A rigorous unified perspective of cohesive zone models is presented, including and comparing potential-based and non potential-based formulations, and encompassing many of the known examples studied in literature. The main novelty of the work consists in the natural inclusion of loading and unloading effects in a general mixed-mode framework, incorporated through an intrinsic construction of energy densities or tensions. The proposed mathematical investigation identifies and proves the limitations of variational models with respect to non-variational ones, the latter yielding a feasible description of real instances in all relevant situations and regimes. This validates existing empirical and numerical observations. An application to a mechanical process of two elastic laminates sliding one on each other along their cohesive interface is finally analyzed, and existence results in both potential-based and non potential-based versions are obtained, extending previous contributions.
Citation: Francesco Freddi, Filippo Riva. Potential-based versus non potential-based cohesive models accounting for loading and unloading with application to sliding elastic laminates[J]. Mathematics in Engineering, 2025, 7(3): 406-438. doi: 10.3934/mine.2025017
A rigorous unified perspective of cohesive zone models is presented, including and comparing potential-based and non potential-based formulations, and encompassing many of the known examples studied in literature. The main novelty of the work consists in the natural inclusion of loading and unloading effects in a general mixed-mode framework, incorporated through an intrinsic construction of energy densities or tensions. The proposed mathematical investigation identifies and proves the limitations of variational models with respect to non-variational ones, the latter yielding a feasible description of real instances in all relevant situations and regimes. This validates existing empirical and numerical observations. An application to a mechanical process of two elastic laminates sliding one on each other along their cohesive interface is finally analyzed, and existence results in both potential-based and non potential-based versions are obtained, extending previous contributions.
| [1] |
R. Alessi, F. Freddi, Phase–field modelling of failure in hybrid laminates, Compos. Struct., 181 (2017), 9–25. https://doi.org/10.1016/j.compstruct.2017.08.073 doi: 10.1016/j.compstruct.2017.08.073
|
| [2] |
R. Alessi, F. Freddi, Failure and complex crack patterns in hybrid laminates: a phase-field approach, Compos. Part B: Eng., 179 (2019), 107256. https://doi.org/10.1016/j.compositesb.2019.107256 doi: 10.1016/j.compositesb.2019.107256
|
| [3] |
G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7 (1962), 55–129. https://doi.org/10.1016/S0065-2156(08)70121-2 doi: 10.1016/S0065-2156(08)70121-2
|
| [4] |
E. Bonetti, C. Cavaterra, F. Freddi, F. Riva, On a phase-field model of damage for hybrid laminates with cohesive interface, Math. Meth. Appl. Sci., 45 (2021), 3520–3553. https://doi.org/10.1002/mma.7999 doi: 10.1002/mma.7999
|
| [5] |
B. Bourdin, G. Francfort, J. J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), 5–148. https://doi.org/10.1007/s10659-007-9107-3 doi: 10.1007/s10659-007-9107-3
|
| [6] |
F. Cagnetti, R. Toader, Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach, ESAIM Control Optim. Calc. Var., 17 (2011), 1–27. https://doi.org/10.1051/cocv/2009037 doi: 10.1051/cocv/2009037
|
| [7] | P. G. Ciarlet, Mathematical elasticity: three-dimensional elasticity, Vol. 1, North-Holland Amsterdam, 1988. |
| [8] |
V. Crismale, G. Lazzaroni, G. Orlando, Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue, Math. Mod. Meth. Appl. Sci., 28 (2018), 1371–1412. https://doi.org/10.1142/S0218202518500379 doi: 10.1142/S0218202518500379
|
| [9] |
D. S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8 (1960), 100–104. https://doi.org/10.1016/0022-5096(60)90013-2 doi: 10.1016/0022-5096(60)90013-2
|
| [10] |
K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126. https://doi.org/10.1073/pnas.38.2.121 doi: 10.1073/pnas.38.2.121
|
| [11] |
G. A. Francfort, J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9 doi: 10.1016/S0022-5096(98)00034-9
|
| [12] | M. Giaquinta, L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Edizioni della Normale Pisa, 2012. https://doi.org/10.1007/978-88-7642-443-4 |
| [13] |
I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170–174. https://doi.org/10.2307/2032478 doi: 10.2307/2032478
|
| [14] |
A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London Ser. A, 221 (1921), 163–198. https://doi.org/10.1098/rsta.1921.0006 doi: 10.1098/rsta.1921.0006
|
| [15] |
A. A. León Baldelli, J. F. Babadjian, B. Bourdin, D. Henao, C. Maurini, A variational model for fracture and debonding of thin films under in-plane loadings, J. Mech. Phys. Solids, 70 (2014), 320–348. https://doi.org/10.1016/j.jmps.2014.05.020 doi: 10.1016/j.jmps.2014.05.020
|
| [16] |
A. A. León Baldelli, B. Bourdin, J. J Marigo, C. Maurini, Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model, Continuum Mech. Thermodyn., 25 (2013), 243–268. https://doi.org/10.1007/s00161-012-0245-x doi: 10.1007/s00161-012-0245-x
|
| [17] |
J. P. McGarry, É. Ó Máirtín, G. Parry, G. E. Beltz, Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part Ⅰ: theoretical analysis, J. Mech. Phys. Solids, 63 (2014), 336–362. https://doi.org/10.1016/j.jmps.2013.08.020 doi: 10.1016/j.jmps.2013.08.020
|
| [18] | A. Mielke, T. Roubíček, Rate-independent systems: theory and application, Vol. 655, Springer-Verlag New York, 2015. https://doi.org/10.1007/978-1-4939-2706-7 |
| [19] |
M. Negri, R. Scala, A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface, Nonlinear Anal.: Real World Appl., 38 (2017), 271–305. https://doi.org/10.1016/j.nonrwa.2017.05.002 doi: 10.1016/j.nonrwa.2017.05.002
|
| [20] |
M. Negri, E. Vitali, Approximation and characterization of quasi-static $H^1$-evolutions for a cohesive interface with different loading-unloading regimes, Interfaces Free Bound., 20 (2018), 25–67. https://doi.org/10.4171/IFB/396 doi: 10.4171/IFB/396
|
| [21] |
K. Park, G. H. Paulino, Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces, Appl. Mech. Rev., 64 (2011), 060802. https://doi.org/10.1115/1.4023110 doi: 10.1115/1.4023110
|
| [22] |
K. Park, G. H. Paulino, J. R. Roesler, A unified potential-based cohesive model of mixed-mode fracture, J. Mech. Phys. Solids, 57 (2009), 891–908. https://doi.org/10.1016/j.jmps.2008.10.003 doi: 10.1016/j.jmps.2008.10.003
|
| [23] |
F. Riva, Energetic evolutions for linearly elastic plates with cohesive slip, Nonlinear Anal.: Real World Appl., 74 (2023), 103934. https://doi.org/10.1016/j.nonrwa.2023.103934 doi: 10.1016/j.nonrwa.2023.103934
|
| [24] |
D. W. Spring, O. Giraldo-Londoño, G. H. Paulino, A study on the thermodynamic consistency of the Park-Paulino-Roesler (PPR) cohesive fracture model, Mech. Res. Commun., 78 (2016), 100–109. https://doi.org/10.1016/j.mechrescom.2016.05.006 doi: 10.1016/j.mechrescom.2016.05.006
|
| [25] |
C. Talon, A. Curnier, A model of adhesion coupled to contact and friction, Eur. J. Mech. A/Solids, 22 (2003), 545–565. https://doi.org/10.1016/S0997-7538(03)00046-9 doi: 10.1016/S0997-7538(03)00046-9
|