Research article Special Issues

Position tracking control of nonholonomic mobile robots via H-based adaptive fractional-order sliding mode controller

  • In this article, the position tracking control problem of a nonholonomic wheeled mobile robot with system uncertainties and external disruptions is examined. In the design control technique, a fractional-order sliding surface is presented for faster response of the dynamical system's states. Based on this sliding surface, a robust H-based adaptive fractional-order sliding mode controller is developed to effectively handle the system's uncertainty and external disruptions. In the structure of the designed control scheme, the radial basis function neural network is utilized to reproduce the nonlinear function of the dynamical structure. The controller's H part compensates for the negative effects of the external disturbances and uncertainties robustly. The Lyapunov approach is used to determine the stability of the dynamical system. Furthermore, a numerical simulation analysis is carried out to show the effectiveness of the proposed control technique.

    Citation: Naveen Kumar, Km Shelly Chaudhary. Position tracking control of nonholonomic mobile robots via H-based adaptive fractional-order sliding mode controller[J]. Mathematical Modelling and Control, 2025, 5(1): 121-130. doi: 10.3934/mmc.2025009

    Related Papers:

    [1] Saravanan Shanmugam, R. Vadivel, S. Sabarathinam, P. Hammachukiattikul, Nallappan Gunasekaran . Enhancing synchronization criteria for fractional-order chaotic neural networks via intermittent control: an extended dissipativity approach. Mathematical Modelling and Control, 2025, 5(1): 31-47. doi: 10.3934/mmc.2025003
    [2] Lusong Ding, Weiwei Sun . Neuro-adaptive finite-time control of fractional-order nonlinear systems with multiple objective constraints. Mathematical Modelling and Control, 2023, 3(4): 355-369. doi: 10.3934/mmc.2023029
    [3] Hongli Lyu, Yanan Lyu, Yongchao Gao, Heng Qian, Shan Du . MIMO fuzzy adaptive control systems based on fuzzy semi-tensor product. Mathematical Modelling and Control, 2023, 3(4): 316-330. doi: 10.3934/mmc.2023026
    [4] Vladimir Djordjevic, Ljubisa Dubonjic, Marcelo Menezes Morato, Dragan Prsic, Vladimir Stojanovic . Sensor fault estimation for hydraulic servo actuator based on sliding mode observer. Mathematical Modelling and Control, 2022, 2(1): 34-43. doi: 10.3934/mmc.2022005
    [5] Yangtao Wang, Kelin Li . Exponential synchronization of fractional order fuzzy memristor neural networks with time-varying delays and impulses. Mathematical Modelling and Control, 2025, 5(2): 164-179. doi: 10.3934/mmc.2025012
    [6] Zejiao Liu, Yu Wang, Yang Liu, Qihua Ruan . Reference trajectory output tracking for Boolean control networks with controls in output. Mathematical Modelling and Control, 2023, 3(3): 256-266. doi: 10.3934/mmc.2023022
    [7] Xiaoyu Ren, Ting Hou . Pareto optimal filter design with hybrid H2/H optimization. Mathematical Modelling and Control, 2023, 3(2): 80-87. doi: 10.3934/mmc.2023008
    [8] Biresh Kumar Dakua, Bibhuti Bhusan Pati . A frequency domain-based loop shaping procedure for the parameter estimation of the fractional-order tilt integral derivative controller. Mathematical Modelling and Control, 2024, 4(4): 374-389. doi: 10.3934/mmc.2024030
    [9] Zhaoxia Duan, Jinling Liang, Zhengrong Xiang . Filter design for continuous-discrete Takagi-Sugeno fuzzy system with finite frequency specifications. Mathematical Modelling and Control, 2023, 3(4): 387-399. doi: 10.3934/mmc.2023031
    [10] Vladimir Stojanovic . Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming. Mathematical Modelling and Control, 2023, 3(3): 181-191. doi: 10.3934/mmc.2023016
  • In this article, the position tracking control problem of a nonholonomic wheeled mobile robot with system uncertainties and external disruptions is examined. In the design control technique, a fractional-order sliding surface is presented for faster response of the dynamical system's states. Based on this sliding surface, a robust H-based adaptive fractional-order sliding mode controller is developed to effectively handle the system's uncertainty and external disruptions. In the structure of the designed control scheme, the radial basis function neural network is utilized to reproduce the nonlinear function of the dynamical structure. The controller's H part compensates for the negative effects of the external disturbances and uncertainties robustly. The Lyapunov approach is used to determine the stability of the dynamical system. Furthermore, a numerical simulation analysis is carried out to show the effectiveness of the proposed control technique.



    Monotonicity and inequalities related to complete elliptic integrals of the second kind

    by Fei Wang, Bai-Ni Guo and Feng Qi. AIMS Mathematics, 2020, 5(3): 2732–2742.

    DOI: 10.3934/math.2020176

    In Acknowledgments section, the Grant number of "Project for Combination of Education and Research Training at Zhejiang Institute of Mechanical and Electrical Engineering" is missing. Here we give the complete information of this fund.

    The changes have no material impact on the conclusion of this article. The original manuscript will be updated [1]. We apologize for any inconvenience caused to our readers by this change.

    This work was partially supported by the Foundation of the Department of Education of Zhejiang Province (Grant No. Y201635387), the National Natural Science Foundation of China (Grant No. 11171307), the Visiting Scholar Foundation of Zhejiang Higher Education (Grant No. FX2018093), and the Project for Combination of Education and Research Training at Zhejiang Institute of Mechanical and Electrical Engineering (Grant No. A027120206).

    The authors thank anonymous referees for their careful corrections to, helpful suggestions to, and valuable comments on the original version of this manuscript.

    The authors declare that they have no conflict of interest.



    [1] X. Wu, Y. Wang, X. Dang, Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network, Fuzzy Sets Syst., 235 (2014), 62–82. https://doi.org/10.1016/j.fss.2013.07.009 doi: 10.1016/j.fss.2013.07.009
    [2] A. Kashkynbayev, R. Rakkiyappan, Sampled-data output tracking control based on T-S fuzzy model for cancer-tumor-immune systems, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107642. https://doi.org/10.1016/j.cnsns.2023.107642 doi: 10.1016/j.cnsns.2023.107642
    [3] W. Dong, W. Huo, Tracking control of wheeled mobile robots with unknown dynamics, Proceedings 1999 IEEE International Conference on Robotics and Automation, 1999. https://doi.org/10.1109/ROBOT.1999.773997 doi: 10.1109/ROBOT.1999.773997
    [4] T. Khan, F. A. Rihan, H. Ahmad, Modelling the dynamics of acute and chronic hepatitis B with optimal control, Sci. Rep., 13 (2023), 14980. https://doi.org/10.1038/s41598-023-39582 doi: 10.1038/s41598-023-39582
    [5] N. Chen, F. Song, G. Li, X. Sun, C. Ai, An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2885–2899. https://doi.org/10.1016/j.cnsns.2013.02.002 doi: 10.1016/j.cnsns.2013.02.002
    [6] M. Begnini, D. W. Bertol, N. A. Martins, A robust adaptive fuzzy variable structure tracking control for the wheeled mobile robot: simulation and experimental results, Control Eng. Pract., 64 (2017), 27–43. https://doi.org/10.1016/j.conengprac.2017.04.006 doi: 10.1016/j.conengprac.2017.04.006
    [7] K. S. Chaudhary, N. Kumar, Fractional order fast terminal sliding mode control scheme for tracking control of robot manipulators, ISA Trans., 142 (2023), 57–69. https://doi.org/10.1016/j.isatra.2023.08.008 doi: 10.1016/j.isatra.2023.08.008
    [8] N. Kumar, K. S. Chaudhary, Neural network based fractional order sliding mode tracking control of nonholonomic mobile robots, J. Comput. Anal. Appl., 33 (2024), 73–89.
    [9] K. Liu, P. Yang, R. Wang, L. Jiao, T. Li, J. Zhang, Observer-based adaptive fuzzy finite-time attitude control for quadrotor UAVs, IEEE Trans. Aerosp. Electron. Syst., 59 (2023), 8637–8654. https://doi.org/10.1109/TAES.2023.3308552 doi: 10.1109/TAES.2023.3308552
    [10] K. Liu, P. Yang, L. Jiao, R. Wang, Z. Yuan, S. Dong, Antisaturation fixed-time attitude tracking control based low-computation learning for uncertain quadrotor UAVs with external disturbances Aerosp. Sci. Technol., 142 (2023), 108668. https://doi.org/10.1016/j.ast.2023.108668 doi: 10.1016/j.ast.2023.108668
    [11] M. Defoort, T. Floquet, A. Kokosy, W. Perruquetti, Sliding-mode formation control for cooperative autonomous mobile robots, IEEE Trans. Ind. Electron., 55 (2008), 2002717. https://doi.org/10.1109/TIE.2008.2002717 doi: 10.1109/TIE.2008.2002717
    [12] B. Moudoud, H. Aissaoui, M. Diany, Robust trajectory tracking with adaptive non-singular fast TSM control of a robot manipulator, 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), 2022, 1880–1885. https://doi.org/10.1109/SSD54932.2022.9955926 doi: 10.1109/SSD54932.2022.9955926
    [13] B. Moudoud, H. Aissaoui, M. Diany, Adaptive integral-type terminal sliding mode control: application to trajectory tracking for mobile robot, Int. J. Adapt. Control Signal Process., 37 (2023), 603–616. https://doi.org/10.1002/acs.3540 doi: 10.1002/acs.3540
    [14] S. J. Gambhire, D. R. Kishore, P. S. Londhe, S. N. Pawar, Review of sliding mode based control techniques for control system applications, Int. J. Dyn. Control, 9 (2021), 363–378. https://doi.org/10.1007/s40435-020-00638-7 doi: 10.1007/s40435-020-00638-7
    [15] L. Zuo, R. Cui, W. Yan, Terminal sliding mode-based cooperative tracking control for non-linear dynamic systems, Trans. Inst. Meas. Control, 39 (2017), 1081–1087. https://doi.org/10.1177/01423312166292 doi: 10.1177/01423312166292
    [16] B. Moudoud, H. Aissaoui, M. Diany, Fixed-time non-singular fast TSM control for WMR with disturbance observer, IFAC-Papers Online, 55 (2022), 647–652. https://doi.org/10.1016/j.ifacol.2022.07.385 doi: 10.1016/j.ifacol.2022.07.385
    [17] Y. Xie, X. Zhang, W. Meng, S. Zheng, L. Jiang, J. Meng, et al., Coupled fractional-order sliding mode control and obstacle avoidance of a four-wheeled steerable mobile robot, ISA Trans., 108 (2021), 282–294. https://doi.org/10.1016/j.isatra.2020.08.025 doi: 10.1016/j.isatra.2020.08.025
    [18] N. Kumar, K. S. Chaudhary, Motion control of underactuated cart-double-pendulum system via fractional-order sliding mode controller, In: R. Kumar, A. K. Verma, O. P. Verma, T. Wadehra, Soft computing: theories and applications, Springer, 2024,155–165. https://doi.org/10.1007/978-981-97-2031-6
    [19] O. Eray, S. Tokat, The design of a fractional-order sliding mode controller with a time-varying sliding surface, Trans. Inst. Meas. Control, 42 (2020), 3196–3215. https://doi.org/10.1177/01423312209446 doi: 10.1177/01423312209446
    [20] M. O. Efe, C. A. Kasnakoglu, A fractional adaptation law for sliding mode control, Int. J. Adapt. Control Signal Process., 22 (2008), 968–986. https://doi.org/0.1002/acs.1062
    [21] K. S. Chaudhary, N. Kumar, Hybrid neural network-based fractional-order sliding mode controller for tracking control problem of reconfigurable robot manipulators using fast terminal type switching law, Eng. Appl. Artif. Intell., 139 (2025), 109515. https://doi.org/10.1016/j.engappai.2024.109515 doi: 10.1016/j.engappai.2024.109515
    [22] Ruchika, N. Kumar, Dinanath, Non-singular terminal sliding mode control of robot manipulators with H trajectory tracking performance, Arab. J. Sci. Eng., 44 (2019), 9057–9065. https://doi.org/10.1007/s13369-019-04049-5 doi: 10.1007/s13369-019-04049-5
    [23] V. Panwar, Wavelet neural network-based H trajectory tracking for robot manipulators using fast terminal sliding mode control, Robotica, 35 (2017), 1488–1503. https://doi.org/10.1017/S0263574716000278 doi: 10.1017/S0263574716000278
    [24] H. Xie, J. Zheng, Z. Sun, H. Wang, R. Chai, Finite-time tracking control for nonholonomic wheeled mobile robot using adaptive fast nonsingular terminal sliding mode, Nonlinear Dyn., 110 (2022), 1437–1453. https://doi.org/10.1007/s11071-022-07682-2 doi: 10.1007/s11071-022-07682-2
    [25] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering/Academic Press, 1999.
  • This article has been cited by:

    1. Bhuban Chandra Deuri, Marija V. Paunović, Anupam Das, Vahid Parvaneh, Ali Jaballah, Solution of a Fractional Integral Equation Using the Darbo Fixed Point Theorem, 2022, 2022, 2314-4785, 1, 10.1155/2022/8415616
    2. Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad, An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem, 2022, 7, 2473-6988, 15484, 10.3934/math.2022848
    3. Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad, Double controlled M-metric spaces and some fixed point results, 2022, 7, 2473-6988, 15298, 10.3934/math.2022838
    4. N. K. Mahato, 2023, Chapter 16, 978-981-99-0596-6, 219, 10.1007/978-981-99-0597-3_16
    5. Rahul Rahul, Nihar Kumar Mahato, Mohsen Rabbani, Nasser Aghazadeh, EXISTENCE OF THE SOLUTION VIA AN ITERATIVE ALGORITHM FOR TWO-DIMENSIONAL FRACTIONAL INTEGRAL EQUATIONS INCLUDING AN INDUSTRIAL APPLICATION, 2023, 35, 0897-3962, 10.1216/jie.2023.35.459
    6. Nihar Kumar Mahato, Bodigiri Sai Gopinadh, , 2024, Chapter 15, 978-981-99-9545-5, 339, 10.1007/978-981-99-9546-2_15
    7. An Enhanced Darbo-Type Fixed Point Theorems and Application to Integral Equations, 2024, 11, 2395-602X, 120, 10.32628/IJSRST24116165
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(356) PDF downloads(64) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog