Research article

Potential-based versus non potential-based cohesive models accounting for loading and unloading with application to sliding elastic laminates

  • Received: 17 March 2025 Revised: 19 June 2025 Accepted: 20 June 2025 Published: 26 June 2025
  • A rigorous unified perspective of cohesive zone models is presented, including and comparing potential-based and non potential-based formulations, and encompassing many of the known examples studied in literature. The main novelty of the work consists in the natural inclusion of loading and unloading effects in a general mixed-mode framework, incorporated through an intrinsic construction of energy densities or tensions. The proposed mathematical investigation identifies and proves the limitations of variational models with respect to non-variational ones, the latter yielding a feasible description of real instances in all relevant situations and regimes. This validates existing empirical and numerical observations. An application to a mechanical process of two elastic laminates sliding one on each other along their cohesive interface is finally analyzed, and existence results in both potential-based and non potential-based versions are obtained, extending previous contributions.

    Citation: Francesco Freddi, Filippo Riva. Potential-based versus non potential-based cohesive models accounting for loading and unloading with application to sliding elastic laminates[J]. Mathematics in Engineering, 2025, 7(3): 406-438. doi: 10.3934/mine.2025017

    Related Papers:

  • A rigorous unified perspective of cohesive zone models is presented, including and comparing potential-based and non potential-based formulations, and encompassing many of the known examples studied in literature. The main novelty of the work consists in the natural inclusion of loading and unloading effects in a general mixed-mode framework, incorporated through an intrinsic construction of energy densities or tensions. The proposed mathematical investigation identifies and proves the limitations of variational models with respect to non-variational ones, the latter yielding a feasible description of real instances in all relevant situations and regimes. This validates existing empirical and numerical observations. An application to a mechanical process of two elastic laminates sliding one on each other along their cohesive interface is finally analyzed, and existence results in both potential-based and non potential-based versions are obtained, extending previous contributions.



    加载中


    [1] R. Alessi, F. Freddi, Phase–field modelling of failure in hybrid laminates, Compos. Struct., 181 (2017), 9–25. https://doi.org/10.1016/j.compstruct.2017.08.073 doi: 10.1016/j.compstruct.2017.08.073
    [2] R. Alessi, F. Freddi, Failure and complex crack patterns in hybrid laminates: a phase-field approach, Compos. Part B: Eng., 179 (2019), 107256. https://doi.org/10.1016/j.compositesb.2019.107256 doi: 10.1016/j.compositesb.2019.107256
    [3] G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7 (1962), 55–129. https://doi.org/10.1016/S0065-2156(08)70121-2 doi: 10.1016/S0065-2156(08)70121-2
    [4] E. Bonetti, C. Cavaterra, F. Freddi, F. Riva, On a phase-field model of damage for hybrid laminates with cohesive interface, Math. Meth. Appl. Sci., 45 (2021), 3520–3553. https://doi.org/10.1002/mma.7999 doi: 10.1002/mma.7999
    [5] B. Bourdin, G. Francfort, J. J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), 5–148. https://doi.org/10.1007/s10659-007-9107-3 doi: 10.1007/s10659-007-9107-3
    [6] F. Cagnetti, R. Toader, Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach, ESAIM Control Optim. Calc. Var., 17 (2011), 1–27. https://doi.org/10.1051/cocv/2009037 doi: 10.1051/cocv/2009037
    [7] P. G. Ciarlet, Mathematical elasticity: three-dimensional elasticity, Vol. 1, North-Holland Amsterdam, 1988.
    [8] V. Crismale, G. Lazzaroni, G. Orlando, Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue, Math. Mod. Meth. Appl. Sci., 28 (2018), 1371–1412. https://doi.org/10.1142/S0218202518500379 doi: 10.1142/S0218202518500379
    [9] D. S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8 (1960), 100–104. https://doi.org/10.1016/0022-5096(60)90013-2 doi: 10.1016/0022-5096(60)90013-2
    [10] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126. https://doi.org/10.1073/pnas.38.2.121 doi: 10.1073/pnas.38.2.121
    [11] G. A. Francfort, J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9 doi: 10.1016/S0022-5096(98)00034-9
    [12] M. Giaquinta, L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Edizioni della Normale Pisa, 2012. https://doi.org/10.1007/978-88-7642-443-4
    [13] I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170–174. https://doi.org/10.2307/2032478 doi: 10.2307/2032478
    [14] A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London Ser. A, 221 (1921), 163–198. https://doi.org/10.1098/rsta.1921.0006 doi: 10.1098/rsta.1921.0006
    [15] A. A. León Baldelli, J. F. Babadjian, B. Bourdin, D. Henao, C. Maurini, A variational model for fracture and debonding of thin films under in-plane loadings, J. Mech. Phys. Solids, 70 (2014), 320–348. https://doi.org/10.1016/j.jmps.2014.05.020 doi: 10.1016/j.jmps.2014.05.020
    [16] A. A. León Baldelli, B. Bourdin, J. J Marigo, C. Maurini, Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model, Continuum Mech. Thermodyn., 25 (2013), 243–268. https://doi.org/10.1007/s00161-012-0245-x doi: 10.1007/s00161-012-0245-x
    [17] J. P. McGarry, É. Ó Máirtín, G. Parry, G. E. Beltz, Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part Ⅰ: theoretical analysis, J. Mech. Phys. Solids, 63 (2014), 336–362. https://doi.org/10.1016/j.jmps.2013.08.020 doi: 10.1016/j.jmps.2013.08.020
    [18] A. Mielke, T. Roubíček, Rate-independent systems: theory and application, Vol. 655, Springer-Verlag New York, 2015. https://doi.org/10.1007/978-1-4939-2706-7
    [19] M. Negri, R. Scala, A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface, Nonlinear Anal.: Real World Appl., 38 (2017), 271–305. https://doi.org/10.1016/j.nonrwa.2017.05.002 doi: 10.1016/j.nonrwa.2017.05.002
    [20] M. Negri, E. Vitali, Approximation and characterization of quasi-static $H^1$-evolutions for a cohesive interface with different loading-unloading regimes, Interfaces Free Bound., 20 (2018), 25–67. https://doi.org/10.4171/IFB/396 doi: 10.4171/IFB/396
    [21] K. Park, G. H. Paulino, Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces, Appl. Mech. Rev., 64 (2011), 060802. https://doi.org/10.1115/1.4023110 doi: 10.1115/1.4023110
    [22] K. Park, G. H. Paulino, J. R. Roesler, A unified potential-based cohesive model of mixed-mode fracture, J. Mech. Phys. Solids, 57 (2009), 891–908. https://doi.org/10.1016/j.jmps.2008.10.003 doi: 10.1016/j.jmps.2008.10.003
    [23] F. Riva, Energetic evolutions for linearly elastic plates with cohesive slip, Nonlinear Anal.: Real World Appl., 74 (2023), 103934. https://doi.org/10.1016/j.nonrwa.2023.103934 doi: 10.1016/j.nonrwa.2023.103934
    [24] D. W. Spring, O. Giraldo-Londoño, G. H. Paulino, A study on the thermodynamic consistency of the Park-Paulino-Roesler (PPR) cohesive fracture model, Mech. Res. Commun., 78 (2016), 100–109. https://doi.org/10.1016/j.mechrescom.2016.05.006 doi: 10.1016/j.mechrescom.2016.05.006
    [25] C. Talon, A. Curnier, A model of adhesion coupled to contact and friction, Eur. J. Mech. A/Solids, 22 (2003), 545–565. https://doi.org/10.1016/S0997-7538(03)00046-9 doi: 10.1016/S0997-7538(03)00046-9
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(668) PDF downloads(68) Cited by(1)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog