Research article Special Issues

Position tracking control of nonholonomic mobile robots via $ H_\infty $-based adaptive fractional-order sliding mode controller

  • Published: 31 March 2025
  • In this article, the position tracking control problem of a nonholonomic wheeled mobile robot with system uncertainties and external disruptions is examined. In the design control technique, a fractional-order sliding surface is presented for faster response of the dynamical system's states. Based on this sliding surface, a robust $ H_\infty $-based adaptive fractional-order sliding mode controller is developed to effectively handle the system's uncertainty and external disruptions. In the structure of the designed control scheme, the radial basis function neural network is utilized to reproduce the nonlinear function of the dynamical structure. The controller's $ H_\infty $ part compensates for the negative effects of the external disturbances and uncertainties robustly. The Lyapunov approach is used to determine the stability of the dynamical system. Furthermore, a numerical simulation analysis is carried out to show the effectiveness of the proposed control technique.

    Citation: Naveen Kumar, Km Shelly Chaudhary. Position tracking control of nonholonomic mobile robots via $ H_\infty $-based adaptive fractional-order sliding mode controller[J]. Mathematical Modelling and Control, 2025, 5(1): 121-130. doi: 10.3934/mmc.2025009

    Related Papers:

  • In this article, the position tracking control problem of a nonholonomic wheeled mobile robot with system uncertainties and external disruptions is examined. In the design control technique, a fractional-order sliding surface is presented for faster response of the dynamical system's states. Based on this sliding surface, a robust $ H_\infty $-based adaptive fractional-order sliding mode controller is developed to effectively handle the system's uncertainty and external disruptions. In the structure of the designed control scheme, the radial basis function neural network is utilized to reproduce the nonlinear function of the dynamical structure. The controller's $ H_\infty $ part compensates for the negative effects of the external disturbances and uncertainties robustly. The Lyapunov approach is used to determine the stability of the dynamical system. Furthermore, a numerical simulation analysis is carried out to show the effectiveness of the proposed control technique.



    加载中


    [1] X. Wu, Y. Wang, X. Dang, Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network, Fuzzy Sets Syst., 235 (2014), 62–82. https://doi.org/10.1016/j.fss.2013.07.009 doi: 10.1016/j.fss.2013.07.009
    [2] A. Kashkynbayev, R. Rakkiyappan, Sampled-data output tracking control based on T-S fuzzy model for cancer-tumor-immune systems, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107642. https://doi.org/10.1016/j.cnsns.2023.107642 doi: 10.1016/j.cnsns.2023.107642
    [3] W. Dong, W. Huo, Tracking control of wheeled mobile robots with unknown dynamics, Proceedings 1999 IEEE International Conference on Robotics and Automation, 1999. https://doi.org/10.1109/ROBOT.1999.773997 doi: 10.1109/ROBOT.1999.773997
    [4] T. Khan, F. A. Rihan, H. Ahmad, Modelling the dynamics of acute and chronic hepatitis B with optimal control, Sci. Rep., 13 (2023), 14980. https://doi.org/10.1038/s41598-023-39582 doi: 10.1038/s41598-023-39582
    [5] N. Chen, F. Song, G. Li, X. Sun, C. Ai, An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2885–2899. https://doi.org/10.1016/j.cnsns.2013.02.002 doi: 10.1016/j.cnsns.2013.02.002
    [6] M. Begnini, D. W. Bertol, N. A. Martins, A robust adaptive fuzzy variable structure tracking control for the wheeled mobile robot: simulation and experimental results, Control Eng. Pract., 64 (2017), 27–43. https://doi.org/10.1016/j.conengprac.2017.04.006 doi: 10.1016/j.conengprac.2017.04.006
    [7] K. S. Chaudhary, N. Kumar, Fractional order fast terminal sliding mode control scheme for tracking control of robot manipulators, ISA Trans., 142 (2023), 57–69. https://doi.org/10.1016/j.isatra.2023.08.008 doi: 10.1016/j.isatra.2023.08.008
    [8] N. Kumar, K. S. Chaudhary, Neural network based fractional order sliding mode tracking control of nonholonomic mobile robots, J. Comput. Anal. Appl., 33 (2024), 73–89.
    [9] K. Liu, P. Yang, R. Wang, L. Jiao, T. Li, J. Zhang, Observer-based adaptive fuzzy finite-time attitude control for quadrotor UAVs, IEEE Trans. Aerosp. Electron. Syst., 59 (2023), 8637–8654. https://doi.org/10.1109/TAES.2023.3308552 doi: 10.1109/TAES.2023.3308552
    [10] K. Liu, P. Yang, L. Jiao, R. Wang, Z. Yuan, S. Dong, Antisaturation fixed-time attitude tracking control based low-computation learning for uncertain quadrotor UAVs with external disturbances Aerosp. Sci. Technol., 142 (2023), 108668. https://doi.org/10.1016/j.ast.2023.108668 doi: 10.1016/j.ast.2023.108668
    [11] M. Defoort, T. Floquet, A. Kokosy, W. Perruquetti, Sliding-mode formation control for cooperative autonomous mobile robots, IEEE Trans. Ind. Electron., 55 (2008), 2002717. https://doi.org/10.1109/TIE.2008.2002717 doi: 10.1109/TIE.2008.2002717
    [12] B. Moudoud, H. Aissaoui, M. Diany, Robust trajectory tracking with adaptive non-singular fast TSM control of a robot manipulator, 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), 2022, 1880–1885. https://doi.org/10.1109/SSD54932.2022.9955926 doi: 10.1109/SSD54932.2022.9955926
    [13] B. Moudoud, H. Aissaoui, M. Diany, Adaptive integral-type terminal sliding mode control: application to trajectory tracking for mobile robot, Int. J. Adapt. Control Signal Process., 37 (2023), 603–616. https://doi.org/10.1002/acs.3540 doi: 10.1002/acs.3540
    [14] S. J. Gambhire, D. R. Kishore, P. S. Londhe, S. N. Pawar, Review of sliding mode based control techniques for control system applications, Int. J. Dyn. Control, 9 (2021), 363–378. https://doi.org/10.1007/s40435-020-00638-7 doi: 10.1007/s40435-020-00638-7
    [15] L. Zuo, R. Cui, W. Yan, Terminal sliding mode-based cooperative tracking control for non-linear dynamic systems, Trans. Inst. Meas. Control, 39 (2017), 1081–1087. https://doi.org/10.1177/01423312166292 doi: 10.1177/01423312166292
    [16] B. Moudoud, H. Aissaoui, M. Diany, Fixed-time non-singular fast TSM control for WMR with disturbance observer, IFAC-Papers Online, 55 (2022), 647–652. https://doi.org/10.1016/j.ifacol.2022.07.385 doi: 10.1016/j.ifacol.2022.07.385
    [17] Y. Xie, X. Zhang, W. Meng, S. Zheng, L. Jiang, J. Meng, et al., Coupled fractional-order sliding mode control and obstacle avoidance of a four-wheeled steerable mobile robot, ISA Trans., 108 (2021), 282–294. https://doi.org/10.1016/j.isatra.2020.08.025 doi: 10.1016/j.isatra.2020.08.025
    [18] N. Kumar, K. S. Chaudhary, Motion control of underactuated cart-double-pendulum system via fractional-order sliding mode controller, In: R. Kumar, A. K. Verma, O. P. Verma, T. Wadehra, Soft computing: theories and applications, Springer, 2024,155–165. https://doi.org/10.1007/978-981-97-2031-6
    [19] O. Eray, S. Tokat, The design of a fractional-order sliding mode controller with a time-varying sliding surface, Trans. Inst. Meas. Control, 42 (2020), 3196–3215. https://doi.org/10.1177/01423312209446 doi: 10.1177/01423312209446
    [20] M. O. Efe, C. A. Kasnakoglu, A fractional adaptation law for sliding mode control, Int. J. Adapt. Control Signal Process., 22 (2008), 968–986. https://doi.org/0.1002/acs.1062
    [21] K. S. Chaudhary, N. Kumar, Hybrid neural network-based fractional-order sliding mode controller for tracking control problem of reconfigurable robot manipulators using fast terminal type switching law, Eng. Appl. Artif. Intell., 139 (2025), 109515. https://doi.org/10.1016/j.engappai.2024.109515 doi: 10.1016/j.engappai.2024.109515
    [22] Ruchika, N. Kumar, Dinanath, Non-singular terminal sliding mode control of robot manipulators with $H_\infty$ trajectory tracking performance, Arab. J. Sci. Eng., 44 (2019), 9057–9065. https://doi.org/10.1007/s13369-019-04049-5 doi: 10.1007/s13369-019-04049-5
    [23] V. Panwar, Wavelet neural network-based $H_\infty$ trajectory tracking for robot manipulators using fast terminal sliding mode control, Robotica, 35 (2017), 1488–1503. https://doi.org/10.1017/S0263574716000278 doi: 10.1017/S0263574716000278
    [24] H. Xie, J. Zheng, Z. Sun, H. Wang, R. Chai, Finite-time tracking control for nonholonomic wheeled mobile robot using adaptive fast nonsingular terminal sliding mode, Nonlinear Dyn., 110 (2022), 1437–1453. https://doi.org/10.1007/s11071-022-07682-2 doi: 10.1007/s11071-022-07682-2
    [25] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering/Academic Press, 1999.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1057) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog