r0

, a = r1
r0

, b = m
f r0

, c = Kϵm
r0

, h = H
r0K , g = µ

r0
,
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and dropping the bars in the above alphabets, we get the
following predator-prey system:


dx
dt
=

x
1 + y

− x + ax − ax2 − bxy − h,

dy
dt
= cxy − gy.

(1.7)

But considering the memorial nature of biological species,
it is more suitable to adopt a fractional derivative to model
the prey-predator system.

The concept of the fractional derivative dates back
to the 18th century, with Liouville being the first
mathematician to propose it [15]. In the 20th century,
Riesz made further advancements by referencing the concept
and exploring its properties [16]. His work, combined
with that of Liouville, led to the establishment of the
Riesz-Liouville definition of the fractional derivative, which
remains in use today. Subsequently, Caputo introduced an
alternative definition, now known as the Caputo fractional
derivative [17], as follows:

Definition 1.1. Denote

C
0 Dα

t f (t) = Jl−α f (l)(t), α > 0,

where f (l) denotes the derivative of f with order l, l is the

nearest integer to α, and Jq is the operator of the Riemann–

Liouville integral of q order:

Jqh(t) =
1
Γ(q)

∫ t

0
(t − τ)q−1h(τ)dτ,

where Γ(q) is Euler’s Gamma function. The alpha-order

Caputo differential operator is the term used to describe the

operator C
0 Dα

t .

Fractional-order differential equations have attracted
significant attention due to their capability to precisely
describe various nonlinear phenomena. The development
of models based on fractional-order differential equations
has become increasingly popular in the study of dynamical
systems [18, 19]. These models provide powerful
mathematical tools for describing systems with memory
effects and hereditary properties [20, 21]. Recently,
an increasing number of researchers have focused on
fractional-order biological models [22, 23], primarily
because these equations inherently correspond to systems

with memory—an essential characteristic of most biological
systems—and are closely associated with fractals, which
are prevalent in biological contexts [24, 25]. However, due
to the limited theoretical tools available for analyzing the
dynamics of fractional-order systems, the stability theory
of fractional-order predator-prey models is still in its early
stage.

In 2007, Ahmed [26] considered the following fractional-
order predator-prey system:

C
0 Dq

t x(t) = x(r − ax − by),
C
0 Dq

t y(t) = y(−d + cx),
(1.8)

where 0 < q ≤ 1, C
0 Dq

t is the fractional derivative in the sense
of Caputo, x and y represent prey and predator densities,
respectively, and all constants r, a, b, c, and d are positive.

From a biological perspective, incorporating a
fractional-order predator-prey system is justified.
In fractional calculus, the rate of change at any
given moment—represented by the fractional-order
derivative—depends on population density over a certain
time interval. This makes the fractional-order predator-prey
model particularly effective for describing memory effect in
a population.

Over the past two decades, the advantages of fractional
derivative in capturing memory effects within ecological
systems have attracted considerable attention from
researchers, leading to extensive studies on fractional-order
ecological models and the discovery of various dynamical
properties [27–29]. Furthermore, fractional-order models
offer distinct advantages in describing ecological processes
with hereditary properties, yet their accuracy critically
depends on the consistency with observational data.
Although a relatively comprehensive framework has been
established for integer-order ecosystems, the research on
fractional-order ecosystems is still in an early stage. In
this paper, we introduce the Caputo fractional derivative
into system (1.7) and extend it into a fractional-order
ecological model. Consequently, we obtain the following
fractional-order predator-prey model

C
0 Dα

t x(t) =
x

1 + y
− x + ax − ax2 − bxy − h,

C
0 Dα

t y(t) = cxy − gy,
(1.9)
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which incorporates both fear effect and fixed harvest.
Currently, comprehensive dynamical analysis methods

for continuous fractional-order predator-prey systems
are lacking. Generally speaking, obtaining an exact
solution for a complex differential equation or system is
impossible. For example, as noted in [30], the analysis
of fractional-order systems has primarily focused on the
global asymptotic stability of the predator-extinction fixed
point. Consequently, many researchers derive approximate
solutions of corresponding systems by using computational
methods.

Noticing that computers work on discrete points, it
is practical and logical to discretize the corresponding
continuous model. In [31], the authors examined
various discretized predator-prey models and observed
that these discrete models, compared with their
continuous counterparts, demonstrate a broader range
of dynamical behaviors and offer advantages in numerical
simulations. In [32], the authors used the piecewise
constant approximation (PCA) method to discretize a
continuous fractional-order predator-prey system, analyzed
its dynamical properties, and discussed the types of
its bifurcations observed in the system. Their work
motivates us to study the discrete version of system (1.9).
Simultaneously, the advantages of the Predictor-Corrector
Algorithm (PCA) for fractional-order ordinary differential
dynamical systems are particularly remarkable. First, PCA
avoids direct handling of the complex fractional-order
integral kernel by transforming it into discrete summation.
Second, for fractional-order systems, the PCA method
exhibits superior numerical stability. Third, it supports
variable step sizes and can be easily extended to higher-
order approximations. Therefore, in this paper, we employ
the PCA method to discretize model (1.9), with the steps
outlined as follows.

Assume that the initial conditions of system (1.9) are
x(0) = x0 and y(0) = y0. For a given step length ρ, denote
x(nρ) = xn and y(nρ) = yn for n = 0, 1, 2, . . .. The PCA
method applied to system (1.9) is as follows:

C
0 Dα

t x(t) =
x(ρ[t/ρ])

1 + y(ρ[t/ρ])
− x(ρ[t/ρ]) + ax(ρ[t/ρ])

− a(x(ρ[t/ρ]))2 − bx(ρ[t/ρ])y(ρ[t/ρ]) − h,
C
0 Dα

t y(t) = cx(ρ[t/ρ])y(ρ[t/ρ]) − gy(ρ[t/ρ]).

First, let t ∈
[
0, ρ), then t

ρ
∈ [0, 1). Thus


C
0 Dα

t x0(t) =
x0

1 + y0
− x0 + ax0 − ax2

0 − bx0y0 − h,

C
0 Dα

t y0(t) = cx0y0 − gy0.

(1.20)

Therefore, we obtain

x(t) = x0 +J
α
0ρ

(
x0

1 + y0
− x0 + ax0 − ax2

0 − bx0y0 − h
)

= x0 +
tα

αΓ(α)

(
x0

1 + y0
− x0 + ax0 − ax2

0 − bx0y0 − h
)
,

y(t) = y0 +J
α
0ρ (cx0y0 − gy0)

= y0 +
tα

αΓ(α)
(cx0y0 − gy0) .

Second, let t ∈
[
ρ, 2ρ), then t

ρ
∈ [1, 2). So,

C
0 Dα

t x1(t) =
x1

1 + y1
− x1 + ax1 − ax2

1 − bx1y1 − h,

C
0 Dα

t y1(t) = cx1y1 − gy1.

(1.21)

After simplifying (1.21), we can obtain the following
solution:

x(t) = x1 +J
α
ρ

(
x1

1 + y1
− x1 + ax1 − ax2

1 − bx1y1 − h
)

= x1 +
(t − ρ)α

αΓ(α)

(
x1

1 + y1
− x1 + ax1 − ax2

1 − bx1y1 − h
)
,

y(t) = y1 +J
α
ρ (cx1y1 − gy1)

= y1 +
(t − ρ)α

αΓ(α)
(cx1y1 − gy1) ,

where Jα
kρ =

1
Γ(α)

∫ t
kρ(t − τ)α−1dτ = (t−kρ)α

αΓ(α) , for 0 < α < 1,
t ∈ [kρ, (k + 1)ρ], k = 0, 1, 2, . . .. After n repetitions, we
obtain

x(t) = xn +
(t − nρ)α

αΓ(α)

(
xn

1 + yn
− xn + axn − ax2

n − bxnyn − h
)
,

y(t) = yn +
(t − nρ)α

αΓ(α)
(cxnyn − gyn) ,

where t ∈ [nρ, (n + 1)ρ). Letting t → ((n + 1)ρ)−, the above
system reads

xn+1 = xn +
ρα

Γ(α + 1)

(
xn

1 + yn
− xn + axn − ax2

n − bxnyn − h
)
,

yn+1 = yn +
ρα

Γ(α + 1)
(cxnyn − gyn) .

(1.22)
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System (1.22) is the model under discussion in this paper,
where the parameters are the new dimensionless parameters
derived from those mentioned in Table 1. The dynamical
behavior of system (1.6) is similar to that of system (1.7) in
phase space, due to their topological equivalence. Therefore,
the study of the dimensionless system (1.7) will yield some
properties that are equivalent to those of system (1.6).

The structure of this paper is outlined as follows: In
Section 2, we provide some preliminaries, including some
definitions, lemmas, and theorems that will be used to
analyze the dynamical properties of system (1.22). In
Section 3, we investigate the existence and stability of the
fixed points of system (1.22). In Section 4, we demonstrate
that, under certain parameter conditions, system (1.22)
exhibits both a Neimark–Sacker bifurcation and a period-
doubling bifurcation. In Section 5, we perform numerical
simulations to validate the results of our theoretical analysis.
Finally, in Section 6, we draw some interesting conclusions
based on the findings presented in the previous sections.

2. Preliminaries

Definition 2.1. ( [32]) Under the definition of Caputo

fractional derivative, the fractional derivative of function

f (ξ) ∈ ACn([0,+∞],R) is given as

C
0 Dα

ξ f (ξ) =
∫ ξ

0

f (n)(ϑ)
Γ(n − α)(ξ − ϑ)α−n+1 dϑ,

where α represents the order of the fractional derivative and

n is the nearest integer to α satisfying n < α ≤ n + 1.

When n = 1, the fractional derivative C
0 Dα

ξ f (ξ) takes the

form of

C
0 Dα

ξ f (ξ) =
∫ ξ

0

f ′(ϑ)
Γ(1 − α)(ξ − ϑ)α

dϑ.

Definition 2.2. ( [32]) The Mittag-Leffler function Mi, when

the order i of Mi is positive, is defined as

Mi(ζ) =
∞∑
j=0

ζ j

Γ( ji + 1)
, ζ j ∈ C

when the series converges.

Definition 2.3. ( [33]) Let Q(x, y) be a fixed point of

system (1.6) with multipliers λ1 and λ2.

(i) If |λ1| < 1 and |λ2| < 1, then the fixed point Q(x, y)
is called a sink, and a sink is locally asymptotically

stable.

(ii) If |λ1| > 1 and |λ2| > 1, then the fixed point Q(x, y) is

called a source, and a source is locally unstable.

(iii) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), then

the fixed point Q(x, y) is called a saddle.

(iv) If either |λ1| = 1 or |λ2| = 1, then the fixed point Q(x, y)
is called non-hyperbolic.

Lemma 2.1. Let F(λ) = λ2+Bλ+C, where B and C are two

real constants. Suppose λ1 and λ2 are two roots of F(λ) = 0.

Then the following statements hold.

(i) If F(1) > 0, then

(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and

C < 1;

(i.2) λ1 = −1 and λ2 , −1 if and only if F(−1) = 0
and B , 2;

(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;

(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and

C > 1;

(i.5) λ1 and λ2 are a pair of conjugate complex roots

and |λ1| = |λ2| = 1 if and only if −2 < B < 2 and

C = 1;

(i.6) λ1 = λ2 = −1 if and only if F(−1) = 0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then

the other root λ satisfies |λ| = (>, <)1 if and only if

|C| = (>, <)1.

(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1,∞).
Moreover,

(iii.1) The other root λ satisfies λ = (>, <)−1 if and only

if F(−1) = (>, <)0;

(iii.2) The other root −1 < λ < 1 if and only if F(−1) >
0.

3. Existence and stability of fixed points

3.1. Existence of fixed points

In this section, we first consider the existence of fixed
points of system (1.22) and then analyze the local stability
of these fixed points.

Mathematical Modelling and Control Volume 5, Issue 3, 305–320.
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The fixed points of system (1.22) satisfy the following
equations

x = x +
ρα

Γ(α + 1)

(
x

1 + y
− x + ax − ax2 − bxy − h

)
,

y = y +
ρα

Γ(α + 1)
(cxy − gy) ,

(3.1)
namely, 

x
1 + y

− x + ax − ax2 − bxy − h = 0,

cxy − gy = 0.
(3.2)

Considering the biological meanings of system (1.22),
we only take into account its nonnegative fixed points.
Proceeding step by step, we begin with the relatively simple
boundary fixed points. Because h > 0, it follows from the
first equation of (3.2) that system (1.22) has no boundary
fixed points of type (0, y). Now consider boundary fixed
points of type (x, 0).

When y = 0, in the view of the first equation in (3.2), one
has ax − ax2 − h = 0. Therefrom, we have,

(i) if h > a
4 , then ax − ax2 − h < 0 for any x ≥ 0,

hence system (1.22) has no boundary fixed points of
type (x, 0);

(ii) if h = a
4 , then ax − ax2 − h = 0 if and only if x = 1

2 ,
so system (1.22) has a unique predator-free fixed point
E0

(
1
2 , 0

)
;

(iii) if 0 < h < a
4 , then ax−ax2−h = 0 has two positive roots

x =
1±
√

1− 4h
a

2 , hence system (1.22) has two boundary

fixed points E1

(
1−
√

1− 4h
a

2 , 0
)

and E2

(
1+
√

1− 4h
a

2 , 0
)
.

Therefore, for boundary fixed points of system (1.22), one
has the following result.

Theorem 3.1. System (1.22) has no boundary fixed points

of type (0, y). As for boundary fixed point of type (x, 0), for

h > a
4 , system (1.22) has no boundary fixed points of type

(x, 0); for h = a
4 , system (1.22) has a unique predator-free

fixed point E0

(
1
2 , 0

)
; for 0 < h < a

4 , system (1.22) has two

boundary fixed point E1

(
1−
√

1− 4h
a

2 , 0
)

and E2

(
1+
√

1− 4h
a

2 , 0
)
.

Next, we analyze the existence of positive fixed points
of system (1.22). When y > 0, it follows from the second
equation of (3.2) that x = g

c . Substituting this expression into

the first equation of (3.2), we obtain the following quadratic
equation

y2 + (P +
b + 1

b
)y + P = 0, (3.3)

where P = −acg+ag2+c2h
bcg . Obviously, the discriminant quantity

of (3.3) ∆ = (P + b+1
b )2 − 4P = (P + 1−b

b )2 + 4
b > 0. So the

Eq (3.3) always has two real roots. We are only interested in
its positive roots.

Notice P = −acg+ag2+c2h
bcg > (=, <)0 ⇔ h > (=, <) ag(c−g)

c2 .
Then,

(i) for c ≤ g or c > g and h ≥ ag(c−g)
c2 , P > 0. So,

system (1.22) has no positive fixed points.
(ii) for c > g and 0 < h < ag(c−g)

c2 , P < 0. Then
system (1.22) has a unique positive fixed point E3

( g
c ,

1
2 [

√
(P + b+1

b )2 − 4P − ( b+1
b + P)]).

Summarizing the above analysis, we have

Theorem 3.2. When c ≤ g or c > g and h ≥ ag(c−g)
c2 ,

system (1.22) has no positive fixed points; for c > g and

0 < h < ag(c−g)
c2 , system (1.22) has a unique positive fixed

point E3 ( g
c ,

1
2 [

√
(P + b+1

b )2 − 4P − ( b+1
b + P)]), where P =

−acg+ag2+c2h
bcg . The existence conditions for all nonnegative

fixed points of system (1.22) are summarized in Table 2.

Table 2. The existence of fixed point.

Conditions Type of fixed point Coordinate of fixed point

h > a
4 nonexistence of type (x, 0)

h = a
4 a unique predator-free fixed point E0

(
1
2 , 0

)
0 < h < a

4 two boundary fixed point E1

(
1−
√

1− 4h
a

2 , 0
)
, E2

(
1+
√

1− 4h
a

2 , 0
)

c ≤ g or c > g and h ≥ ag(c−g)
c2 no positive fixed point

c > g and 0 < h < ag(c−g)
c2 a unique positive fixed point E3 ( g

c ,
1
2 [

√
(P + b+1

b )2 − 4P − ( b+1
b + P)])

3.2. Stability of fixed points

Now, we begin to analyze the stability of these fixed
points. The Jacobian matrix J of system (1.22) at a fixed
point E(x, y) is presented as follows:

J(E) =

1 + δψ1(y) −δxψ2(y)

δcy 1 + δ(cx − g)

 , (3.4)

where δ =
ρα

Γ(α + 1)
, ψ1(y) =

1
1 + y

− 1 + a − 2ax − by,

ψ2(y) =
1

(1 + y)2 + b.
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The characteristic equation of the Jacobian matrix J(E)
can be written as

λ2 − p(x, y)λ + q(x, y) = 0, (3.5)

here, p(x, y) = tr(E) while q(x, y) is the determinant of J(E):

p(x, y) = 2 +
ρα

Γ(α + 1)

(
1

1 + y
− 1 + a − 2ax − by + cx − g

)
,

q(x, y) = 1 +
ρα

Γ(α + 1)

(
1

1 + y
− 1 + a − 2ax − by + cx − g

)
+

ρ2α

Γ2(α + 1)

(
1

1 + y
− 1 + a − 2ax − by

)
(cx − g)

+
ρ2αcy
Γ2(α + 1)

(
x

(1 + y)2 + bx
)
.

Now, denote δ =
ρα

Γ(α+1) . For the stability of

fixed points E0

(
1
2 , 0

)
, E1

(
1−
√

1− 4h
a

2 , 0
)
, E2

(
1+
√

1− 4h
a

2 , 0
)
, and

E3( g
c ,

1
2 [

√
(P + b+1

b )2 − 4P − ( b+1
b + P)]), we can easily get

the following Theorems 3.3–3.5, respectively.

Theorem 3.3. The fixed point E0 =
(

1
2 , 0

)
of system (1.22)

is non-hyperbolic.

Theorem 3.4. For 0 < h < a
4 , the boundary fixed point

E1(x1, 0) = E1

(
1−
√

1− 4h
a

2 , 0
)

of system (1.22) occurs. The

results in the following Table 3 about the fixed point E1 are

true.

Table 3. Properties of the fixed point E1.

Conditions Eigenvalues Properties

g
c <

1−
√

1− 4h
a

2 |λ1| > 1, |λ2| > 1 unstable node

g
c =

1−
√

1− 4h
a

2 |λ1| = 1 or |λ2| = 1 non-hyperbolic

g
c >

1−
√

1− 4h
a

2

0 < δ < 2
g−cx1

|λ1| > 1, |λ2| < 1 saddle

δ = 2
g−cx1

|λ1| = 1 or |λ2| = 1 non-hyperbolic

δ > 2
g−cx1

|λ1| > 1, |λ2| > 1 source

Theorem 3.5. For 0 < h < a
4 , system (1.22) has the

boundary fixed point E2(x2, 0) = E2

(
1+
√

1−4 h
a

2 , 0
)
. The

following results are valid for the fixed point E2.

(i) For g
c <

1+
√

1− 4h
a

2 , the related conclusions are presented

in Table 4.

Table 4. Properties of the fixed point E2 when
g
c <

1+
√

1− 4h
a

2 .

Conditions Eigenvalues Properties

g
c <

1+
√

1− 4h
a

2

0 < δ < 2
√

a2−4ah
|λ1| > 1, |λ2| < 1 saddle

δ = 2
√

a2−4ah
|λ1| = 1 or |λ2| = 1 non-hyperbolic

2
√

a2−4ah
< δ |λ1| > 1, |λ2| > 1 unstable node

(ii) for g
c =

1+
√

1− 4h
a

2 , the boundary fixed point E2 is non-

hyperbolic.

(iii) for g
c >

1+
√

1− 4h
a

2 , the related conclusions are presented

in Table 5.

Table 5. Properties of the fixed point E2 when
g
c >

1+
√

1− 4h
a

2 .

Conditions Eigenvalues Properties

g − cx2 <
√

a2 − 4ah

0 < δ < 2
√

a2−4ah
|λ1| < 1, |λ2| < 1 stable node

δ = 2
√

a2−4ah
|λ1| = 1 or |λ2| = 1 non-hyperbolic

2
√

a2−4ah
< δ < 2

g−cx2
|λ1| > 1, |λ2| < 1 saddle

δ = 2
g−cx2

|λ1| = 1 or |λ2| = 1 non-hyperbolic

2
g−cx2

< δ |λ1| > 1, |λ2| > 1 unstable node

g − cx2 =
√

a2 − 4ah

0 < δ < 2
g−cx2

|λ1| < 1, |λ2| < 1 stable node

δ = 2
√

a2−4ah
|λ1| = 1 or |λ2| = 1 non-hyperbolic

2
√

a2−4ah
< δ |λ1| > 1, |λ2| > 1 unstable node

g − cx2 >
√

a2 − 4ah

0 < δ < 2
g−cx2

|λ1| < 1, |λ2| < 1 stable node

δ = 2
√

a2−4ah
|λ1| = 1 or |λ2| = 1 non-hyperbolic

2
g−cx2

< δ < 2
√

a2−4ah
|λ1| > 1, |λ2| < 1 saddle

δ = 2
√

a2−4ah
|λ1| = 1 or |λ2| = 1 non-hyperbolic

2
√

a2−4ah
< δ |λ1| > 1, |λ2| > 1 unstable node

Theorem 3.6. For c > g and 0 < h < ag(c−g)
c2 , the

unique positive fixed point E3 of system (1.22) occurs. Put

E3(x3, y3) = E3( g
c ,

1
2 [

√
(P + b+1

b )2 − 4P − ( b+1
b + P)]), A =

hc
g −

ag
c and B = gy3

(1+y3)2 + bgy3. Then the results stated in the

Table 6 are true.
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Table 6. Properties of the fixed point E3 of
system (1.22).

Conditions Eigenvalues Properties

h ≤ ag2

c2 |λ1| > 1, |λ2| > 1 unstable node

h > ag2

c2

4B > A2

0 < δ < A
B |λ1| < 1, |λ2| < 1 stable node

δ = A
B |λ1| = 1 or |λ2| = 1 non-hyperbolic

A
B < δ |λ1| > 1, |λ2| > 1 unstable node

4B = A2

0 < δ < A
B |λ1| < 1, |λ2| < 1 stable node

δ = A
B |λ1| = 1 or |λ2| = 1 non-hyperbolic

A
B < δ |λ1| > 1, |λ2| > 1 unstable node

4B < A2

0 < δ < A−
√

A2−B2/4
B |λ1| < 1, |λ2| < 1 stable node

δ =
A−
√

A2−B2/4
B |λ1| = 1 or |λ2| = 1 non-hyperbolic

A−
√

A2−B2/4
B < δ

|λ1| < (>)1, |λ2| > (<)1 saddle
<

A+
√

A2−B2/4
B

δ =
A+
√

A2−B2/4
B |λ1| = 1 or |λ2| = 1 non-hyperbolic

A+
√

A2−B2/4
B < δ |λ1| > 1, |λ2| > 1 unstable node

Proof. Notice that c > g and 0 < h < ag(c−g)
c2 imply B > 0.

The condition A > (=, <)0 depends on h > (=, <) ag2

c2 .
The Jacobian matrix of system (1.22) at the fixed point E3

may be simplified into

J(E3) =

1 − Aδ −δ( g
c(1+y3)2 −

bg
c )

δcy3 1

 ,
hence we obtain the characteristic polynomial of the
Jacobian matrix J(E3)

F(λ) = λ2 − pλ + q,

where
p = 2 − Aδ, q = 1 − Aδ + Bδ2.

It is clear that

F(1) = Bδ2 > 0 and F(−1) = Bδ2 − 2Aδ + 4.

When h ≤ ag2

c2 , A ≤ 0. At this time, q > 1, F(−1) > 0 and
δ > A

B are obvious. Therefore, according to Lemma 2.1, we
know that E3 is an unstable node, i.e., a source.

When h > ag2

c2 , A > 0 and c > 2g. Notice that q > (=, <
)1 ⇐⇒ δ > (=, <) A

B . Now, consider the following three
cases.
Case 1: B > A2

4 . Then F(−1) > 0 always holds. Consider
the following three subcases:

Subcase 1: δ < A
B . Then, q < 1. Lemma 2.1 reads |λ1| < 1

and |λ2| < 1. Thus, E3 is a stable node, i.e., a sink.

Subcase 2: δ = A
B . Then, q = 1, −2 < p < 2, Thus,

|λ1| = 1 or |λ2| = 1, so E3 is non-hyperbolic.
Subcase 3: δ > A

B . Then, q > 1. Thus, |λ1| > 1, |λ2| > 1,
indicating E3 is an unstable node, i.e., a source.
Case 2: B = A2

4 . Consider the following three subcases:
Subcase 1: δ < A

B . Then, F(−1) > 0, q < 1. Hence,
|λ1| < 1, |λ2| < 1, which shows that E3 is a stable node, i.e.,
a sink.

Subcase 2: δ = A
B . Then, F(−1) = 0, Thus, |λ1| = 1 or

|λ2| = 1, implying E3 is non-hyperbolic.
Subcase 3: δ > A

B . Then, F(−1) > 0 and q > 1. It follows
from Lemma 2.1 (i.4) that |λ1| > 1 and |λ2| > 1. Thus, E3 is
an unstable node, i.e., a source.
Case 3: B < A2

4 . Consider the following five subcases:
Subcase 1: 0 < δ < A−

√
A2−4B
B . Then, F(−1) > 0, q < 1,

indicating |λ1| < 1, |λ2| < 1. Hence, E3 is a stable node, i.e.,
a sink.

Subcase 2: δ = A−
√

A2−4B
B . Then, F(−1) = 0, Thus, |λ1| =

1 or |λ2| = 1, means that reads E3 is non-hyperbolic.
Subcase 3: A−

√
A2−4B
B < δ < A+

√
A2−4B
B . Then, F(−1) < 0.

Hence, E3 is a saddle.
Subcase 4: δ = A+

√
A2−4B
B . Then, F(−1) = 0, Thus, |λ1| =

1 or |λ2| = 1, hence E3 is non-hyperbolic.
Subcase 5: δ > A+

√
A2−4B
B . Then, F(−1) > 0, q > 1 and so

|λ1| > 1, |λ2| > 1. Therefore, E3 is an unstable node, i.e., a
source. The proof is finished. □

4. Bifurcation analysis

In this section, we apply the center manifold theorem
and local bifurcation theory to primarily study the local
bifurcation problems of system (1.22) at the fixed point
E3(x3, y3), considering its practical biological meaning.

4.1. Neimark–Sacker bifurcation at the fixed point E3

From Case 1 in the proof of Theorem 3.6 for the stability
of the positive fixed point E3(x3, y3), we see that the
dimension numbers for the stable manifold and unstable
manifold of system (1.22) at the positive fixed point E3

change when δ varies in the vicinity of δ0 (correspondingly,
ρ varies in the vicinity of ρ0) for 4B > A2, where

δ0 =
A
B
, ρ0 = (Γ(α + 1)δ0)

1
α . (4.1)
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Thus, a bifurcation, to be shown to be a Neimark–Sacker
bifurcation later, may occur. Denote

S = {(a, b, c, g, h, α, ρ) ∈ R5
+|c > g, 0< h <

ag(c − g)
c2 , B >

A2

4
}.

To analyze the Neimark–Sacker bifurcation, we perform
the following process.

Let Xn = xn − x3 and Yn = yn − y3, which transforms the
fixed point E3 to the origin O(0, 0). Assume that ρ∗ is a small
perturbation of ρ, i.e., ρ∗ = ρ − ρ0, with 0 < |ρ∗| ≪ 1. After
shifting and perturbation, system (1.22) takes the following
form

Xn+1 = Xn +
(ρ0 + ρ∗)α

Γ(α + 1)

(
Xn + x3

1 + Yn + y3
− (Xn + x3)

+ a(Xn + x3) − a(Xn + x3)2 − b(Xn + x3)(Yn + y3) − h
)
,

Yn+1 = Yn +
(ρ0 + ρ∗)α

Γ(α + 1)
(c(Xn + x3)(Yn + y3) − g(Yn + y3)) .

(4.2)
Taylor expanding of system (4.2) at (X,Y) = (0, 0)

Xn+1 = a10Xn + a01Yn + a20X2
n + a11XnYn + a02Y2

n

+ a30X3
n + a21X2

nYn + a12XnY2
n + a03Y3

n + o(ρ3
1),

Yn+1 = b10Xn + b01Yn + b20X2
n + b11XnYn + b02Y2

n

+ b30X3
n + b21X2

nYn + b12XnY2
n + b03Y3

n + o(ρ3
1),

(4.3)

where ρ1 =
√

X2
n + Y2

n ,

a10 = −

(
ρα

Γ(α + 1)

(
2ax3 −

1
y3 + 1

− a + by3 + 1
)
− 1

)
,

a01 = −
ρα

Γ(α + 1)

(
x3

(y3 + 1)2 + bx3

)
,

a20 = −
ραa
Γ(α + 1)

, a02 =
ρα

Γ(α + 1)
x3

(y3 + 1)3 ,

a30 = 0, a03 = −
ρα

Γ(α + 1)
x3

(y3 + 1)4 ,

a11 = −
ρα

Γ(α + 1)

(
b +

1
(y3 + 1)2

)
, a21 = 0,

a12 =
ρα

Γ(α + 1)
1

(y3 + 1)2 , b10 =
cy3ρ

α

Γ(α + 1)
, b11 =

cρα

Γ(α + 1)
,

b01 = b20 = b02 = b30 = b03 = b21 = b12 = 0.

The characteristic equation of linearized equation
associated with Eq (4.3) at (0, 0) is

F(λ) = λ2 − p(ρ∗)λ + q(ρ∗),

among which

p = 2−Aδ(ρ∗), q = 1−Aδ(ρ∗)+Bδ(ρ∗)2, δ(ρ∗) =
(ρ0 + ρ

∗)α

Γ(α + 1)
.

Evidently,

λ1,2(ρ∗) =
p(ρ∗) ± i

√
4q(ρ∗) − p2(ρ∗)

2
.

Moreover,

(|λ1,2(ρ∗)|)ρ∗=0 =
√

q(ρ∗)
∣∣∣∣
ρ∗=0
= 1,

(
d|λ1,2(ρ∗)|

dρ∗

)
ρ∗=0
=

αρα−1
0 A

2Γ(α + 1)
, 0.

It is obvious that λi
1,2(0) , 1 for i = 1, 2, 3, 4. Thus,

the transversal and nondegenerate conditions hold for a
Neimark–Sacker bifurcation to occur.

In order to derive the normal form of system (4.3), let

T =

0 a01

µ 1 − ω

 ,
in which ω = − p(ρ∗)

2 , µ =

√
4q(ρ∗)−p2(ρ∗)

2 . Then, we have

T−1 =

ω−1
µa01

1
µ

1
a01

0

 .
Take the following transformation:

(X,Y)T = T (U,V)T ,

then, system (4.3) takes the following formUV
→ ω − µ µ

µ ω

 UV
 + F(U,V)

G(U,V)

 + o(ρ3
2)

 , (4.4)

where ρ2 =
√

x2
n + y2

n,

F(U,V) = c20X2 + c11XY + c02Y2 + c30X3

+ c21X2Y + c12XY2 + c03Y3,
(4.1)

G(U,V) = d20X2 + d11XY + d02Y2 + d30X3

+ d21X2Y + d12XY2 + d03Y3,
(4.2)

with X = a01V and Y = µU + (1 − ω)V ,

c20 =
a20(ω − 1)
µa01

+
b20

µ
, c02 =

a02(ω − 1)
µa01

+
b02

µ
,
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c11 =
a11(ω − 1)
µa01

+
a11

µ
, c21 =

a21(ω − 1)
µa01

+
b21

µ
,

c30 =
a30(ω − 1)
µa01

+
b30

µ
, c03 =

a03(ω − 1)
µa01

+
b03

µ
,

c12 =
a12(ω − 1)
µa01

+
b12

µ
, d20 =

a20

a01
, d02 =

a02

a01
, d11 =

a11

a01
,

d30 =
a30

a01
, d03 =

a03

a01
, d21 =

a21

a01
, d12 =

a12

a01
.

Moreover,

FUU |(0,0) = 2c02µ
3, FUV |(0,0) = c11a01µ + 2c02µ(1 − ω),

FVV |(0,0) = 2c20a2
01 + 2c11a01(1 − ω), FUUU |(0,0) = 6c03µ

3,

FUUV |(0,0) = 2c21a01µ
2 + 6c03µ

2(1 − ω),

FUVV |(0,0) = 2c21a2
01µ + 4c12a01µ(1 − ω) + 6c03µ(1 − ω)2,

FVVV |(0,0) = 4(1 − ω)3 + 6c30a3
01

+ 4c21a2
01(1 − ω) + 6c12a01(1 − ω)2,

GUU |(0,0) = 2d02µ
3, GUV |(0,0) = d11a01µ + 2d02µ(1 − ω),

GVV |(0,0) = 2d20a01 + 2d11a01(1 − ω), GUUU |(0,0) = 6d03µ
3,

GUUV |(0,0) = 2d21a01µ
2 + 6d03µ

2(1 − ω),

GUVV |(0,0) = 2d21a2
01µ + 4d12a01µ(1 − ω) + 6d03µ(1 − ω)2,

GVVV |(0,0) = 4(1 − ω)3 + 6d30a3
01

+ 4d21a2
01(1 − ω) + 6d12a01(1 − ω)2.

In order to ensure that system (1.22) undergoes a
Neimark-Sacker bifurcation and to determine the stability
and direction of the bifurcation curve, the discriminant L

must be calculated and should not be equal to zero, where

L = −Re
 (1 − 2λ1)λ2

2τ20τ11

1 − λ1


−

1
2

[
|τ11|

2 − |τ02|
2 + Re(λ2τ21)

]
, (4.5)

τ20 =
1
8

[FXX − FYY + 2GXY + i(GXX −GYY − 2FXY )](0,0) ,

τ11 =
1
4

[FXX + FYY + i(GXX +GYY )](0,0) ,

τ02 =
1
8

[FXX − FYY − 2GXY + i(GXX −GYY + 2FXY )](0,0) ,

τ21 =
1
16

{[
FXXX + FXYY +GXXY +GYYY

+ i(GXXX +GXYY − FXXY − FYYY )
]}

(0,0)
.

We now come to the following conclusion as a result of
the analysis derived above.

Theorem 4.1. Let the parameters (a, b, c, g, h, α, ρ) ∈ S and

δ0 and ρ0 be defined as in (4.1). If the parameter ρ varies in

a vicinity of ρ0 (correspondingly, δ varies around δ0) and

L , 0, then system (1.22) undergoes a Neimark–Sacker

bifurcation at the fixed point point E3(x3, y3). Moreover,

if L < (>)0, then a stable (an unstable) smooth closed

invariant curve can be bifurcated out and the bifurcation is

supercritical (subcritical).

4.2. Period-doubling bifurcation at the fixed point E3

From Case 3 in the proof of Theorem 3.6 for the
stability of the positive fixed point E3, one can see that
the dimension numbers change for the stable manifold and
unstable manifold of system (1.22) at the fixed point E3

when δ varies in the vicinity of δ1 (correspondingly, ρ varies
in the vicinity of ρ0) for 4B < A2, where

δ1 =
A ±
√

A2 − 4B
B

, ρ0 = (Γ(α + 1)δ1)
1
α . (4.6)

Hence, a bifurcation may occur. Noting that λ1 = −1 and
|λ2| , 1 for δ = δ1, we show that this bifurcation is a period-
doubling one. Let

S 1 =
{
(a, b, c, g, h, α, ρ) ∈ R5

+

∣∣∣ c > g,

0 < h <
ag(c − g)

c2 , 4B <
A2

4
}
.

(4.3)

To analyze the period-doubling bifurcation of
system (1.22) at the fixed point E3, it suffices for us to

consider δ to vary in the neighborhood of δ1 =
A+
√

A2−B2/4
B .

The proof for the case where δ1 =
A−
√

A2−B2/4
B is completely

similar and will be omitted here.
Now, proceed in the following way. Put Xn = xn − x3

and Yn = yn − y3, which transforms the fixed point E3 to
the origin O(0, 0). Consider ρ∗ as a small perturbation of ρ,
namely, ρ∗ = ρ − ρ0, with 0 < |ρ∗| ≪ 1. The perturbation
takes system (1.22) into

Xn+1 = Xn +
(ρ0 + ρ∗)α

Γ(α + 1)

(
Xn + x3

1 + Yn + y3
− (Xn + x3)

+ a(Xn + x3)2 − b(Xn + x3)(Yn + y3) − h
)
,

Yn+1 = Yn +
(ρ0 + ρ∗)α

Γ(α + 1)
(c(Xn + x3)(Yn + y3) − g(Yn + y3)) ,

ρ∗n+1 = ρ
∗
n.

(4.7)
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Taylor expanding of the system (4.7) at (X,Y, ρ∗) =
(0, 0, 0) takes the form

Xn+1 = a100Xn + a010Yn + a001ρ
∗
n + a200X2

n + a020Y2
n

+a002ρ
∗2
n + a110XnYn + a101Xnρ

∗
n + a011Ynρ

∗
n + a300X3

n

+a030Y3
n + a003ρ

∗3
n + a210X2

nYn + a201X2
nρ
∗
n + a102Xnρ

∗2
n

+a120XnY2
n + a111XnYnρ

∗
n + a012XnY2

n + a021Y2
nρ
∗
n + O(ρ4

1),

Yn+1 = b100Xn + b010Yn + b001ρ
∗
n + b200X2

n + b020Y2
n

+b002(ρ∗2n + b110XnYn + b101Xnδ
∗
n + b011Ynδ

∗
n + b300X3

n

+b003ρ
∗3
n + b210X2

nYn + b201X2
nρ
∗
n + b102Xnρ

∗2
n + b120XnY2

n

+b030Y3
n + b111XnYnρ

∗
n + b012XnY2

n + b021Y2
nρ
∗
n + O(ρ4

1),

ρ∗n+1 = ρ
∗
n,

(4.8)
where ρ2 =

√
X2

n + Y2
n + (ρ∗n)2,

a100 = 1 +
ρα0 (1 − (y3 + 1) (2ax3 − a + by3 + 1))

Γ(α + 1)(y3 + 1)
,

a010 = −
ρα0

(
x3

(y3+1)2 + bx3

)
Γ(α + 1)

, a001 = 0, a002 = 0,

a200 = −
a ρα0
Γ(α + 1)

, a020 =
ρα0 x3

Γ(α + 1)(y3 + 1)3 ,

a110 =
ρα0

(
b + 1

(y3+1)2

)
Γ(α + 1)

, a011 = −
α ρα0

(
bx3 +

x3
(y3+1)2

)
Γ(α + 1) ρ0

,

a101 = −
α ρα0

(
2ax3 −

1
y3+1 − a + by3 + 1

)
Γ(α + 1) ρ0

, a300 = 0,

a030 = −
x3 ρ

α
0

Γ(α + 1) (y3 + 1)4 , a003 = 0,

a111 = −
α ρα0

(
b + 1

(y3+1)2

)
Γ(α + 1) ρ0

. a210 = 0,

a201 = −
aα ρα0

Γ(α + 1) ρ0
, a120 =

ρα0
Γ(α + 1) (y3 + 1)3 ,

a021 =
x3 α ρ

α
0

Γ(α + 1) ρ0 (y3 + 1)3 ,

a012 =

ρα0

(
bx3 +

x3
(y3+1)2

) (
α

2ρ2
0
− α

2ρ2
0

)
Γ(α + 1)

,

a102 =

ρα0

(
α

2ρ2
0
− α

2ρ2
0

) (
2ax3 −

1
y3+1 − a + by3 + 1

)
Γ(α + 1)

.

b100 =
c y3 ρ

α
0

Γ(α + 1)
, b010 = 1, b001 = 0,

b200 = 0, b020 = 0, b002 = 0, b110 =
c ρα0
Γ(α + 1)

,

b101 =
α c y3 ρ

α
0

Γ(α + 1) ρ0
, b011 = 0, b300 = 0, b030 = 0,

b003 = 0, b210 = 0, b201 = 0, b120 = 0,

b021 = 0, b102 =

c y3 ρ
α
0

(
α

2 ρ2
0
− α2

2 ρ2
0

)
Γ(α + 1)

, b012 = 0.

Let

T =

 a010 a010

−1 − a100 λ2 − a100

 ,
which is invertible. Now, using the transformationXn

Yn

 = T

ũṽ
 ,

system (4.8) becomesũn+1 = −ũn + M(Xn,Yn, ρ
∗
n),

ṽn+1 = λ2ṽn + N(Xn,Yn, ρ
∗
n).

(4.9)

System (4.9) has a center manifold Wc(0, 0, 0) at (0, 0) in the
neighborhood of ρ∗ = 0, which can be deduced using the
center manifold theorem and is essentially expressed as

Wc(0, 0, 0) = {(ũn, ṽn, ρ
∗) ∈ R3 :

ṽn = η1ũ2
n + η2ũnρ

∗ + o
(
(|ũn| + |ρ

∗|)2
)
},

where

η1 =
a010

(
(1 + a100)a200 + b020(1 + a100)2

)
1 − λ2

2

−
(1 + a100)(a110(1 + a100) + a010b110))

1 − λ2
2

,

η2 =
(1 + a100)(a011(1 + a100) + a010b011)

a010(1 + λ2)2

−
(1 + a100)(a101 + a010b101)

a010(1 + λ2)2 .

So, system (4.9) restrained on the center manifold
Wc(0, 0, 0) has the form:

ũn+1 = −ũn + θ1ũ2
nρ
∗ + θ2ũnρ

∗ + θ3ũ2
n

+ θ4ũn(ρ∗)2 + θ5ũ3
n + o

(
(|ũn| + |ρ

∗|)3
)

=: Z(ũn, ρ
∗),
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where

θ1 =
η2 ((λ2 − η1)a200 − η2b200) + b020(1 + η1)2

1 + λ2

−
(1 + η1) ((λ2 − η1)a110 − η2b110)

1 + λ2
,

θ2 =
(λ2 − η1)a101 − η2b101

1 + λ2

+
(1 + η1) ((λ2 − η1)a011 − η2b011)

η2(1 + λ2)
,

θ3 =
(λ2 − a100)η1a101 − a010b101

1 + λ2

+
((λ2 − a100)a011 − η2b011)(λ2 − a100)η1

a010(1 + λ2)2 ,

θ4 =
η2((λ2 − a100)a110 − a010b110)(λ2 − 1 − 2a100)

1 + λ2

+
2b020η2(1 + a100)(λ2 − a100)

1 + λ2
,

θ5 =
2a010η1((λ2 − a100)a200 − a010b200)

1 + λ2

+
η2(λ2 − 1 − 2a100)a210 − a010b210

1 + λ2
.

In order for the period-doubling bifurcation to occur, the
two determinating quantities ζ1 and ζ2 must both be nonzero,
where

ζ1 =

(
∂2Z
∂ũ∂ρ

+
1
2
∂Z
∂ρ∗

∂2Z
∂ũ2

)∣∣∣∣∣∣
(0,0)

,

ζ2 =

1
6
∂3Z
∂ũ3 +

(
1
2
∂2Z
∂ũ2

)2
∣∣∣∣∣∣∣
(0,0)

.

Finally, the outcome of the above analysis is summarized
as follows.

Theorem 4.2. Suppose the parameters (a, b, c, g, h, α, ρ) ∈
S 1 and δ1 and ρ0 are defined as in (4.6). If the parameter

ρ varies in a neighborhood of ρ0 (correspondingly, δ

varies around δ1) and ξ1ζ2 , 0, then system (1.22)

undergoes a period-doubling bifurcation at the fixed point

E3. Furthermore, for ζ2 > (<)0, the period-two orbit that

bifurcates from E3 is stable (unstable).

5. Numerical simulation

In this section, we perform numerical simulations for the
dynamical behaviors of system (1.22) using Matlab, aiming
to provide readers with a more intuitive understanding of the
dynamics of system (1.22).

Firstly, fix the parameter values α = 0.6, a = 5, b =
0.8, c = 0.6, g = 0.12, h = 0.15, and let ρ ∈ (0.1, 5).
Figure 1 shows the bifurcation diagram of system (1.22)
starting from the point (x3, y3) = (0.4, 0.8), and it is clear
that system (1.22) undergoes a Neimark–Sacker bifurcation
at the critical value ρ0 = 0.316.

Figure 1. The existence of a Neimark–Sacker
bifurcation of system (1.22) with the ρ taking
values from 0.1 to 5.

With the values of α = 0.6, a = 5, b = 0.8, c = 0.08, g =
0.12, and h = 0.12, Figure 2 is the bifurcation diagram of
system (1.22) starting from the point (x3, y3) = (0.4, 0.8).
We can clearly observe that system (1.22) undergoes a
period-doubling bifurcation at the critical value ρ0 = 0.2005.

Figure 2. The existence of a period-doubling
bifurcation of system (1.22) with the ρ taking
values from 0.01 to 5.

Figures 3–8 depict the phase diagram of system (1.22)
starting from the point (x0, y0) = (0.22605, 3.25610) with the
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parameters α = 0.6, a = 5, b = 0.8, c = 0.6, g = 0.12, h =
0.15. We can observe that, as ρ increases, the fixed point
gradually transits from stable state to unstable state, and an
invariant closed curve emerges.

Figure 3. ρ = 0.3.

Figure 4. ρ = 0.5.

Figure 5. ρ = 0.525.

Figure 6. ρ = 0.55.

Figure 7. ρ = 0.575.

Figure 8. ρ = 0.6.

Figures 3–8 show system (1.22) with α = 0.6, a = 5, b =
0.8, c = 0.6, g = 0.12, h = 0.15 and different ρ when the
initial value (x0, y0) = (0.22605, 3.25610).
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6. Conclusions

In this paper, we investigate the discrete version of
a fractional-order predator–prey model incorporating fear
effect and constant harvesting. In system (1.1), we consider
that the fear effect induced by the predator also influences
the prey population. Consequently, we refine the net growth
rate function of the traditional logistic model. Furthermore,
by introducing a constant harvest in system (1.5), our
model more accurately reflects natural dynamics. Due
to the current lack of effective methods for studying
the dynamics of fractional-order differential systems, we
employ the piecewise constant approximation method to
discretize the continuous fractional-order predator–prey
system (1.22), analyze the system’s dynamical properties,
and discuss the types of bifurcations that may occur.
Given parameter conditions, we completely formulate
the existence and stability of nonnegative fixed points

E0 = ( 1
2 , 0), E1

(
1−
√

1−4 h
a

2 , 0
)
, E2

(
1+
√

1−4 h
a

2 , 0
)

and E3

( g
c ,

1
2 [

√
(P + b+1

b )2 − 4P− ( b+1
b +P)]) where P = −acg+ag2+c2h

bcg

for c > g and 0 < h < ag(c−g)
c2 .

We not only derive some sufficient conditions for the
Neimark-Sacker bifurcation and period-doubling bifurcation
to occur at the fixed points E3 in certain parameter spaces,
but also state the stability and direction of the closed
bifurcated orbits. Finally, some interesting dynamical
properties for Neimark-Sacker bifurcation and period-
doubling bifurcation are illustrated through the application
of numerical simulations.

Author contributions

All authors contributed equally and significantly in
writing this paper. All authors read and approved the final
manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial
Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is partly supported by the National Natural
Science Foundation of China (61473340), the Distinguished
Professor Foundation of Qianjiang Scholar in Zhejiang
Province (F708108P01) and the Natural Science Foundation
of Zhejiang University of Science and Technology
(0401108P10).

Conflict of interest

The authors declare no conflicts of interest.

References

1. A. H. Holt, Z. G. Davies, C. Tyler, S. Staddon,
Meta-analysis of the effects of predation on
animal prey abundance: evidence from UK
vertebrates, PLoS ONE, 3 (2008), e2400.
https://doi.org/10.1371/journal.pone.0002400

2. R. K. Smith, A. S. Pullin, G. B. Stewart, W. J.
Sutherland, Effectiveness of predator removal for
enhancing bird populations, Conserv. Biol., 24
(2010), 820–829. http://doi.org/10.1111/j.1523-
1739.2009.01421.x

3. S. Creel, D. Christianson, Relationships between direct
predation and risk effects, Trends Ecol. Evol., 23 (2008),
194–201. http://doi.org/10.1016/j.tree.2007.12.004

4. W. Cresswell, Non-lethal effects of predation
risk in birds, IBIS, 150 (2008), 3–17.
http://doi.org/10.1111/j.1474-919X.2007.00793.x

5. P. A. Abrams, Foraging time optimization and
interactions on food webs, Am. Nat., 124 (1984),
80–96. https://doi.org/10.1086/284253

6. P. A. Abrams, Strengths of indirect effects generated
by optimal foraging, Oikos, 62 (1991), 167–176.
https://doi.org/10.2307/3545262

7. M. Haque, A detailed study of the Beddington-
DeAngelis predator-prey model, Math. Biosci., 234
(2011), 1–16. http://doi.org/10.1016/j.mbs.2011.07.003

Mathematical Modelling and Control Volume 5, Issue 3, 305–320.

https://dx.doi.org/https://doi.org/10.1371/journal.pone.0002400
https://dx.doi.org/http://doi.org/10.1111/j.1523-1739.2009.01421.x
https://dx.doi.org/http://doi.org/10.1111/j.1523-1739.2009.01421.x
https://dx.doi.org/http://doi.org/10.1016/j.tree.2007.12.004
https://dx.doi.org/http://doi.org/10.1111/j.1474-919X.2007.00793.x
https://dx.doi.org/https://doi.org/10.1086/284253
https://dx.doi.org/https://doi.org/10.2307/3545262
https://dx.doi.org/http://doi.org/10.1016/j.mbs.2011.07.003


319

8. M. T. Alves, F. M. Hilker, Hunting cooperation and Allee
effects in predators, J. Theor. Biol., 419 (2017), 13–22.
http://doi.org/10.1016/j.jtbi.2017.02.002

9. F. Capone, M. F. Carfora, R. De Luca, I. Torcicollo,
Turing patterns in a reaction-diffusion system modeling
hunting cooperation, Math. Comput. Simul., 165 (2019),
172–180. http://doi.org/10.1016/j.matcom.2019.03.010

10. Y. Chow, S. R. J. Jang, H. M. Wang,
Cooperative hunting in a discrete predator-prey
system, J. Biol. Dyn., 13 (2019), 247–264.
http://doi.org/10.1080/17513758.2018.1555339

11. J. Duarte, C. Januario, N. Martins, J. Sardanys, Chaos
and crises in a model for cooperative hunting: a
symbolic dynamics approach, Chaos, 19 (2009), 1–12.
http://doi.org/10.1063/1.3243924

12. S. Pal, N. Pal, S. Samanta, J. Chattopadhyay,
Effect of hunting cooperation and fear in a predator-
prey model, Ecol. Complex., 39 (2019), 1–18.
http://doi.org/10.1016/j.ecocom.2019.100770

13. N. C. Pati, G. C. Layek, N. Pal, Bifurcations and
organized structures in a predator-prey model with
hunting cooperation, Chaos Soliton. Fract., 140 (2020),
1–11. https://doi.org/10.1016/j.chaos.2020.110184

14. Z. Shang, Y. Qiao, L. Duan, J. Miao, Bifurcation
analysis in a predator-prey system with an increasing
functional response and constant-yield prey harvesting,
Math. Comput. Simul., 190 (2021), 976–1002.
http://doi.org/10.1016/j.matcom.2021.06.024

15. J. Liouville, Troisième mémoire sur le développement
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