Research article

Efficient numerical method for pricing multi-asset options with the time-fractional Black-Scholes model: focus on American and digital options

  • Published: 21 May 2025
  • This study presents a numerical solution for the two-asset time-fractional Black-Scholes model, which governs American and digital options, using a local meshless collocation method based on Gaussian radial basis functions. The proposed meshless approach effectively discretized the spatial derivatives of the model, while the Caputo derivative was employed to represent the time-fractional component, capturing the memory effects and non-local properties characteristic of fractional-order models. Numerical assessments were conducted to evaluate the method's performance across these option models. The study discusses the handling of interest rates, highlighting the method's capability to manage the complexities inherent in multi-asset options. The efficacy and accuracy of the proposed meshless approach were evaluated using the $ L_{\infty} $ error norms. In the absence of exact solutions for these option models, the double mesh technique was utilized to validate the accuracy and efficiency of the proposed method, ensuring the robustness and reliability of the numerical results.

    Citation: Imtiaz Ahmad, Muhammad Nawaz Khan, Rashid Jan, Normy Norfiza Abdul Razak. Efficient numerical method for pricing multi-asset options with the time-fractional Black-Scholes model: focus on American and digital options[J]. Mathematical Modelling and Control, 2025, 5(2): 147-163. doi: 10.3934/mmc.2025011

    Related Papers:

  • This study presents a numerical solution for the two-asset time-fractional Black-Scholes model, which governs American and digital options, using a local meshless collocation method based on Gaussian radial basis functions. The proposed meshless approach effectively discretized the spatial derivatives of the model, while the Caputo derivative was employed to represent the time-fractional component, capturing the memory effects and non-local properties characteristic of fractional-order models. Numerical assessments were conducted to evaluate the method's performance across these option models. The study discusses the handling of interest rates, highlighting the method's capability to manage the complexities inherent in multi-asset options. The efficacy and accuracy of the proposed meshless approach were evaluated using the $ L_{\infty} $ error norms. In the absence of exact solutions for these option models, the double mesh technique was utilized to validate the accuracy and efficiency of the proposed method, ensuring the robustness and reliability of the numerical results.



    加载中


    [1] S. B. Chen, H. Jahanshahi, O. A. Abba, J. E. Solís-Pérez, S. Bekiros, J. F. Gómez-Aguilar, et al., The effect of market confidence on a financial system from the perspective of fractional calculus: Numerical investigation and circuit realization, Chaos, Soliton. Fract., 140 (2020), 110223. https://doi.org/10.1016/j.chaos.2020.110223 doi: 10.1016/j.chaos.2020.110223
    [2] P. Ma, A. Najafi, J. F. Gomez-Aguilar, Sub mixed fractional Brownian motion and its application to finance, Chaos, Soliton. Fract., 184 (2024), 114968. https://doi.org/10.1016/j.chaos.2024.114968 doi: 10.1016/j.chaos.2024.114968
    [3] J. Wu, J. F. Gomez-Aguilar, R. Taleghani, Portfolio optimization under the uncertain financial model, Comput. Econ., 2024, 1–22. https://doi.org/10.1007/s10614-024-10727-w doi: 10.1007/s10614-024-10727-w
    [4] J. P. Aguilar, J. Korbel, N. Pesci, On the quantitative properties of some market models involving fractional derivatives, Mathematics, 9 (2021), 3198. https://doi.org/10.3390/math9243198 doi: 10.3390/math9243198
    [5] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
    [6] P. Carr, L. Wu, The finite moment log stable process and option pricing, J. Finance, 58 (2003), 753–777. https://doi.org/10.1111/1540-6261.00544 doi: 10.1111/1540-6261.00544
    [7] A. I. Alaje, M. O. Olayiwola, K. A. Adedokun, J. A. Adedeji, A. O. Oladapo, Y. O. Akeem, The modified homotopy perturbation method and its application to the dynamics of price evolution in Caputo-fractional order Black Scholes model, Beni-Suef Univ. J. Basic Appl. Sci., 12 (2023), 93. https://doi.org/10.1186/s43088-023-00433-1 doi: 10.1186/s43088-023-00433-1
    [8] S. N. Ogunyebi, S. E. Fadugba, T. O. Ogunlade, K. J. Adebayo, B. T. Babalola, O. Faweya, et al., Direct solution of the Black-Scholes PDE models with non-integer order, J. Phys. Conf. Ser., 2199 (2022), 012003. https://doi.org/10.1088/1742-6596/2199/1/012003 doi: 10.1088/1742-6596/2199/1/012003
    [9] G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. application to merton's optimal portfolio, Comput. Math. Appl., 59 (2010), 1142–1164. https://doi.org/10.1016/j.camwa.2009.05.015 doi: 10.1016/j.camwa.2009.05.015
    [10] J. Korbel, Y. Luchko, Modeling of financial processes with a space-time fractional diffusion equation of varying order, Fract. Calc. Appl. Anal., 19 (2016), 1414–1433. https://doi.org/10.1515/fca-2016-0073 doi: 10.1515/fca-2016-0073
    [11] A. Farhadi, M. Salehi, G. H. Erjaee, A new version of Black-Scholes equation presented by time-fractional derivative, Iran J. Sci. Technol. Trans. Sci., 42 (2018), 2159–2166. https://doi.org/10.1007/s40995-017-0244-7 doi: 10.1007/s40995-017-0244-7
    [12] A. Cartea, D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Phys. A: Stat. Mech. Appl., 374 (2007), 749–763. https://doi.org/10.1016/j.physa.2006.08.071 doi: 10.1016/j.physa.2006.08.071
    [13] Q. Li, Y. Zhou, X. Zhao, X. Ge, Fractional order stochastic differential equation with application in European option pricing, Discrete Dyn. Nat. Soc., 2014 (2014), 621895. https://doi.org/10.1155/2014/621895 doi: 10.1155/2014/621895
    [14] W. Chen, X. Xu, S. P. Zhu, A predictor–corrector approach for pricing American options under the finite moment log-stable model, Appl. Numer. Math., 97 (2015), 15–29. https://doi.org/10.1016/j.apnum.2015.06.004 doi: 10.1016/j.apnum.2015.06.004
    [15] W. Chen, S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Comput. Math. Appl., 67 (2014) 77–90. https://doi.org/10.1016/j.camwa.2013.10.007 doi: 10.1016/j.camwa.2013.10.007
    [16] G. Colldeforns-Papiol, L. Ortiz-Gracia, C. W. Oosterlee, Two-dimensional Shannon wavelet inverse Fourier technique for pricing European options, Appl. Numer. Math., 117 (2017), 115–138. https://doi.org/10.1016/j.apnum.2017.03.002 doi: 10.1016/j.apnum.2017.03.002
    [17] M. J. Ruijter, C. W. Oosterlee, Two-dimensional Fourier cosine series expansion method for pricing financial options, SIAM J. Sci. Comput., 34 (2012), B642–B671. https://doi.org/10.1137/120862053 doi: 10.1137/120862053
    [18] Q. J. Meng, D. Ding, An efficient pricing method for rainbow options based on two-dimensional modified sine–sine series expansions, Int. J. Comput. Math., 90 (2013), 1096–1113. https://doi.org/10.1080/00207160.2012.749349 doi: 10.1080/00207160.2012.749349
    [19] W. Wang, X. Chen, D. Ding, S. L. Lei, Circulant preconditioning technique for barrier options pricing under fractional diffusion models, Int. J. Comput. Math., 92 (2015), 2596–2614. https://doi.org/10.1080/00207160.2015.1077948 doi: 10.1080/00207160.2015.1077948
    [20] X. Chen, W. Wang, D. Ding, S. L. Lei, A fast preconditioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation, Comput. Math. Appl., 73 (2017), 1932–1944. https://doi.org/10.1016/j.camwa.2017.02.040 doi: 10.1016/j.camwa.2017.02.040
    [21] S. L. Lei, W. Wang, X. Chen, D. Ding, A fast preconditioned penalty method for American options pricing under regime-switching tempered fractional diffusion models, J. Sci. Comput., 75 (2018), 1633–1655. https://doi.org/10.1007/s10915-017-0602-9 doi: 10.1007/s10915-017-0602-9
    [22] S. Kim, D. Jeong, C. Lee, J. Kim, Finite difference method for the multi-asset Black–Scholes equations, Mathematics, 8 (2020), 391. https://doi.org/10.3390/math8030391 doi: 10.3390/math8030391
    [23] D. Černá, K. Fiňková, Option pricing under multifactor Black–Scholes model using orthogonal spline wavelets, Math. Comput. Simul., 220 (2024), 309–340. https://doi.org/10.1016/j.matcom.2024.01.020 doi: 10.1016/j.matcom.2024.01.020
    [24] J. Choi, Sum of all Black–Scholes–Merton models: an efficient pricing method for spread, basket, and Asian options, J. Futures Markets, 38 (2018), 627–644. https://doi.org/10.1002/fut.21909 doi: 10.1002/fut.21909
    [25] C. Bayer, C. B. Hammouda, A. Papapantoleon, M. Samet, R. Tempone, Quasi-Monte Carlo for efficient fourier pricing of multi-asset options, arXiv Preprint, 2024. https://doi.org/10.48550/arXiv.2403.02832
    [26] W. Chen, S. Wang, A 2nd-order FDM for a 2D fractional Black-Scholes equation, In: I. Dimov, I. Faragó, L. Vulkov, Numerical analysis and its applications, NAA 2016, Lecture Notes in Computer Science, Springer, Cham., 10187 (2017), 46–57. https://doi.org/10.1007/978-3-319-57099-0_5
    [27] W. Chen, S. Wang, A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing, Appl. Math. Comput., 305 (2017), 174–187. https://doi.org/10.1016/j.amc.2017.01.069 doi: 10.1016/j.amc.2017.01.069
    [28] L. Mohan, A. Prakash, Stability and numerical analysis of the generalised time-fractional Cattaneo model for heat conduction in porous media, Eur. Phys. J. Plus, 138 (2023), 1–28. https://doi.org/10.1140/epjp/s13360-023-03765-0 doi: 10.1140/epjp/s13360-023-03765-0
    [29] K. S. Chaudhary, N. Kumar, Fractional order fast terminal sliding mode control scheme for tracking control of robot manipulators, ISA Trans., 142 (2023), 57–69. https://doi.org/10.1016/j.isatra.2023.08.008 doi: 10.1016/j.isatra.2023.08.008
    [30] N. Kumar, K. S Chaudhary, Motion control of underactuated Cart-Double-Pendulum system Via fractional-order sliding mode controller, In: R. Kumar, A. K. Verma, O. P. Verma, T. Wadehra, Soft computing: theories and applications, SoCTA 2023, Lecture Notes in Networks and Systems, Springer, Singapore, 970 (2023), 155–165. https://doi.org/10.1007/978-981-97-2031-6_14
    [31] I. Ahmad, A. A. Bakar, R. Jan, S. Yussof, Dynamic behaviors of a modified computer virus model: insights into parameters and network attributes, Alex. Eng. J., 103 (2024), 266–277. https://doi.org/10.1016/j.aej.2024.06.009 doi: 10.1016/j.aej.2024.06.009
    [32] A. A. Khan, M. Ahsan, I. Ahmad, M. Alwuthaynani, Enhanced resolution in solving first-order nonlinear differential equations with integral condition: a high-order wavelet approach, Eur. Phys. J. Spec. Top., 2024, 1–14. https://doi.org/10.1140/epjs/s11734-024-01254-8
    [33] A. Prakash, L. Mohan, Two efficient techniques for analysis and simulation of time-fractional Tricomi equation, Sādhanā, 49 (2024), 1–13. https://doi.org/10.1007/s12046-024-02482-3 doi: 10.1007/s12046-024-02482-3
    [34] I. Ali, I. Ahmad, Applications of the nonlinear Klein/Sinh-Gordon equations in modern physics: a numerical study, Math. Model. Control, 4 (2024), 361–373. https://doi.org/10.3934/mmc.2024029 doi: 10.3934/mmc.2024029
    [35] J. F. Li, I. Ahmad, H. Ahmad, D. Shah, Y. M. Chu, P. Thounthong, et al., Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method, Open Phys., 18 (2020), 1063–1072. https://doi.org/10.1515/phys-2020-0222 doi: 10.1515/phys-2020-0222
    [36] F. Wang, I. Ahmad, H. Ahmad, M. D. Alsulami, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ.-Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
    [37] F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional Fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [38] I. Ahmad, M. Ahsan, I. Hussain, P. Kumam, W. Kumam, Numerical simulation of PDEs by local meshless differential quadrature collocation method, Symmetry, 11 (2019), 394. https://doi.org/10.3390/sym11030394 doi: 10.3390/sym11030394
    [39] I. Ahmad, A. O. Alshammari, R. Jan, N. N. A. Razak, S. A. Idris, An efficient numerical solution of a multi-dimensional two-term fractional order PDE via a hybrid methodology: the Caputo–Lucas–Fibonacci approach with strang splitting, Fractal Fract., 8 (2024), 364. https://doi.org/10.3390/fractalfract8060364 doi: 10.3390/fractalfract8060364
    [40] M. N. Khan, I. Ahmad, M. Shakeel, R. Jan, Fractional calculus analysis: investigating Drinfeld-Sokolov-Wilson system and Harry Dym equations via meshless procedures, Math. Model. Control, 4 (2024), 86–100. https://doi.org/10.3934/mmc.2024008 doi: 10.3934/mmc.2024008
    [41] M. N. Khan, I. Ahmad, A. Akgül, H. Ahmad, P. Thounthong, Numerical solution of time-fractional coupled Korteweg–de Vries and Klein–Gordon equations by local meshless method, Pramana, 95 (2021), 1–13. https://doi.org/10.1007/s12043-020-02025-5 doi: 10.1007/s12043-020-02025-5
    [42] I. Ahmad, M. Ahsan, Z. Din, A. Masood, P. Kumam, An efficient local formulation for time–dependent PDEs, Mathematics, 7 (2019), 216. https://doi.org/10.3390/math7030216 doi: 10.3390/math7030216
    [43] G. Yao, Siraj-ul-Islam, B. Sarler, A comparative study of global and local meshless methods for diffusion-reaction equation, Comput. Model. Eng. Sci., 59 (2010), 127–154. https://doi.org/10.3970/cmes.2010.059.127 doi: 10.3970/cmes.2010.059.127
    [44] Siraj-ul-Islam, I. Ahmad, A comparative analysis of local meshless formulation for multi-asset option models, Eng. Anal. Bound. Elem., 65 (2016), 159–176. https://doi.org/10.1016/j.enganabound.2015.12.020 doi: 10.1016/j.enganabound.2015.12.020
    [45] L. Mohan, A. Prakash, An efficient technique for solving fractional diffusion equations arising in oil pollution via natural transform, Waves Random Complex Media, 2023, 1–22. https://doi.org/10.1080/17455030.2023.2273323
    [46] L. Mohan, A. Prakash, Stability and numerical analysis of fractional BBM-Burger equation and fractional diffusion-wave equation with Caputo derivative, Opt. Quant. Electron., 56 (2024), 26. https://doi.org/10.1007/s11082-023-05608-9 doi: 10.1007/s11082-023-05608-9
    [47] A. Prakash, L. Mohan, Application of Caputo fractional operator to analyse the fractional model of Brain Tumour via modified technique, Int. J. Appl. Comput. Math., 9 (2023), 117. https://doi.org/10.1007/s40819-023-01591-7 doi: 10.1007/s40819-023-01591-7
    [48] G. Jumarie, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations, Insur.: Math. Econ., 42 (2008), 271–287. https://doi.org/10.1016/j.insmatheco.2007.03.001 doi: 10.1016/j.insmatheco.2007.03.001
    [49] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [50] A. Atangana, D. Baleanu, New fractional derivatives with non-local and nonsingular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [51] J. H. He, Z. B. Li, Q. L. Wang, A new fractional derivative and its application to explanation of polar bear hairs, J. King Saud. Univ.-Sci., 28 (2016), 190–192. https://doi.org/10.1016/j.jksus.2015.03.004 doi: 10.1016/j.jksus.2015.03.004
    [52] Z. Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [53] S. A. Sarra, A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains, Appl. Math. Comput., 218 (2012), 9853–9865. https://doi.org/10.1016/j.amc.2012.03.062 doi: 10.1016/j.amc.2012.03.062
    [54] A. Q. M. Khaliq, D. A. Voss, K. Kazmi, Adaptive $\theta$-methods for pricing American options, J. Comput. Appl. Math., 222 (2008), 210–227. https://doi.org/10.1016/j.cam.2007.10.035 doi: 10.1016/j.cam.2007.10.035
    [55] M. K. Kadalbajooa, A. Kumar, L. P. Tripathia, Application of local radial basis function based finite difference method for American option problems, Int. J. Comput. Math., 92 (2015), 1608–1624. https://doi.org/10.1080/00207160.2014.950571 doi: 10.1080/00207160.2014.950571
    [56] B. F. Nielsen, O. Skavhaug, A. Tveito, Penalty and front-fixing methods for the numerical solution of American option problems, J. Comput. Finance, 5 (2002), 69–97. https://doi.org/10.21314/JCF.2002.084 doi: 10.21314/JCF.2002.084
    [57] G. E. Fasshauer, A. Q. M. Khaliq, D. A. Voss, Using meshfree approximation for multi-asset American option problems, J. Chin. Inst. Eng., 27 (2004), 563–571. https://doi.org/10.1080/02533839.2004.9670904 doi: 10.1080/02533839.2004.9670904
    [58] C. S. Huang, C. H. Hung, S. Wang, A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297–320. https://doi.org/10.1007/s00607-006-0164-4 doi: 10.1007/s00607-006-0164-4
    [59] C. S. Huang, C. H. Hung, S. Wang, On convergence of a fitted finite-volume method for the valuation of options on assets with stochastic volatilities, IMA J. Numer. Anal., 30 (2010), 1101–1120. https://doi.org/10.1093/imanum/drp016 doi: 10.1093/imanum/drp016
    [60] Z. Cen, J. Huang, A. Xu, A. Le, Numerical approximation of a time-fractional Black–Scholes equation, Comput. Math. Appl., 75 (2018), 2874–2887. https://doi.org/10.1016/j.camwa.2018.01.016 doi: 10.1016/j.camwa.2018.01.016
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1105) PDF downloads(70) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog