Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Fractional calculus analysis: investigating Drinfeld-Sokolov-Wilson system and Harry Dym equations via meshless procedures

  • Received: 27 August 2023 Revised: 02 December 2023 Accepted: 15 December 2023 Published: 29 March 2024
  • In this study, we present two meshless schemes, namely the radial basis function (RBF) method and the polynomial method, for the numerical investigation of the time-fractional Harry Dym equation and the Drinfeld-Sokolov-Wilson system. In both methods, the temporal derivatives are estimated using the Caputo operator, while the spatial derivatives are approximated either through radial basis functions or polynomials. Additionally, a collocation approach is employed to convert the system of equations into a system of linear equations that is easier to solve. The accuracy of the methods is assessed by calculating the L error norm, and the outcomes are displayed through tables and figures. The simulation results indicate that both methods exhibit strong performance in handling the fractional partial differential equations (PDEs) under investigation.

    Citation: Muhammad Nawaz Khan, Imtiaz Ahmad, Mehnaz Shakeel, Rashid Jan. Fractional calculus analysis: investigating Drinfeld-Sokolov-Wilson system and Harry Dym equations via meshless procedures[J]. Mathematical Modelling and Control, 2024, 4(1): 86-100. doi: 10.3934/mmc.2024008

    Related Papers:

    [1] Xiaoyan Song, Lianfeng Lai, Shungen Xiao, Yaohong Tang, Mengmeng Song, Jie Zhang, Yong Zhang . Bionic design and multi-objective optimization of thin-walled structures inspired by conchs. Electronic Research Archive, 2023, 31(2): 575-598. doi: 10.3934/era.2023028
    [2] Dongtao Wang, Ping Xu, Chengxing Yang, Shuguang Yao, Zhen Liu . Crashworthiness performance of gradient energy-absorbing structure for subway vehicles under quasi-static loading. Electronic Research Archive, 2023, 31(6): 3568-3593. doi: 10.3934/era.2023181
    [3] Chao Ma, Hong Fu, Pengcheng Lu, Hongpeng Lu . Multi-objective crashworthiness design optimization of a rollover protective structure by an improved constraint-handling technique. Electronic Research Archive, 2023, 31(7): 4278-4302. doi: 10.3934/era.2023218
    [4] Zhiqing Li, Wenbin Zhang, Yuanfei Li . Structural stability for Forchheimer fluid in a semi-infinite pipe. Electronic Research Archive, 2023, 31(3): 1466-1484. doi: 10.3934/era.2023074
    [5] Wenjie Wang, Suzhen Wen, Shen Gao, Pengyi Lin . A multi-objective dynamic vehicle routing optimization for fresh product distribution: A case study of Shenzhen. Electronic Research Archive, 2024, 32(4): 2897-2920. doi: 10.3934/era.2024132
    [6] Ming Wei, Congxin Yang, Bo Sun, Binbin Jing . A multi-objective optimization model for green demand responsive airport shuttle scheduling with a stop location problem. Electronic Research Archive, 2023, 31(10): 6363-6383. doi: 10.3934/era.2023322
    [7] Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang . A polygonal topology optimization method based on the alternating active-phase algorithm. Electronic Research Archive, 2024, 32(2): 1191-1226. doi: 10.3934/era.2024057
    [8] Ziqiang Wang, Chunyu Cen, Junying Cao . Topological optimization algorithm for mechanical-electrical coupling of periodic composite materials. Electronic Research Archive, 2023, 31(5): 2689-2707. doi: 10.3934/era.2023136
    [9] Furong Xie, Yunkai Gao, Ting Pan, De Gao, Lei Wang, Yanan Xu, Chi Wu . Novel lightweight connecting bracket design with multiple performance constraints based on optimization and verification process. Electronic Research Archive, 2023, 31(4): 2019-2047. doi: 10.3934/era.2023104
    [10] Donghyeon Kim, Jinsung Kim . GPU-accelerated non-dominated sorting genetic algorithm III for maximizing protein production. Electronic Research Archive, 2024, 32(4): 2514-2540. doi: 10.3934/era.2024116
  • In this study, we present two meshless schemes, namely the radial basis function (RBF) method and the polynomial method, for the numerical investigation of the time-fractional Harry Dym equation and the Drinfeld-Sokolov-Wilson system. In both methods, the temporal derivatives are estimated using the Caputo operator, while the spatial derivatives are approximated either through radial basis functions or polynomials. Additionally, a collocation approach is employed to convert the system of equations into a system of linear equations that is easier to solve. The accuracy of the methods is assessed by calculating the L error norm, and the outcomes are displayed through tables and figures. The simulation results indicate that both methods exhibit strong performance in handling the fractional partial differential equations (PDEs) under investigation.



    Convexities and preinvexities significantly contribute to advancing the optimization theory in both pure and applied mathematics. The increasing demand for fractional operators stems from the extensions and generalizations of fractional inequalities. Modifications applied to fractional operators enhance their kernels, and multi-dimensional series of special functions play a pivotal role in deriving new kernel versions, thereby improving the precision and applicability of fractional operators. Over the past two decades, extensive research has been conducted on extending generalized fractional operators, utilizing multi-index special functions as kernels. Researchers have diligently explored the use of these generalized operators to illustrate inequalities, garnering considerable attention in the field of fractional order analysis [1,2,3,4,5]. The interconnection between control optimization and the theory of inequalities is closely linked to the presence of (non)convex functions within their structures. This relationship has been thoroughly examined by researchers [6,7,8]. The classical theory of convexities facilitates numerous generalizations and extensions. One such essential generalization is the concept of an invex function, introduced by Hanson in [9]. This concept serves as a foundational extension of convex functions.

    Furthermore, the fundamental characteristics of preinvex mappings and their applications in the realms of optimization and variational inequalities have been extensively explored. Noor [10,11], along with the works of Weir and Mond [12], has addressed these preinvex mappings, solving a multitude of problems related to equilibria. The application of preinvex mappings has proven to be instrumental in addressing challenges within optimization and variational inequalities, contributing to the resolution of complex equilibrium-related issues.

    Diverse strategies are employed to tackle issues related to community specifications, decision-making, and optimizations, with their significance growing daily. The conventional crisp sets, which provide membership values of 0 or 1, pose a challenge when an object exhibits a property to varying degrees. To address this limitation, Zadeh introduced the concept of the fuzzy set theory, designed to handle ambiguous or uncertain information by allowing membership values in the range [0,1]. The degree of membership within this interval reflects the level of assurance or conviction associated with the corresponding output value.

    The most commonly concept of the fuzzy number theory is based on the characteristics function, but in fuzzy domain, the characteristics function is known as membership function that depends on the unit interval [0,1]. This means that each subset of R, and any real number, are exponential cases of the fuzzy number theory. In decision-making processes entailing unclear or imprecise information, fuzzy interval-valued functions prove invaluable. They enable the representation and analysis of hazy preferences or ambiguous results. Pioneering works by Moore in 1966, Kulish and Miranker [13] delved into the idea of interval analysis, uncovering its applications in arithmetic. Furthermore, a multitude of studies in [14] have explored fuzzy-set theory and system development across various fields, making noteworthy contributions to solving a wide array of problems in applied and pure mathematics. These contributions extend to disciplines such as computer science, operational research, management sciences, control optimization theory, decision sciences, and artificial intelligence.

    So far, numerous researchers have explored the diverse properties and applications of variational inequalities within a set of functions exhibiting generalized convexity [15,16]. Additionally, in the realm of studying fractional inequalities using fuzzy interval-valued functions (FIV-functions), which involve fractional integrals with the integrand as an FIV-function, several noteworthy works have been addressed by researchers. For instance, Flores et al. [17] extended the Gronwall inequality to encompass interval-valued functions (Ⅳ-functions). Furthermore, Chalco et al. [18] applied generalized Hukuhara derivatives to establish Ostrowski-type inequalities for FIV-functions and delved into their numerical applications. Zhao et al. [19,20] directed their attention to Ⅳ-functions for the modification of well-known inequalities such as Jensen's, Chebyshev, and Hermite-Hadamard type inequalities. Following this line of research, Zhang et al. [21] derived Jensen's inequalities through the utilization of fuzzy set-valued functions.

    The primary motivation of this study stems from the essential and widely applicable nature of two classes of functions characterized by convexity and preinvexity properties within the realm of optimization. In the context of fuzzy optimization, we aim to articulate optimality conditions under such functions and explore the derivation of various variational inequalities of fuzzy type. FIV-functions emerge as a pivotal fuzzy notion, offering a means to establish innovative applied fractional fuzzy inequalities through their combination with fractional operators. The incorporation of FIV-functions into these inequalities provides a unique avenue for investigating uncertainties in prediction scenarios, departing from the semantic norms of standard non-fuzzy inequalities. We delve into the utilization of FIV-functions to formulate fuzzy integral inequalities, where uncertainties manifest in the integrand rather than the measures of integration. To achieve this, we draw on a specific group of h-convex and h-preinvex FIV-functions of the Godunova-Levin type. This strategic utilization facilitates the derivation of notable fuzzy-based integral inequalities. In essence, the research endeavors to bridge the conceptual gap between convexity, preinvexity, and fuzzy optimization, offering a novel perspective on uncertainties in prediction situations through the lens of FIV-functions and fractional fuzzy inequalities.

    In the following section, certain essential concepts are revisited to serve as a reminder. Section 3 explores Prabhakar fuzzy-based Hermite-Hadamard (H-H) type inequalities utilizing h-Godunova-Levin FIV-functions endowed with convexity. The convexity property is formulated explicitly within this section. In Section 4, the focus shifts to Prabhakar fuzzy-based trapezoidal-type inequalities, this time incorporating h-Godunova-Levin FIV-functions with the preinvexity property. The study culminates in Section 5, presenting concluding remarks and insights drawn from the findings.

    In the present section, we focus on some basic definitions and properties, which are helpful to understand the contents of the paper. Throughout the paper, KR is a convex set.

    Definition 2.1. [22] The function ϰ:KR is said to be convex if

    y(tu+(1t)v)ty(u)+(1t)y(v),

    where t[0,1] and u,vK are arbitrary.

    By considering the convex function defined above, the Hermite-Hadamard (H-H) type inequality

    y(u+v2)1vuuvy(u)duy(u)+y(v)2

    was discussed many remarkable results in [23], where u,vKR and u<v.

    Definition 2.2. [24] The preinvex function y:KR, where u,vK (Here, KR is an invex set w.r.t. the bi-function ξ on K×K) and λ[0,1], is defined as

    y(v+λξ(u,v))λy(u)+(1λ)y(v).

    Definition 2.3. [25] Consider the functions h:(0,1)R and y:KR0. Then, the h-Godunova-Levin function y satisfies

    y(tu+(1t)v)y(u)h(t)+y(v)h(1t),

    for all u,vK and t(0,1).

    Definition 2.4. [25] Consider the functions h:(0,1)R and y:KR. Then the h-Godunova-Levin preinvex function y w.r.t. ξ satisfies

    y(u+tξ(v,u))y(u)h(1t)+y(v)h(t),

    so that u,vK,t(0,1) are arbitrary.

    Definition 2.5. [26] Let yL1[u,v]. The Riemann-Liouville left and right integrals Ibu+y and Ibvy of order b>0 are defined as follows

    Ibu+y(r)=1Γ(b)ru(rt)b1y(t)dt,r>u,

    and

    Ibvy(r)=1Γ(b)vr(tr)b1y(t)dt,r<v.

    By considering FR as the fuzzy interval, let 1,2F. The partial order relation is given by

    12[1]I[2],[0,1],

    where [] is called the -level set of defined by

    []={rR:(r)}.

    Proposition 2.6. [27] For 1,2F, cR and [0,1], we have

    [1˜+2]=[1]+[2],[1˜×2]=[1]×[2],[c1]=c[1],[c˜+1]=c+[1].

    Let 1=2˜+H, where HF. In this case, the Hukuhara difference (H-difference) of 1 and 2 is represented by the symbol 1˜2 and we have

    (H)()=(1˜2)()=1()2(),(H)()=(1˜2)()=1()2().

    The left fuzzy-based Riemann-Liouville integral of the function y is defined as

    [Ibu+y(x)]=1Γ(b)xu(xt)b1y(t)dt=1Γ(b)xu(xt)b1[y(t,),y(t,)]dt,x>u,

    where

    [Ibu+y(x,)]=1Γ(b)xu(xt)b1[y(t,)]dt,x>u,

    and

    [Ibu+y(x,)]=1Γ(b)xu(xt)b1[y(t,)]dt,x>u.

    We denote the family of all bounded closed fuzzy intervals of R by Kbc.

    Definition 2.7. [28] For all [0,1], the FIV-function y:KRKbc is formulated by y(x)=[y(x,),y(x,)],xK in which the left and right functions y(x,),y(x,):KR are named as the upper and lower functions of y.

    Note that the FIV-function y:KRKbc is continuous at xK if for all [0,1], both y(x,) and y(x,) are continuous at xK.

    Definition 2.8. [29] Assume that Kbc is the aforesaid class of intervals and HKbc. Then

    Λ=[Λ,Λ]={αR|ΛαΛ},(Λ,ΛR).

    If Λ=Λ, then we say that Λ is degenerate.

    In this research, we consider all the fuzzy intervals as the non-degenerate intervals. If Λ0, then [Λ,Λ] is named as a positive interval, and all of them can be specified by the symbol K+bc so that

    K+bc={[Λ,Λ]:[Λ,Λ]Kbc and Λ0}.

    Let σR. Then, we define the scalar multiplication as [29]

    σΛ={[σΛ,σΛ]ifσ0,[σΛ,σΛ]ifσ0.

    Also, the Minkowski algebraic difference and addition actions Λ1Λ2 and Λ1+Λ2, where Λ1,Λ2Kbc, are defined as

    [Λ1,Λ1][Λ2,Λ2]=[Λ1Λ2,Λ1Λ2],[Λ1,Λ1]+[Λ2,Λ2]=[Λ1+Λ2,Λ1+Λ2].

    Moreover, the inclusion "" means that Λ1Λ2 if and only if [Λ1,Λ1][Λ2,Λ2] iff Λ1Λ2,Λ1Λ2 [29].

    The fuzzy order relation 1 is defined on Kbc as

    [Λ1,Λ1]1[Λ2,Λ2]Λ1Λ2,Λ1Λ2,

    for all [Λ1,Λ1],[Λ2,Λ2]Kbc [30].

    Definition 2.9. [31] The FIV-function y:[u,v]Kbc is convex on [u,v] if

    y(tu+(1t)v)ty(u)˜+(1t)y(v),

    so that u,v[u,v],t[0,1], y(v)0 for all v[u,v].

    Definition 2.10. [32] For u,vKbc, λ[0,1], if ξ:[α,β]R is the bi-function, then the invex set KbcR is defined as follows:

    v+λξ(u,v)Kbc. (2.1)

    Definition 2.11. [32] The FIV-function y:[α,β]Kbc is preinvex w.r.t. ξ on invex interval [α,β] if

    y(v+λξ(u,v))λy(u)˜+(1λ)y(v),

    so that u,v[α,β],t[0,1], and y(u)0,v[α,β].

    Definition 2.12. [29] Let P be a partition on [α,β] as P={u=x1<x2<x3<x4<x5<<xm=v}. The subintervals including the point p, having the maximum length, are termed as the mesh of partition P given by

    Mesh(p)=max

    The collection of all possible partitions for [u, v] is denoted by P\{\delta, [\alpha, \beta]\} and for p\in P(\delta, [\alpha, \beta]) , we have \text{Mesh}(p) < \delta . For every point b_{j} belonging to the subinterval [x_{j-1}, x_{j}] , where 1 \leq j\leq m , we define the Riemann sum of the function y corresponding to p \in P\{\delta, [\alpha, \beta]\} as

    S( y, p, \delta) = \sum\limits_{j = 1}^{m} y(b_{j})(x_{j} - x_{j-1}),

    so that y:[\alpha, \beta]\rightarrow K_{bc} .

    Definition 2.13. [33] Assume y:[\alpha, \beta]\rightarrow K_{bc} . We say that y is Riemann-integrable ( \mathcal{R} -integrable) on [\alpha, \beta] if

    d(S( y, P, \delta), B) < \delta,

    where B\in\mathbb{R} and \delta > 0 . For each choice of b_{j}\in[y_{j-1}, y_{j}] , 1\leq j \leq m , B is called the \mathcal{R} -integral of y w.r.t. [\alpha, \beta] , and is denoted by B = (\mathcal{R}) \int_{u}^{v} y(t)dt .

    Definition 2.14. The integral form of gamma function is defined as given below

    \begin{equation} \Gamma(y) = \int^{\infty}_{0} k^{y-1} e^{-k}dk, \end{equation} (2.2)

    for \mathbb{R}(k) > 0

    Definition 2.15. The Pochammer's symbol is defined as follows

    \begin{eqnarray} (y)_{k} = \left\{ \begin{array}{ll} 1, & for\; \; \; \; \; k = 0,\; y\neq 0, \\ y(y+1)...(y+k-1), & for\; \; \; \; \; k \geq 1 . \end{array} \right. \end{eqnarray} (2.3)

    For k \in \mathbb{N} and y \in \mathbb{C}:

    \begin{equation} (y)_{k} = \frac{\Gamma(y+k)}{\Gamma(y)}, \end{equation} (2.4)

    where \Gamma is the gamma function.

    Theorem 2.16. [34] Let y:[\alpha, \beta]\subseteq \mathbb{R} \rightarrow K_{bc} be an FIV-function such that y(x) = [y_{*}, y^{*}] . Then y is \mathcal{R} -integrable on [\alpha, \beta] iff y_{*} and y^{*} are \mathcal{R} -integrable on [\alpha, \beta] , and

    (\mathcal{R})\int_{u}^{v} y(x)dx = \bigg[(\mathcal{R})\int_{u}^{v} y_{*}(x), (\mathcal{R})\int_{u}^{v} y^{*}(x)dx\bigg].

    Definition 2.17. [35] The Prabhakar fractional linear operator on a space L of functions by integral and employs fractional operator integration I^{\mu}:L\rightarrow L to prove results for a < x , \alpha, \beta, \rho, \lambda \in \mathbb{C} and \Re(\alpha) > 0, \Re(\rho) > 0 as follows:

    \begin{equation} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x) = \int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}f(t)dt \; \; \; \; (\Re (\beta)) > 0, \end{equation} (2.5)

    and operator for a > x

    \begin{equation} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x) = \int^{a}_{x}(t-x)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(t-x)^{\alpha}f(t)dt \; \; \; \; (\Re (\beta)) > 0, \end{equation} (2.6)

    for any real number \alpha\geq0 where the function

    \begin{equation} E^{\rho}_{\alpha, \beta}(x) = \sum\limits^{\infty}_{n = 0}\frac{(\rho)_{n}x^{n}}{\Gamma(\alpha n+\beta)n!} \; \; \; \; \; \Re(\alpha) > 0, \end{equation} (2.7)

    is an entire function of order (\Re (\alpha))^{-1} .

    Definition 2.18. The left- and right-sided Prabhakar fuzzy fractional integral operators pertaining left, right end point functions, are defined as given below

    \begin{eqnarray} \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l}& = &\int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}f(l, t)dt\\ & = &\int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}[f^{*}(l, t), f_{*}(l, t)]dt, \end{eqnarray} (2.8)

    where

    \begin{eqnarray} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f^{*}(x, l)& = &\int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}f^{*}(l, t)dt\; \; \; (x > a), \end{eqnarray} (2.9)
    \begin{eqnarray} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f_{*}(x, l)& = &\int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(x-t)^{\alpha}f_{*}(l, t)dt\; \; \; (x > a). \end{eqnarray} (2.10)

    And

    \begin{eqnarray} \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l} = \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l}& = &\int^{a}_{x}(t-x)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(t-x)^{\alpha}f(l, t)dt\\ & = &\int^{a}_{x}(t-x)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda(t-x)^{\alpha}[f^{*}(l, t), f_{*}(l, t)]dt. \end{eqnarray} (2.11)

    Remark 2.19. Prabhakar fuzzy fractional integral operators are represented with the difference \xi(x, a) in short notation as follows:

    \begin{eqnarray} \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l} = \int^{x}_{a}(x-t)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda\Big(\frac{x-t}{\xi{(x, a)}}\Big)^{\alpha}f(l, t)dt = \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, a^{+}} f(x, l), \end{eqnarray} (2.12)
    \begin{eqnarray} \Big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda} f(x)\Big]^{l} = \int^{a}_{x}(t-x)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda\Big(\frac{t-x}{\xi{(x, a)}}\Big)^{\alpha}f(l, t)dt = \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, a^{-}} f(x, l). \end{eqnarray} (2.13)

    In the present section, we introduce a novel category of Prabhakar FIV-functions characterized by the convexity property aligned with the h -Godunova-Levin type. Through the application of these Prabkakar FIV-functions, we obtain (H-H)-type inequalities and delve into their applications, illustrated through various examples and cases.

    Definition 3.1. The FIV-function y:[\alpha, \beta]\rightarrow K_{bc} is said to be the Godunova-Levin FIV-function if

    y(tu+(1-t)v)\preccurlyeq \frac{ y(u)}{t}\widetilde{+}\frac{ y(v)}{1-t},

    is satisfied for all u, v \in [u, v], t \in (0, 1) .

    Definition 3.2. Consider h:(0, 1)\rightarrow \mathbb{R} . The FIV-function y:[\alpha, \beta]\rightarrow K_{bc} is named as a convex FIV-function of the h -Godunova-Levin type if

    y(tu+(1-t)v)\preccurlyeq \frac{ y(u)}{h(t)}\widetilde{+}\frac{ y(v)}{h(1-t)},

    is satisfied for all u, v \in [u, v], t \in (0, 1) .

    Definition 3.3. Consider h:(0, 1)\rightarrow \mathbb{R} . The FIV-function y:[\alpha, \beta]\rightarrow K_{bc} is named as a preinvex FIV-function of the h -Godunova-Levin type w.r.t. \xi if

    y(u+t\xi(v, u))\preccurlyeq \frac{ y(u)}{h(1-t)}\widetilde{+}\frac{ y(v)}{h(t)},

    is satisfied for all u, v \in [u, v], t \in (0, 1) .

    Now, we are going to prove the (H-H)-type inequality for convex FIV-functions of the h -Godunova-Levin type.

    Theorem 3.4. Consider h:(0, 1)\rightarrow \mathbb{R} and y\in L_{1}[u, v] such that h(w) \neq 0 and y:[u, v] \rightarrow K_{bc} is a convex FIV-function of the h -Godunova-Levin type with 0 < u < v . Then the fuzzy fractional integral inequalities

    \begin{align} \label{ineq34} \frac{h(\frac{1}{2})}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda&\preccurlyeq\frac{1}{2(v-u)^{\beta}} \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]\\ &\preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{align} (3.1)

    hold.

    Proof. In view of the h -Godunova-Levin convexity for the FIV-function y on the closed interval [u, v] , for each x, y \in [u, v] , we have

    y(\delta x+(1-\delta)y)\leq \frac{ y(x)}{h(\delta)} \widetilde{+} \frac{ y(y)}{h(1-\delta)}, \; \; \; \delta \in (0, 1).

    Put x = w u+(1-w)v, y = (1-w)u+w v and \delta = \frac{1}{2} . Hence

    {h\bigg(\frac{1}{2}\bigg)} y\bigg(\frac{u+v}{2}\bigg)\leq\big[ y(w u+(1-w)v) \widetilde{+} y((1-w)u+w v)\big].

    For each \ell\in[0, 1] and for the lower FIV-function y_* , we can write

    \begin{eqnarray} {h\bigg(\frac{1}{2}\bigg)} y_{*}\bigg(\frac{u+v}{2}, \ell \bigg)\leq \big[ y_{*}\big(w u+(1-w)v, \ell \big)+ y_{*} \big((1-w)u+w v, \ell \big)\big]. \end{eqnarray} (3.2)

    Multiplying w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} by Eq (3.2) and integrating w.r.t. w on [0, 1] , we obtain

    \begin{eqnarray} &&h\bigg(\frac{1}{2}\bigg) y_{*}\bigg(\frac{u+v}{2}, \ell\bigg)\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw\\ &\leq&\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y_{*}\big(w u+(1-w)v, \ell\big)dw +\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y_{*}((1-w)u+w v, \ell)dw. \end{eqnarray} (3.3)

    Now, by substituting r = w u+(1-w)v and t = (1-w)u+w v , it becomes

    \begin{eqnarray} &&h\bigg(\frac{1}{2}\bigg) y_{*}\bigg(\frac{u+v}{2}, \ell\bigg)E^{\rho}_{\alpha, \beta+1}\lambda\\ &\leq&\int_{u}^{v}\left(\frac{v-r}{v-u}\right)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda\left(\frac{v-r}{v-u}\right)^{\alpha} y_{*}(r, \ell)\frac{dr}{v-u}+\int_{u}^{v}\left(\frac{t-u}{v-u}\right)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda\left(\frac{t-u}{v-u}\right)^{\alpha} y_{*}(t, \ell)\frac{dt}{v-u}\\ &\leq&\frac{1}{(v-u)^{\beta}}\left[\int_{u}^{v}(v-r)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda\left(\frac{v-r}{v-u}\right)^{\alpha} y_{*}(r, \ell)dr +\int_{u}^{v}(t-u)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda\left(\frac{t-u}{v-u}\right)^{\alpha} y_{*}(t, \ell)dt\right]\\ \end{eqnarray} (3.4)

    and so,

    \begin{equation} \frac{h(\frac{1}{2})}{2} y_{*}\bigg(\frac{u+v}{2}, \ell\bigg)E^{\rho}_{\alpha, \beta+1}\lambda \leq\frac{1}{2(v-u)^{\beta}} \left[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y_{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y_{*}(u, \ell)\right]. \end{equation} (3.5)

    Similarly, we continue the calculation for upper FIV-function y^{*} , and we obtain

    \begin{eqnarray} \frac{h(\frac{1}{2})}{2} y^{*}\bigg(\frac{u+v}{2}, \ell\bigg)E^{\rho}_{\alpha, \beta+1}\lambda \leq\frac{1}{2(v-u)^{\beta}} \left[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y^{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y^{*}(u, \ell)\right]. \end{eqnarray} (3.6)

    From inequalities (3.5) and (3.6), the inequality

    \begin{align*} \label{n02} &\frac{h(\frac{1}{2})}{2}\bigg[ y_{*}\bigg(\frac{u+v}{2}, \ell\bigg), y^{*}\bigg(\frac{u+v}{2}, \ell\bigg)\bigg]E^{\rho}_{\alpha, \beta+1}\lambda\nonumber\\ \leq&\frac{1}{2(v-u)^{\beta}} \bigg[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y_{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y_{*}(u, \ell)), \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y^{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y^{*}(u, \ell)\bigg]\nonumber \end{align*}

    is derived; that is,

    \begin{eqnarray} \frac{h(\frac{1}{2})}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda\preccurlyeq\frac{1}{2(v-u)^{\beta}}\bigg[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v)\widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\bigg]. \end{eqnarray} (3.7)

    Now, we again consider the h -Godunova-Levin convexity for the FIV-function y to prove the second part of the inequality (3.1). We have

    \begin{eqnarray} y\bigg(w u+(1-w)v\bigg)\leq \frac{ y(u)}{h(w)} \widetilde{+} \frac{ y(v)}{h(1-w)}, \end{eqnarray} (3.8)

    and

    \begin{eqnarray} y\bigg((1-w)u+w v\bigg)\leq \frac{ y(u)}{h(1-w)} \widetilde{+} \frac{ y(v)}{h(w)}. \end{eqnarray} (3.9)

    By adding (3.8) and (3.9), we get

    y\bigg(w u+(1-w)v\bigg)+ y\bigg((1-w)u+w v\bigg) \leq \bigg( y(u) \widetilde{+} y(v)\bigg)\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg].

    For each \ell\in[0, 1] and for the lower FIV-function y_* , we have

    \begin{eqnarray} y_{*}\bigg(w u+(1-w)v, \ell\bigg)+ y_{*}\bigg((1-w)u+w v, \ell\bigg)\leq\bigg( y_{*}(u, \ell)+ y_{*}(v), \ell\bigg)\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]. \end{eqnarray} (3.10)

    By multiplying w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} by both sides of (3.10) and integrating on [0, 1] w.r.t. w , we get

    \begin{eqnarray} &&\int_{0}^{1}w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y_{*}\bigg(w u+(1-w)v, \ell\bigg)dw +\int_{0}^{1}w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y_{*}\bigg((1-w)u+w v, \ell\bigg)dw\\[0.3cm]& \leq& \bigg( y_{*}(u, \ell)+ y_{*}(v, \ell)\bigg)\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1} E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw. \end{eqnarray}

    After simplification, we obtain

    \begin{eqnarray} &&\frac{1}{(v-u)^{\beta}}\big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y_{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y_{*}(u, \ell)\big] \\& \leq& [ y_{*}(u, \ell)+ y_{*}(v, \ell)]\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw. \end{eqnarray} (3.11)

    Similarly, we continue our computation for the upper FIV-function y^{*} , and we obtain

    \begin{eqnarray} &&\frac{1}{(v-u)^{\beta}}\big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y^{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y^{*}(u, \ell)\big]\\ &\leq& [ y^{*}(u, \ell)+ y^{*}(v, \ell)]\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw. \end{eqnarray} (3.12)

    Combining inequalities (3.11) and (3.12), the inequality

    \begin{align*} &\frac{1}{(v-u)^{\beta}}\bigg[\{\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y_{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda, ^{\prime}v^{-}} y_{*}(u, \ell)\}, \{\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y^{*}(v, \ell)+\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y^{*}(u, \ell)\}\bigg]\notag\\ \leq& \big[[ y_{*}(u, \ell)+ y_{*}(v, \ell)], [ y^{*}(u, \ell)+ y^{*}(v, \ell)]\big]\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{align*}

    is derived; that is,

    \begin{eqnarray} \frac{\big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda, u^{+}} y(v)\widetilde{+}\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda, v^{-}} y(u)\big]}{2(v-u)^{\beta}} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw. \end{eqnarray} (3.13)

    From (3.7) and (3.13), we get

    \begin{eqnarray} \frac{h(\frac{1}{2})}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda&\preccurlyeq&\frac{1}{2(v-u)^{\beta}} \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]\\ &\preccurlyeq&\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\bigg[\frac{1}{h(w)}+\frac{1}{h(1-w)}\bigg]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{eqnarray} (3.14)

    which is our desired result.

    Some special cases of the conclusion of the above theorem can be stated in the framework of several examples.

    Example 3.5. In Theorem 3.4, put h(w) = w^{s} . Then the (H-H)-type inequality

    \begin{align*} \frac{(\frac{1}{2})^{s}}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda\preccurlyeq&\frac{1}{2(v-u)^{\beta}} \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]\\ \preccurlyeq&\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\left[\frac{1}{(w)^{s}}+\frac{1}{(1-w)^{s}}\right]w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{align*}

    is derived for the FIV-function with convexity of the s -Godunova-Levin type.

    Example 3.6. In Theorem 3.4, put h(w) = 1 . Then

    \begin{eqnarray} \frac{1}{2} y\bigg(\frac{u+v}{2}\bigg)\lambda\preccurlyeq\frac{ \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]}{{2(v-u)^{\beta}E^{\rho}_{\alpha, \beta+1}}} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}. \end{eqnarray} (3.15)

    Example 3.7. In Theorem 3.4, put h(w) = \dfrac{1}{w} . Then the (H-H)-type inequality

    \begin{eqnarray} y\bigg(\frac{u+v}{2}\bigg)\preccurlyeq\frac{ \left[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\right]}{2(v-u)^{\beta}E^{\rho}_{\alpha, \beta+1}\lambda} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}, \end{eqnarray} (3.16)

    is derived for the convex FIV-function.

    Example 3.8. In Theorem 3.4, put h(w) = w . Then the (H-H)-type inequality

    \begin{eqnarray} \frac{h(\frac{1}{4})}{2} y\bigg(\frac{u+v}{2}\bigg)E^{\rho}_{\alpha, \beta+1}\lambda\preccurlyeq\frac{1 \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]}{2(v-u)^{\beta}} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\frac{w^{\beta-2}}{1-w}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{eqnarray} (3.17)

    is derived for the FIV-function with convexity of the Godunova-Levin type.

    Example 3.9. (1) By choosing the value h(w) = \dfrac{1}{w^{s}} in Theorem 3.4, the (H-H)-type inequality

    \begin{eqnarray} y\bigg(\frac{u+v}{2}\bigg)\frac{E^{\rho}_{\alpha, \beta+1}\lambda}{2^{1-s}}\preccurlyeq\frac{ \big[\mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, u^{+}} y(v) \widetilde{+} \mathfrak{E}^{\alpha, \beta}_{\rho, \lambda^{\prime}, v^{-}} y(u)\big]}{2(v-u)^{\beta}} \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\int_{0}^{1}\frac{\left[w^{s}+(1-w)^{s}\right]}{w^{1-\beta}}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}dw, \end{eqnarray}

    is derived for the FIV-function with s -convexity.

    (2) If we take the value \lambda = 0, h(w) = \dfrac{1}{w^{s}} in Theorem 3.4, then

    \begin{eqnarray} 2^{s-1} y\bigg(\frac{u+v}{2}\bigg)\preccurlyeq \frac{\Gamma(\beta+1)}{2(v-u)^{\beta}} \Big[\mathbb{I}_{u^{+}}^{\beta} y(v) \widetilde{+} \mathbb{I}_{v^{-}}^{\beta} y(u)\Big] \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{2}\beta\int_{0}^{1}\big[w^{s}+(1-w)^{s}\big]w^{\beta-1}dw, \end{eqnarray}

    is derived for the FIV-function with s -convexity.

    (3) If we take the value \lambda = 0, h(w) = \dfrac{1}{w^{s}}, \beta = 1 in Theorem 3.4, then

    \begin{eqnarray} 2^{s-1} y\bigg(\frac{u+v}{2}\bigg)\preccurlyeq \frac{1}{v-u}\int_{u}^{v} y(w)dw \preccurlyeq\frac{ y(u)\widetilde{+} y(v)}{s+1}. \end{eqnarray}

    In this context, we formulate a lemma specific to Prabhakar FIV-functions featuring h -Godunova-Levin preinvexity, providing valuable support in establishing our key findings. Indeed, within this section, we deduce fuzzy-based trapezoidal-type inequalities and explore their applications through illustrated examples and cases.

    Lemma 4.1. Let y:K = [u, u+\xi(v, u)]\rightarrow \mathbb{R} be a differentiable function, and K be an invex set w.r.t. \xi:K\times K\rightarrow \mathbb{R} so that \xi(v, u) > 0 for u, v\in K . Then

    \begin{eqnarray} \frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)} = \frac{\xi(u, v)}{2}I. \end{eqnarray}

    Proof. Consider the integral

    \begin{equation*} \label{n06} I = \int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u))dw. \end{equation*}

    For every \ell\in[0, 1] , we have

    \begin{align*} I = \int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'_{*}(u+w\xi(v, u), l)dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'_{*}(u+w\xi(v, u), l)dw. \end{align*}

    Now we solve the integrals of the above equation by considering it as I_{1} and I_{2} . Simply, for I_{1} , we get

    \begin{eqnarray} I_{1}& = &\frac{ y_{*}(u+\xi(v, u), \ell)}{\xi(v, u)}E^{\rho}_{\alpha, \beta} \lambda - \sum^{\infty}_{n = 0}\frac{\lambda^{n}(\rho)_{n}(\alpha n+\beta-1)}{n! \Gamma(\alpha n+\beta)\xi(v, u)}\int_{0}^{1}w^{\alpha n+\beta-2} y_{*}(u+w\xi(v, u), \ell)dw\\ & = &\frac{ y_{*}(u+\xi(v, u), \ell)}{\xi(v, u)}E^{\rho}_{\alpha, \beta} \lambda -\frac{1}{\xi(v, u)} \int^{v}_{u}\left(\frac{t-u}{\xi(v, u)}\right)^{\beta-2}E^{\rho}_{\alpha, \beta-1} \lambda \left(\frac{t-u}{\xi(v, u)}\right)^{\alpha} y_{*}(t, \ell)dt, \end{eqnarray}

    and so,

    \begin{equation*} I_{1} = \frac{ y_{*}(u+\xi(v, u), \ell)}{\xi(v, u)}E^{\rho}_{\alpha, \beta} \lambda-\frac{\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y_{*}(u, \ell)}{\xi^{\beta}(v, u)}. \end{equation*}

    Using the similar inference to that of I_{2} , we have

    \begin{equation*} I_{2} = \frac{ y_{*}(u, \ell)}{\xi(v, u)}E^{\rho}_{\alpha, \beta}\lambda-\frac{\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y_{*}(u, \ell)}{\xi^{\beta}(v, u)}.\nonumber \end{equation*}

    Consequently,

    \begin{align} \left[ \frac{ y_{*}(u+\xi(v, u), \ell)}{\xi(v, u)}+\frac{ y_{*}(u, \ell)}{\xi(v, u)}\right]E^{\rho}_{\alpha, \beta} \lambda-\frac{1}{\xi^{\beta}(v, u)}\left[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y_{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y_{*}(v, \ell)\right]\\ \left[ y_{*}(u, \ell)+ y_{*}(u+\xi(v, u), \ell)\right]\frac{E^{\rho}_{\alpha, \beta}\lambda}{\xi(u, \ell)}- \frac{1}{\xi^{\beta}(v, u)}\left[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y_{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y_{*}(v, \ell)\right]\\ = \int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'_{*}(u+w\xi(v, u), l)dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'_{*}(u+w\xi(v, u), l)dw. \end{align} (4.1)

    Similarly, we continue our computations for the upper FIV-function y^{'*} , and we get

    \begin{eqnarray} \left[ y^{*}(u, \ell)+ y^{*}(u+\xi(v, u), \ell)\right]\frac{E^{\rho}_{\alpha, \beta}\lambda}{\xi(u, \ell)}- \frac{1}{\xi^{\beta}(v, u)}\left[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y^{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y^{*}(v, \ell)\right]\\ = \int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'^{*}(u+w\xi(v, u), l)dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'^{*}(u+w\xi(v, u), l)dw. \end{eqnarray} (4.2)

    By combining Eqs (4.1) and (4.2), then we have

    \begin{eqnarray} &&\left[ y_{*}(u, \ell)+ y_{*}(u+\xi(v, u), \ell), y^{*}(u, \ell)+ y^{*}(u+\xi(v, u), \ell)\right]\frac{E^{\rho}_{\alpha, \beta}\lambda}{\xi(u, \ell)}\\ &&- \frac{1}{\xi^{\beta}(v, u)}\left[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y_{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y_{*}(v, \ell), \mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y^{*}(u, \ell)+\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y^{*}(v, \ell)\right]\\ & = &\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha}( y'^{*}(u+w\xi(v, u), l), y'_{*}(u+w\xi(v, u), l))dw\\ &&-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha}( y'^{*}(u+w\xi(v, u), l), y'_{*}(u+w\xi(v, u), l))dw. \end{eqnarray} (4.3)

    That is,

    \begin{eqnarray} [ y(u)\widetilde{+} y(u+\xi(v, u))]\frac{E^{\rho}_{\alpha, \beta}\lambda}{\xi(u, \ell)} -\frac{1}{\xi^{\beta}(v, u)} \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big] = I. \end{eqnarray}

    This completes the proof.

    By Lemma 4.1, we can state the following theorem.

    Theorem 4.2. Consider the function y:K = [u, u+\xi(v, u)]\rightarrow (0, \infty) . Assume that the differentiable FIV-function | y'| has the preinvexity property of the h -Godunova-Levin type on K . Then

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\ &\preccurlyeq&\frac{\xi(v, u)}{2}\big[| y'(u)|\widetilde{+}| y'(v)|\big]\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\frac{1}{h(w)}dw. \end{eqnarray}

    Proof. Using Lemma 4.1, we obtain that for every \ell \in [0, 1]

    \begin{eqnarray*} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\nonumber\\& = &\bigg|\frac{\xi(u, v)}{2}\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u))dw\bigg|\nonumber\\& = &\left|\frac{\xi(u, v)}{2}\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u), l)dw\right|\nonumber\\ &\leq&\frac{\xi(u, v)}{2}\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))\right|dw-\int_{0}^{1}\left|(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u), l)\right|dw\\ & = &\frac{\xi(u, v)}{2}\left|\sum^{\infty}_{n = 0}\frac{(\rho)_{n}\lambda^{n}}{\Gamma(\alpha n+\beta)n!}\right|\int_{0}^{1}\left|w^{\alpha n+\beta-1}-(1-w)^{\alpha n+\beta-1}\right|\left| y'(u+w\xi(v, u), l)\right|dw. \end{eqnarray*}

    The h -Godunova-Levin preinvexity property of the FIV-function \big| y^{'}_{*}(u+w\xi(v, u), \ell)\big| gives

    \begin{align} \text{L.H.S.} &\leq\frac{\xi(u, v)}{2}\left|\sum^{\infty}_{n = 0}\frac{(\rho)_{n}\lambda^{n}}{\Gamma(\alpha n+\beta)n!}\right|\int_{0}^{1}\left|w^{\alpha n+\beta-1}-(1-w)^{\alpha n+\beta-1}\right| \left|\frac{ y^{'}_{*}(u, \ell)}{h(w)}+\frac{ y^{'}_{*}(v, \ell)}{h(1-w)}\right|dw \\ &\leq\frac{\xi(u, v)}{2}\left|\sum^{\infty}_{n = 0}\frac{(\rho)_{n}\lambda^{n}}{\Gamma(\alpha n+\beta)n!}\right|\int_{0}^{1}\left|w^{\alpha n+\beta-1}-(1-w)^{\alpha n+\beta-1}\right|\Big[\frac{\big| y^{'}_{*}(u, \ell)\big|}{h(w)}+\frac{\big| y^{'}_{*}(v, \ell)\big|}{h(1-w)}\Big]dw. \end{align} (4.4)

    Similarly, we repeat the computations to solve it this time for the upper FIV-function y^{'*} . We have

    \begin{equation} \text{L.H.S.} \leq\frac{\xi(u, v)}{2}\left|\sum^{\infty}_{n = 0}\frac{(\rho)_{n}\lambda^{n}}{\Gamma(\alpha n+\beta)n!}\right|\int_{0}^{1}\left|w^{\alpha n+\beta-1}-(1-w)^{\alpha n+\beta-1}\right|\Big[\frac{\big| y^{'*}(u, \ell)\big|}{h(w)}+\frac{\left| y^{'*}(v, \ell)\right|}{h(1-w)}\Big]dw. \end{equation} (4.5)

    From inequalities (4.4) and (4.5), we get

    \begin{align*} &\text{L.H.S.}\\ \leqslant_{I}&\frac{\xi(v, u)}{2}\big[| y^{'}_{*}(u, \ell)+ y^{'}_{*}(v, \ell)|, | y^{'*}(u, \ell) + y^{'*}(v, \ell)|\big]\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\frac{1}{h(w)}dw \\[0.3cm] \preccurlyeq&\frac{\xi(v, u)}{2}\big[| y'(u)|\widetilde{+}| y'(v)|\big]\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\frac{1}{h(w)}dw, \end{align*}

    as required.

    Some special cases of the conclusion of the above theorem can be stated in the framework of several examples.

    Example 4.3. In Theorem 4.2, put \xi(v, u) = v-u . Then

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(v)}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2(v-u)^{\beta-1}}\bigg|\\ &\preccurlyeq&\frac{(v-u)}{2}\big[| y'(u)|\widetilde{+}| y'(v)|\big]\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\frac{1}{h(w)}dw. \end{eqnarray}

    Theorem 4.4. Consider the function y:K = [u, u+\xi(v, u)]\rightarrow (0, \infty) . Assume that the differentiable FIV-function | y'|^{q} has the preinvexity property of the h -Godunova-Levin type on K so that q = \frac{p}{p-1} with p > 1 . Then

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\& \preccurlyeq&\frac{\xi(v, u)}{2}\big(| y'(u)|^{q}\widetilde{+}| y'(v)|^{q}\big)^{\frac{1}{q}} \left(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|^{p}dw\right)^{\frac{1}{p}}\left(\int_{0}^{1}\frac{1}{h(w)}dw\right)^\frac{1}{q}. \end{eqnarray}

    Proof. Using Lemma 4.1, and Hölder's integral inequality for every \ell\in[0, 1] , we obtain

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\& = &\bigg|\frac{\xi(u, v)}{2}\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u))dw\bigg|\\ &\leq&\frac{\xi(u, v)}{2}\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right| \left| y'(u+w\xi(v, u))\right|dw\\& \leq&\frac{\xi(v, u)}{2} \bigg(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|^{p}dw\bigg)^{\frac{1}{p}}\bigg(\int_{0}^{1}\big| y'(u+w\xi(v, u))\big|^{q}dw\bigg)^{\frac{1}{q}}\\& \leq&\frac{\xi(v, u)}{2} \bigg(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|^{p}dw\bigg)^{\frac{1}{p}}\bigg(\int_{0}^{1}\big| y^{'}_{*}(u+w\xi(v, u)), \ell\big|^{q}dw\bigg)^{\frac{1}{q}}, \\ \end{eqnarray} (4.6)

    where \frac{1}{p}+\frac{1}{q} = 1 .

    The h -Godunova-Levin preinvexity property of the FIV-function \big| y^{'}_{*}(u+w\xi(v, u)), \ell\big|^{q} gives

    \begin{eqnarray} \int_{0}^{1}| y^{'}_{*}(u+w\xi(v, u)), \ell|^{q}dw\leq\int_{0}^{1}\bigg(\frac{| y^{'}_{*}(u), \ell|^{q}}{h(w)}+\frac{| y^{'}_{*}(v), \ell|^{q}}{h(1-w)}\bigg)dw. \end{eqnarray} (4.7)

    Similarly, we solve it for the upper FIV-function \big| y^{'*}\big|^{q} , and we get

    \begin{eqnarray} \int_{0}^{1}| y^{'*}(u+w\xi(v, u)), \ell|^{q}dw\leq\int_{0}^{1}\bigg(\frac{| y^{'*}(u), \ell|^{q}}{h(w)}+\frac{| y^{'*}(v), \ell|^{q}}{h(1-w)}\bigg)dw. \end{eqnarray} (4.8)

    By combining (4.7) and (4.8), we have

    \begin{align} \text{L.H.S.} &\leq_{I}\big(| y^{'}_{*}(u, \ell)+ y^{'}_{*}(v, \ell)|^{q}, | y^{'*}(u, \ell)+ y^{'*}(v, \ell)|^{q}\big)\int_{0}^{1}\frac{1}{h(w)}dw\\ &\preccurlyeq\big(| y^{'}(u)|^{q}\widetilde{+} y^{'}(v)|^{q}\big)\int_{0}^{1}\frac{1}{h(w)}dw. \end{align} (4.9)

    Using (4.9) in (4.6), we get the required result.

    Theorem 4.5. The H-H inequality related to the hypotheses of Theorem 4.4 is as follows

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\ &\preccurlyeq&\frac{\xi(v, u)}{2^{\frac{1}{q}}}(| y^{'}(u)|^{q}\widetilde{+}| y^{'}(v)|^{q})^{\frac{1}{q}} \left[E^{\rho}_{\alpha, \beta+1}\lambda-\left(\frac{1}{2}\right)^{\beta-1}E^{\rho}_{\alpha, \beta+1}\lambda \left(\frac{1}{2}\right)^{\alpha}\right]^{1-\frac{1}{q}}\\ &&\times\left(\int_{0}^{1}\frac{\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|}{h(w)}dw\right)^{\frac{1}{q}}. \end{eqnarray}

    Proof. Using Lemma 4.1, and thanks to the power-mean inequality, the last inequality becomes for every \ell\in[0, 1]

    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\& = &\bigg|\frac{\xi(u, v)}{2}\int_{0}^{1}w^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda w^{\alpha} y'(u+w\xi(v, u))dw-\int_{0}^{1}(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta} \lambda (1-w)^{\alpha} y'(u+w\xi(v, u))dw\bigg|\\ &\leq&\frac{\xi(u, v)}{2}\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right| \left| y'(u+w\xi(v, u))\right|dw, \end{eqnarray} (4.10)
    \begin{eqnarray} &&\bigg|\frac{ y(u)\widetilde{+} y(u+\xi(v, u))}{2}E^{\rho}_{\alpha, \beta}\lambda -\frac{ \Big[\mathfrak{E}_{\rho, \lambda^{\prime}, (u+\xi(v, u))^{-}}^{\alpha, \beta-1} y(u, \ell)\widetilde{+}\mathfrak{E}^{\alpha, \beta-1}_{\rho, \lambda^{\prime}, (v+\xi(u, v))^{+}} y(v, \ell)\Big]}{2\xi^{\beta-1}(v, u)}\bigg|\\ &\leq&\frac{\xi(v, u)}{2}\bigg(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right| dw\bigg)^{1-\frac{1}{q}}\\ \nonumber &&\bigg(\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right| \big| y'(u+w\xi(v, u))\big|^{q}dw\bigg)^{\frac{1}{q}}. \end{eqnarray} (4.11)

    The h -Godunova-Levin preinvexity of the FIV-function \big| y^{'}(u+w\xi(v, u))\big|^{q} , we can obtain

    \begin{eqnarray} &&\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\big| y^{'}_{*}(u+w\xi(v, u), \ell)\big|^{q}dw\\ &\leq&\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\bigg(\frac{| y^{'}_{*}(u), \ell|^{q}}{h(w)}+\frac{| y^{'}_{*}(v, \ell)|^{q}}{h(1-w)}\bigg)dw\\ &\leq&\int_{0}^{1}\frac{\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|}{h(w)}(| y^{'}_{*}(u, \ell|^{q}+| y^{'}_{*}(v, \ell)|^{q})dw. \end{eqnarray} (4.12)

    Similarly, for the upper FIV-function | y^{'*}|^{q} , we get

    \begin{eqnarray} &&\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\big| y^{'*}(u+w\xi(v, u), \ell)\big|^{q}dw\\ &\leq&\int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|\bigg(\frac{| y^{'*}(u, \ell)|^{q}}{h(w)}+\frac{| y^{'*}(v, \ell)|^{q}}{h(1-w)}\bigg)dw\\ & \leq&\int_{0}^{1}\frac{\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|}{h(w)}(| y^{'*}(u, \ell)|^{q}+| y^{'*}(v, \ell)|^{q})dw. \end{eqnarray} (4.13)

    By combining (4.12) and (4.13), we have

    \begin{align} \text{L.H.S.} \preccurlyeq\int_{0}^{1}\frac{\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|}{h(w)}(| y^{'}(u)|^{q}\widetilde{+}| y^{'}(v)|^{q})dw. \end{align} (4.14)

    On the other hand, using the equation

    \int_{0}^{1}\left|w^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda w^{\alpha}-(1-w)^{\beta-1}E^{\rho}_{\alpha, \beta}\lambda (1-w)^{\alpha}\right|dw = 2\left[E^{\rho}_{\alpha, \beta+1}\lambda-\left(\frac{1}{2}\right)^{\beta-1}E^{\rho}_{\alpha, \beta+1}\lambda \left(\frac{1}{2}\right)^{\alpha}\right],

    and (4.14) and (4.12), we get the required result.

    In this research, we introduced a novel classification of convex FIV-functions and preinvex FIV-functions, employing an arbitrary auxiliary h -function of the Godunova-Levin type. Utilizing this category, we derived updated versions of Hermite-Hadamard (H-H) and trapezoidal-type inequalities by implementation of newly described fuzzy fractional operators (Prabhakar fuzzy-based operators). The application of these findings was demonstrated through various examples, highlighting diverse cases. We conclude that extending Prabhakar (H-H) and Prabhakar trapezoidal-type fractional inequalities to encompass different types of fuzzy-based convexities and preinvexities under Prabhakar FIV-functions is both feasible and applicable. Looking ahead, we plan to explore this concept further within the domain of generalized convex FIV-functions, with a focus on applications in fuzzy-interval-valued non-linear programming. We anticipate that this exploration will contribute valuable insights to the broader field of fuzzy-based optimization theory and provide a foundation for other researchers in fulfilling their roles within this realm. Moreover, we conclude that such type of fractional operators, extensions, and generalizations of inequalities and its refinments could be discussed for fuzzy interval valued functions. The validated results are expected to open new avenues for future research in this evolving area. These outcomes indicate a promising route for further exploration in the sphere of integral inequalities.

    Iqra Nayab: Conceptualization, Formal Analysis, Software, Software, Writing-Original Draft; Shahid Mubeen: Conceptualization, Formal Analysis, Writing-Review & Editing; Rana Safdar Ali: Conceptualization, Formal Analysis, Investigation, Methodology, Writing-Original Draft; Faisal Zahoor: Formal Analysis, Investigation, Software; Muath Awadalla: Investigation, Writing-Original Draft; Abd Elmotaleb A. M. A. Elamin: Investigation, Methodology, Writing-Review & Editing. All authors read and approved the final manuscript.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. A166]. This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2024/R/1445).

    The authors declare no conflicts of interest.



    [1] J. Li, I. Ahmad, H. Ahmad, D. Shah, Y. Chu, Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method, Open Phys., 18 (2020), 1063–1072. https://doi.org/10.1515/phys-2020-0222 doi: 10.1515/phys-2020-0222
    [2] V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-14003-7
    [3] R. Caponetto, Fractional order systems, World Sci. Ser. Nonlinear Sci. Ser. A, 72 (2010), 1–32. https://doi.org/10.1142/9789814304207_0001 doi: 10.1142/9789814304207_0001
    [4] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [5] I. Ahmad, H. Ahmad, M. Inc, H. Rezazadeh, M. A. Akbar, M. M. Khater, et al., Solution of fractional-order Korteweg-de Vries and Burgers' equations utilizing local meshless method, J. Ocean Eng. Sci., 2021. https://doi.org/10.1016/j.joes.2021.08.014
    [6] I. Ahmad, I. Ali, R. Jan, S. A. Idris, M. Mousa, Solutions of a three-dimensional multi-term fractional anomalous solute transport model for contamination in groundwater, Plos One, 18 (2023), e0294348. https://doi.org/10.1371/journal.pone.0294348 doi: 10.1371/journal.pone.0294348
    [7] F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional Fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [8] H. Ahmad, T. A. Khan, I. Ahmad, P. S. Stanimirović, Y. M. Chu, A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations, Results Phys., 19 (2020), 103462. https://doi.org/10.1016/j.rinp.2020.103462 doi: 10.1016/j.rinp.2020.103462
    [9] M. Inc, M. N. Khan, I. Ahmad, S. W. Yao, H. Ahmad, P. Thounthong, Analysing time-fractional exotic options via efficient local meshless method, Results Phys., 19 (2020), 103385. https://doi.org/10.1016/j.rinp.2020.103385 doi: 10.1016/j.rinp.2020.103385
    [10] H. Ahmad, M. N. Khan, I. Ahmad, M. Omri, M. F. Alotaibi, A meshless method for numerical solutions of linear and nonlinear time-fractional Black-Scholes models. AIMS Math., 8 (2023), 19677–19698. https://doi.org/10.3934/math.20231003 doi: 10.3934/math.20231003
    [11] B. Almutairi, I. Ahmad, B. Almohsen, H. Ahmad, D. U. Ozsahin, Numerical simulations of time-fractional PDEs arising in mathematics and physics using the local meshless differential quadrature method, Therm. Sci., 27 (2023), 263–272. https://doi.org/10.2298/TSCI23S1263A doi: 10.2298/TSCI23S1263A
    [12] H. Irshad, M. Shakeel, I. Ahmad, H. Ahmad, C. Tearnbucha, W. Sudsutad, Simulation of generalized time fractional Gardner equation utilizing in plasma physics for non-linear propagation of ion-acoustic waves, Therm. Sci., 27 (2023), 121–128. https://doi.org/10.2298/TSCI23S1121I doi: 10.2298/TSCI23S1121I
    [13] I. Ahmad, A. R. Seadawy, H. Ahmad, P. Thounthong, F. Wang, Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method, Int. J. Nonlinear Sci. Numer., 23 (2022), 115–122. https://doi.org/10.1515/ijnsns-2020-0166 doi: 10.1515/ijnsns-2020-0166
    [14] Z. Hussain, S. Khan, A. Ullah, Ikramullah, M. Ayaz, I. Ahmad, et al., Extension of optimal homotopy asymptotic method with use of Daftardar-Jeffery polynomials to Hirota-Satsuma coupled system of Korteweg-de Vries equations, Open Phys., 18 (2020), 916–924. https://doi.org/10.1515/phys-2020-0210 doi: 10.1515/phys-2020-0210
    [15] F. Wang, J. Zhang, I. Ahmad, A. Farooq, H. Ahmad, A novel meshfree strategy for a viscous wave equation with variable coefficients, Front Phys., 9 (2021), 701512. https://doi.org/10.3389/fphy.2021.701512 doi: 10.3389/fphy.2021.701512
    [16] M. Ahsan, A. A. Khan, S. Dinibutun, I. Ahmad, H. Ahmad, N. Jarasthitikulchai, et al., The haar wavelets based numerical solution of Reccati equation with integral boundary condition, Therm. Sci., 27 (2023), 93–100. https://doi.org/10.2298/TSCI23S1093A doi: 10.2298/TSCI23S1093A
    [17] K. Srinivasa, R. A. Mundewadi, Wavelets approach for the solution of nonlinear variable delay differential equations, Int. J. Math. Comput. Eng., 1 (2023), 139–148. https://doi.org/10.2478/ijmce-2023-0011 doi: 10.2478/ijmce-2023-0011
    [18] R. Singh, J. Mishra, V. K. Gupta, The dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative, Int. J. Math. Compt. Eng., 1 (2023), 115–126. https://doi.org/10.2478/ijmce-2023-0009 doi: 10.2478/ijmce-2023-0009
    [19] F. Wang, I. Ahmad, H. Ahmad, H. Ahmad, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ. Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
    [20] A. H. Arnous, M. S. Hashemi, K. S. Nisar, M. Shakeel, J. Ahmad, I. Ahmad, et al., Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics, Results Phys., 57 (2024), 107369. https://doi.org/10.1016/j.rinp.2024.107369 doi: 10.1016/j.rinp.2024.107369
    [21] V. G. Drinfel'd, V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Soviet Math., 30 (1985), 1975–2036. https://doi.org/10.1007/BF02105860 doi: 10.1007/BF02105860
    [22] G. Wilson, The affine Lie algebra C^{(1)}_{2} and an equation of Hirota and Satsuma, Phys. Lett. A, 89 (1982), 332–334. https://doi.org/10.1016/0375-9601(82)90186-4 doi: 10.1016/0375-9601(82)90186-4
    [23] Z. X. Qin, Z. H. Yan, An improved F-expansion method and its application to coupled Drinfeld-Sokolov-Wilson equation, Commun. Theor. Phys., 50 (2008), 309. https://doi.org/10.1088/0253-6102/50/2/05 doi: 10.1088/0253-6102/50/2/05
    [24] R. Arora, A. Kumar, Solution of the coupled Drinfeld's-Sokolov-Wilson (DSW) system by homotopy analysis method, Adv. Sci. Eng. Med., 5 (2013), 1105–1111. https://doi.org/10.1166/asem.2013.1399 doi: 10.1166/asem.2013.1399
    [25] W. Liu, Y. Zhang, Time-fractional Drinfeld-Sokolov-Wilson system: Lie symmetry analysis, analytical solutions and conservation laws, Eur. Phys. J. Plus, 134 (2019), 126. https://doi.org/10.1140/epjp/i2019-12490-8 doi: 10.1140/epjp/i2019-12490-8
    [26] M. Inc, On numerical doubly periodic wave solutions of the coupled Drinfel'd-Sokolov-Wilson equation by the decomposition method, Appl. Math. Comput., 172 (2006), 421–430. https://doi.org/10.1016/j.amc.2005.02.012 doi: 10.1016/j.amc.2005.02.012
    [27] R. Islam, K. Khan, M. A. Akbar, M. E. Islam, M. T. Ahmed, Traveling wave solutions of some nonlinear evolution equations, Alex. Eng. J., 54 (2015), 263–269. https://doi.org/10.1016/j.aej.2015.01.002 doi: 10.1016/j.aej.2015.01.002
    [28] J. Moser, Dynamical systems, theory and applications, Springer, 1975. https://doi.org/10.1007/3-540-07171-7
    [29] V. Dougalis, F. Sturm, G. Zouraris, On an initial-boundary value problem for a wide-angle parabolic equation in a waveguide with a variable bottom, Math. Methods Appl. Sci., 32 (2009), 1519–1540. https://doi.org/10.1002/mma.1097 doi: 10.1002/mma.1097
    [30] S. Kumar, M. P. Tripathi, O. P. Singh, A fractional model of Harry Dym equation and its approximate solution, Ain Shams Eng. J., 4 (2013), 111–115. https://doi.org/10.1016/j.asej.2012.07.001 doi: 10.1016/j.asej.2012.07.001
    [31] I. Ahmad, M. Ahsan, I. Hussain, P. Kumam, W. Kumam, Numerical simulation of PDEs by local meshless differential quadrature collocation method, Symmetry, 11 (2019), 394. https://doi.org/10.3390/sym11030394 doi: 10.3390/sym11030394
    [32] P. Thounthong, M. N. Khan, I. Hussain, I. Ahmad, P. Kumam, Symmetric radial basis function method for simulation of elliptic partial differential equations, Mathematics, 6 (2018), 327. https://doi.org/10.3390/math6120327 doi: 10.3390/math6120327
    [33] I. Ahmad, M. Riaz, M. Ayaz, M. Arif, S. Islam, P. Kumam, Numerical simulation of partial differential equations via local meshless method, Symmetry, 11 (2019), 257. https://doi.org/10.3390/sym11020257 doi: 10.3390/sym11020257
    [34] M. Nawaz, I. Ahmad, H. Ahmad, A radial basis function collocation method for space-dependent inverse heat problems, J. Appl. Comput. Mech., 6 (2020), 1187–1199. https://doi.org/10.22055/JACM.2020.32999.2123 doi: 10.22055/JACM.2020.32999.2123
    [35] I. Ahmad, S. ul Islam, A. Q. M. Khaliq, Local RBF method for multi-dimensional partial differential equations, Comput. Math. Appl., 74 (2017), 292–324. https://doi.org/10.1016/j.camwa.2017.04.026 doi: 10.1016/j.camwa.2017.04.026
    [36] I. Ahmad, H Ahmad, P. Thounthong, Y. M. Chu, C. Cesarano, Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method, Symmetry, 12 (2020), 1195. https://doi.org/10.3390/sym12071195 doi: 10.3390/sym12071195
    [37] M. I. Bhatti, M. H. Rahman, N. Dimakis, Approximate solutions of nonlinear partial differential equations using B-polynomial bases, Fractal Fract., 5 (2021), 106. https://doi.org/10.3390/fractalfract5030106 doi: 10.3390/fractalfract5030106
    [38] A. Davari, A. Ahmadi, New implementation of legendre polynomials for solving partial differential equations, Appl. Math., 4 (2013), 1647. https://doi.org/10.4236/am.2013.412224 doi: 10.4236/am.2013.412224
    [39] I. Ahmad, A. A. Bakar, I. Ali, S. Haq, S. Yussof, A. H. Ali, Computational analysis of time-fractional models in energy infrastructure applications. Alex. Eng. J., 82 (2023), 426–436. https://doi.org/10.1016/j.aej.2023.09.057 doi: 10.1016/j.aej.2023.09.057
    [40] N. N. H. Shah, R. Jan, H. Ahmad, N. N. A. Razak, I. Ahmad, H. Ahmad, Enhancing public health strategies for tungiasis: A mathematical approach with fractional derivative, AIMS Bioeng., 10 (2023), 384–405. https://doi.org/10.3934/bioeng.2023023 doi: 10.3934/bioeng.2023023
    [41] G. Jumarie, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations, Insur. Math. Econ., 42 (2008), 271–287. https://doi.org/10.1016/j.insmatheco.2007.03.001 doi: 10.1016/j.insmatheco.2007.03.001
    [42] G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time, Application to Merton's optimal portfolio, Comput. Math. Appl., 59 (2010), 1142–1164. https://doi.org/10.1016/j.camwa.2009.05.015 doi: 10.1016/j.camwa.2009.05.015
    [43] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [44] A. Atangana, D. Baleanu, New fractional derivatives with non-local and nonsingular kernel theory and application to heat transfer model, Therm. Sci, 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [45] J. He, Z. Li, Q. Wang, A new fractional derivative and its application to explanation of polar bear hairs, J. King Saud. Univ. Sci., 28 (2016), 190–192. https://doi.org/10.1016/j.jksus.2015.03.004 doi: 10.1016/j.jksus.2015.03.004
    [46] Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [47] G. E. Fasshauer, Meshfree approximation methods with MATLAB, World Scientific, 2007.
    [48] H. Wendland, Local polynomial reproduction and moving least squares approximation, IMA J. Numer. Anal., 21 (2001), 285–300. https://doi.org/10.1093/imanum/21.1.285 doi: 10.1093/imanum/21.1.285
    [49] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., 7 (1954), 159–193. https://doi.org/10.1002/cpa.3160070112 doi: 10.1002/cpa.3160070112
    [50] R. Mokhtari, Exact solutions of the Harry-Dym equation, Commun. Theor. Phys., 55 (2011), 204. https://doi.org/10.1088/0253-6102/55/2/03 doi: 10.1088/0253-6102/55/2/03
    [51] A. Ghafoor, S. Sardar, A. Ullah, M. Hussain, H. Ahmad, F. A. Awwad, et al., Simulations of the one and two dimensional nonlinear evolutionary partial differential equations: a numerical study, Results Phys., 49 (2023), 106466. https://doi.org/10.1016/j.rinp.2023.106466 doi: 10.1016/j.rinp.2023.106466
    [52] M. Rawashdeh, A new approach to solve the fractional Harry Dym equation using the FRDTM, Int. J. Pure Appl. Math., 95 (2014), 553–566. https://doi.org/10.12732/ijpam.v95i4.8 doi: 10.12732/ijpam.v95i4.8
  • This article has been cited by:

    1. Xinyu He, Ce Yang, Mingqiu Zheng, Hanzhi Zhang, Yadong Du, A fast evaluation method for surface area, volume fraction, and hydraulic diameter of TPMS with different geometric characteristics, 2024, 0954-4062, 10.1177/09544062241277342
    2. T Dabasa, H G Lemu, Y Regassa, Literature review on thin-walled and cellular structure designs for energy absorption, 2023, 1294, 1757-8981, 012046, 10.1088/1757-899X/1294/1/012046
    3. Sheng Li, Laiyu Liang, Ping Yang, Shaoan Li, Yaozhong Wu, Bending Performance of Diamond Lattice Cylindrical Shells, 2025, 18, 1996-1944, 272, 10.3390/ma18020272
    4. Zihao Li, Shiqiang Li, Jiajing Liu, Zhifang Liu, Jianyin Lei, Zhihua Wang, Response mechanisms and energy absorption properties of hybrid sheet TPMS lattices under static and dynamic loading, 2025, 210, 02638231, 112980, 10.1016/j.tws.2025.112980
    5. Dong Wei, Shaoan Li, Laiyu Liang, Longfei Sun, Yaozhong Wu, Low-Velocity Impact Response of Sandwich Structure with Triply Periodic Minimal Surface Cores, 2025, 17, 2073-4360, 712, 10.3390/polym17060712
    6. Mingzhu Dang, Honghao Xiang, Jingjing Li, Chunsheng Ye, Chao Cai, Qingsong Wei, Mechanical Response and Superelastic Properties of Cu-11.85Al-3.2Mn-0.1Ti TPMS Structures Printed by Laser Powder Bed Fusion, 2025, 38, 2192-8258, 10.1186/s10033-024-01170-x
    7. Izzat Mat Samudin, Nabilah Afiqah Mohd Radzuan, Abu Bakar Sulong, Quanjin Ma, Abdul Hadi Azman, Wan Fathul Hakim Wan Zamri, Stress strain curve analysis of sheet based TPMS structures in quasi static compression test: A review, 2025, 36, 22387854, 5757, 10.1016/j.jmrt.2025.04.168
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1271) PDF downloads(89) Cited by(6)

Figures and Tables

Figures(7)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog