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Abstract: A rigorous unified perspective of cohesive zone models is presented, including and
comparing potential-based and non potential-based formulations, and encompassing many of the
known examples studied in literature. The main novelty of the work consists in the natural inclusion of
loading and unloading effects in a general mixed-mode framework, incorporated through an intrinsic
construction of energy densities or tensions. The proposed mathematical investigation identifies and
proves the limitations of variational models with respect to non-variational ones, the latter yielding
a feasible description of real instances in all relevant situations and regimes. This validates existing
empirical and numerical observations. An application to a mechanical process of two elastic laminates
sliding one on each other along their cohesive interface is finally analyzed, and existence results in
both potential-based and non potential-based versions are obtained, extending previous contributions.
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1. Introduction

Over the past two decades, variational mathematical methods have emerged as a powerful tool for
studying failure phenomena in solids, driven by their intrinsic connection to the energetic nature of
mechanical processes. These methods have gained significant interest not only in the mathematical
community but also in engineering applications, particularly in fracture mechanics and related
problems such as debonding and delamination. For comprehensive overviews of these approaches,
we refer to [5, 11]. In this context, mechanical models that can be described by minimizing a
suitable energy are often referred to as potential-based models in the engineering literature, while those
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characterized solely by equilibrium equations between strain and tension are termed non potential-
based models. Mathematically, these are commonly distinguished as variational and non-variational
models, respectively. Although potential-based models are frequently preferred in applications due to
their simpler structure, they are not universally applicable and may fail to adequately capture certain
phenomena, as highlighted in [17].

Within fracture mechanics and delamination processes, models can be further categorized into
cohesive and brittle frameworks. Cohesive models, pioneered by Barenblatt [3] and Dugdale [9],
describe failure as a gradual process, in contrast to brittle models, which assume abrupt collapse.
Brittle fracture, first energetically interpreted by Griffith [14], occurs instantaneously when a critical
threshold (often termed toughness) is exceeded. Cohesive models, on the other hand, are particularly
effective in capturing the distinct regimes of loading and unloading, where a variable such as crack
amplitude or displacement slip either increases or decreases. This is achieved through the introduction
of an irreversible history variable, which tracks the system’s past states and distinguishes between
loading (when the variable increases) and unloading (when it remains constant). Similar approaches
have been extended to model fatigue [8], where the history variable may also evolve during unloading
phases, or combined with contact and friction effects [25].

A key challenge in this field is the construction of cohesive energies and tension expressions
that incorporate both current and history variables while maintaining physically feasible mechanical
properties. While potential-based models involving only current variables–suitable for systems under
monotone loading–are well-documented in the literature (see, e.g., [21]), models that account for
unloading regimes remain scarce and incomplete. For instance, in [24], the history variable is treated as
a damage parameter rather than being intrinsically embedded within the potential, limiting the model’s
applicability. Recent works such as [4, 23] have explored potentials incorporating unloading effects,
but these studies are restricted to isotropic behaviors, where the energy and history variable depend
solely on the amplitude of failure, not on its direction. For non potential-based models, the situation is
even more limited: While expressions involving current variables have been proposed [17], analytical
frameworks for incorporating history variables into cohesive tensions remain largely unexplored.

In this paper, we contribute to the analysis of cohesive-zone models in three significant ways.
First, we provide a rigorous mathematical formulation of both variational and non-variational cohesive
models under a unified framework. We propose an intrinsic method to construct potential energies
and tension expressions that account for loading and unloading effects in a general anisotropic (mixed-
mode) setting, starting from energy densities or tensions defined solely for the loading phase. These
constructions yield the only admissible candidates with physically reasonable behavior, such as linear
unloading responses following loading phases.

Second, we compare potential-based and non potential-based models, demonstrating–through both
theoretical analysis and representative examples–the limitations of the former relative to the latter.
Specifically, we extend the observations of [17] to general loading-unloading scenarios, showing that
the variational model is consistent only when the material exhibits the same fracture energy in all
directions. Even in this case, the model predicts realistic behavior only under unidirectional unloading
or in the restrictive case of uncoupled energy densities, where changes in one direction are independent
of others. In contrast, the non-variational model produces feasible results across all loading-unloading
regimes without such limitations.

Finally, we investigate the consistency of these constructions in a specific model of a hybrid
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composite comprising two elastic laminates subjected to horizontal stretching driven by a prescribed
boundary displacement. The laminates interact along their interface, where cohesive effects arise due
to displacement mismatches. Unlike previous studies [2, 23], which assume isotropic interfaces, we
consider an anisotropic interface where cohesive effects depend on the direction of the displacement
slip. While prior works focused solely on variational formulations, we establish existence for
the non-variational formulation as well. The model assumes slow, quasistatic evolution and small
displacements, allowing for a linearized elasticity framework. This extends the scope of earlier studies
on isotropic cohesive interfaces [1, 6, 15, 16, 19, 20] to the anisotropic case.

Plan of the paper

In Section 3, we provide a detailed description of the mechanical model under study: two
elastic laminates with a cohesive interface. We present both the variational and the non-variational
formulations of the problem. For the variational formulation, we introduce the elastic and cohesive
energies of the system, while for the non-variational formulation, we derive the equilibrium equations
(or inclusions) that must be satisfied. In both cases, we outline the key assumptions, distinguishing
between those required for mathematical rigor and those essential from a mechanical perspective. We
then define the notions of quasistatic evolution appropriate for each setting: for the potential-based
model, we adopt the well-established concept of energetic solutions, while for the non potential-
based model, we introduce a natural notion of equilibrium solutions. Section 4 focuses on the
explicit construction of an anisotropic cohesive energy and a cohesive tension that incorporate both
loading and unloading regimes, starting from a given energy density or tension defined solely for the
loading phase. We ensure that these constructions satisfy all necessary mechanical and mathematical
properties. Additionally, we highlight the limitations of the variational formulation compared to
the non-variational one, emphasizing the latter’s broader applicability. In Section 5, we present
representative examples to validate the consistency of our theoretical constructions and to support
the discussions in Section 4. These examples illustrate the practical implications of our findings
and demonstrate the effectiveness of the proposed models. Finally, Section 6 is dedicated to the
mathematical proof of existence for both energetic solutions (in the variational setting) and equilibrium
solutions (in the non-variational setting). For the former, we employ the well-known method of
minimizing movements, while for the latter, we utilize Kakutani’s fixed point theorem for set-valued
functions. These proofs establish the validity of the proposed formulations and provide a rigorous
foundation for their application.

2. Notation

The maximum (resp. minimum) of two extended real numbers α, β ∈ R∪ {±∞} is denoted by α∨ β
(resp. α ∧ β).

For a positive integer n ∈ N, the standard scalar product between vectors v,w ∈ Rn is denoted by
v ·w and we write |v|n for the euclidean norm, where the subscript simply stresses the space dimension.
Analogously, by 0n we mean the null vector in Rn. For lightness of notation, in the scalar case n = 1
we omit the subscript. We also introduce the vector v ∨ w whose components are obtained by taking
the maximum between the corresponding components of v and w, i.e., (v ∨ w)i := vi ∨ wi.

We use the symbols Rn×n and Rn×n
sym to denote the set of real (n × n)-matrices and the subset of
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symmetric matrices. For any matrix A ∈ Rn×n, we write Asym := 1
2 (A + AT ) ∈ Rn×n

sym for its symmetric
part. In the case A = ∇u we adopt the usual notation e(u) in place of (∇u)sym. The Frobenius scalar
product between two matrices A, B ∈ Rn×n is A : B = tr(ABT ), and the corresponding norm is denoted
by |A|n×n :=

√
A : A. The tensor product between two vectors v,w ∈ Rn is the matrix v ⊗ w ∈ Rn×n

defined by (v ⊗ w)i, j := viw j.
We adopt standard notations for Bochner spaces and for scalar- or vector-valued Lebesgue and

Sobolev spaces. By L0(Ω)+ we mean the space of nonnegative Lebesgue measurable functions on the
(open) set Ω ⊆ Rn. Given α ∈ (0, 1], by C0,α(Ω) and C0,α(Ω;Rm) we mean, respectively, the space of
scalar- and Rm-valued functions which are α-Hölder continuous (Lipschitz continuous if α = 1) in Ω,
endowed with the norm

‖ · ‖C0,α(Ω) := ‖ · ‖C0(Ω) + [ · ]α,Ω,

where

[ f ]α,Ω := sup
x,y∈Ω
x,y

| f (x) − f (y)|
|x − y|αn

is the Hölder seminorm of f . In order to lighten the notation, we write the same symbol for the norms
in C0,α(Ω) and in C0,α(Ω;Rm); the meaning will be clear from the context. The same convention is
used for norms in Lebesgue or Sobolev spaces. We finally denote by C0,α

loc (Ω) (resp. C0,α
loc (Ω;Rm)) the

space of functions belonging to C0,α(Ω′) (resp. C0,α(Ω′;Rm)) for all open set Ω′ ⊂⊂ Ω, i.e., such that
the closure of Ω′ is still a subset of Ω.

Positive and negative part of a real function f are denoted by f + := f ∨ 0 and f − := −( f ∧ 0),
respectively.

Given a normed space (X, ‖ · ‖X), by B([a, b]; X) we mean the space of everywhere defined
measurable functions f : [a, b]→ X which are bounded in X, namely sup

t∈[a,b]
‖ f (t)‖X < +∞.

3. Setting

We first describe the specific mechanical model of sliding laminates we intend to investigate in this
paper, showing how cohesive effects comes into play. We present both the variational and the non-
variational formulation of the problem, and we introduce the corresponding notions of solution. We
then state our main mathematical results, ensuring existence of such solutions for the two variants of
the model.

The reference configuration of the elastic composite is represented by an open, bounded, connected
set Ω ⊆ Rd with Lipschitz boundary. We point out that the physical dimension of the problem is d = 2,
but the mathematical arguments still remain rigorous in arbitrary dimension d ∈ N.

3.1. Potential-based model

The total elastic energy of the composite is given by the functional E : H1(Ω;Rd)2 → [0,+∞)
defined as

E(u) :=
2∑

i=1

1
2

∫
Ω

Ci(x)e(ui(x)) : e(ui(x)) dx.
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Here, the bold letter u = (u1, u2) denotes the pair of (horizontal) displacements of the two layers, which
completely describes the elastic behaviour of the material since we are working in a linearized setting
(small deformations). Moreover Ci : Ω → Rd×d×d×d is the stiffness tensor of the ith layer; for i = 1, 2
we assume that

(C1) Ci is uniformly continuous with modulus of continuity ωi;

together with the usual assumptions in linearized elasticity,

(C2) Ci(x)A ∈ Rd×d
sym for all x ∈ Ω and A ∈ Rd×d;

(C3) Ci(x)A = Ci(x)Asym for all x ∈ Ω and A ∈ Rd×d;

(C4) Ci(x)A : B = Ci(x)B : A for all x ∈ Ω and A, B ∈ Rd×d (symmetry);

(C5) Ci(x)A : A ≥ ci|Asym|
2
d×d for some ci > 0 and for all x ∈ Ω and A ∈ Rd×d (coercivity).

We recall that the coercivity condition (C5) automatically implies the so-called strict Legendre-
Hadamard condition (see for instance [7, end of Chapter 5])

Ci(x)(v ⊗ w) : (v ⊗ w) ≥
ci

2
|v ⊗ w|2d×d, for all x ∈ Ω and v,w ∈ Rd. (3.1)

The (planar) interface between the two layers of material is assumed to behave in a cohesive fashion
with respect to their reciprocal slip. Differently from previous contributions [4, 23], we allow for
anisotropy of such interface, possibly due to asymmetries in the microstructures of the strata. To
describe such anisotropic effects we fix an integer m ∈ N, representing the number of cohesive
variables, and we consider a function g : Rd → [0,+∞)m satisfying

(g1) g(0d) = 0m;

(g2) g is Lipschitz continuous in Rd.

Remark 3.1. The isotropic case analyzed in [4,23] can be recovered by choosing m = 1 and g(δ) = |δ|d,
for δ ∈ Rd, namely the cohesive energy (3.2) below just depends on the amplitude of the slip between
the two laminates, but not on its direction.

Example 3.2. The prototypical anisotropic (also called mixed-mode) case is given by the choice m = d
and g(δ) = (|δ1|, |δ2|, . . . , |δd|), namely the cohesive energy reacts differently with respect to slips in
different directions. One may also replace the modulus |δi| with the asymmetric version µ+

i δ
+
i + µ−i δ

−
i ,

with coefficients µ±i ≥ 0, thus distinguishing between forward and backward slips.

The cohesive energy is then given by a functional K : L0(Ω;Rd) × (L0(Ω)+)m → [0,+∞) defined by

K(δ, γ) :=
∫

Ω

Φ(x, g(δ(x)), γ(x)) dx, (3.2)

where the variable δ denotes the current slip of the two layers u1 − u2, while γ, here and henceforth
called history variable, represents the irreversible counterpart of the cohesive variables g(δ), namely
each component γl (at time t) plays the role of the maximum value reached by gl(δ) during the evolution
(till time t).

The density Φ : Ω × [0,+∞)m × [0,+∞)m → [0,+∞), which takes into account different loading-
unloading regimes, is measurable and satisfies the following properties:
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(Φ1) Φ(x, 0m, 0m) = 0 for a.e. x ∈ Ω;

(Φ2) Φ(x, ·, ·) is bounded, essentially uniformly with respect to x ∈ Ω; also, it is continuous in the
whole [0,+∞)m × [0,+∞)m, for a.e. x ∈ Ω;

(Φ3) the map y 7→ Φ(x, y, z) is Lipschitz continuous in [0,+∞)m, essentially uniformly with respect to
x ∈ Ω and uniformly with respect to z ∈ [0,+∞)m;

(Φ4) Φ(x, y, z) = Φ(x, y, y ∨ z) for a.e. x ∈ Ω and for all (y, z) ∈ [0,+∞)m × [0,+∞)m;

(Φ5) for a.e. x ∈ Ω and for all y ∈ [0,+∞)m the map z 7→ Φ(x, y, z) is nondecreasing with respect to
each component.

In Section 4 we propose an intrinsic way to explicitely construct densities Φ which behave in a
proper fashion with respect to loading (gl(δ) increases) and unloading (gl(δ) decreases). We also present
some examples, which encompass known models analyzed in literature [2, 21, 24]. In particular, we
stress that realistic densities should fulfil the following properties (for a.e. x ∈ Ω and for all z ∈
[0,+∞)2):

(Φ6) for all l = 1, . . . ,m, the map yl 7→ Φ(x, y, z) is nondecreasing;

(Φ7) for all l = 1, . . . ,m, the map yl 7→ Φ(x, y, z) is convex and quadratic in the unloading zone yl < zl,
while it is concave in the loading zone yl ≥ zl;

(Φ8) for all l, j = 1, . . . ,m with l , j, the map y j 7→ ∂ylΦ(x, y, z) is nonincreasing;

(Φ9) lim
|y|m→∞

|∇yΦ(x, y, z)|m = 0.

Remark 3.3. Condition (Φ7) may be weakened requiring that the density is concave in the loading
zone just if zl has reached a certain positive but small threshold z̄l. This describes materials possessing
an initial elastic behaviour, included in the so-called intrinsic cohesive models.

Moreover, the quadratic behaviour in the unloading zone may be softened just asking for convexity
without affecting the results of the paper. In this case, the tensions become nondecreasing (for yl < zl)
instead of linear.

The evolution of the system is driven by a prescribed horizontal external displacement ` acting on
a portion of a boundary ∂DΩ ⊆ ∂Ω of positive Hausdorff measure Hd−1(∂DΩ) > 0. Given T > 0, we
require that

` ∈ W1,1(0,T ; H1(Ω;Rd)), (3.3)

and we postulate that it is slow with respect to internal vibrations, so that inertia can be neglected and
the model can be set in a quasistatic framework.

Given a function f : ∂DΩ→ Rd, we also introduce the following notation:

H1
D, f (Ω;Rd) := {v ∈ H1(Ω;Rd) : v = f Hd−1-a.e. in ∂DΩ}.

The total energy of the elastic composite can thus be written through the functional F : [0,T ] ×
H1(Ω;Rd)2 × (L0(Ω)+)m → [0,+∞] defined by

F (t,u, γ) :=

E(u) +K(u1 − u2, γ), if u ∈ (H1
D,`(t)(Ω;Rd))2,

+∞, otherwise.

Mathematics in Engineering Volume 7, Issue 3, 406–438.



412

At the initial time t = 0 we prescribe the initial conditions

(u0, γ0) ∈ (H1
D,`(0)(Ω;Rd))2 ×C0,1

loc(Ω;Rm), (3.4a)

and we assume that
γ0

l ≥ gl(u
0
1 − u0

2), for all l = 1, . . .m, and
F (0,u0, γ0) ≤ F (0, v, γ0), for every v ∈ H1(Ω;Rd)2.

(3.4b)

The notion of solution we adopt in this paper for the potential-based model has a natural variational
flavour, and it is well-fitted for quasistatic evolutions [18]. Roughly speaking, such solution minimizes
at all times the total energy F (t, ·, ·) (see (GS)) while the history variable increases, and at the same
time an energy balance is preserved (see (EB)).

Definition 3.4. Given a prescribed displacement ` and initial data (u0, γ0) satisfying (3.3) and (3.4),
we say that a map [0,T ] 3 t 7→ (u(t), γ(t)) ∈ H1(Ω;Rd)2 × (L0(Ω)+)m is a (generalized) energetic
solution to the potential-based cohesive interface model if the initial conditions (u(0), γ(0)) = (u0, γ0)
are attained, each component of the history variable γ is nondecreasing in time, and the following
global stability condition and energy balance are satisfied for all t ∈ [0,T ]:

(GS) γl(t) ≥ gl(u1(t) − u2(t)), for all l = 1, . . .m, and F (t,u(t), γ(t)) ≤ F (t, v, γ(t)), for every v ∈
H1(Ω;Rd)2;

(EB) F (t,u(t), γ(t)) = F (0,u0, γ0) +W(t);

where the quantityW(t) represents the amount of work computed by the prescribed displacement until
the time t, which is defined as

W(t) :=
∫ t

0

2∑
i=1

∫
Ω

Ci(x)e(ui(s, x)) : e( ˙̀(s, x)) dx ds. (3.5)

Observe that the minimality requirement in (GS) implies that an energetic solution formally solves
the following system of partial differential inclusions at all times t ∈ [0,T ]:

− divC1e(u1(t)) ∈ −∇yΦ(·, g(u1(t) − u2(t)), γ(t))Dg(u1(t) − u2(t)), in Ω,

− divC2e(u2(t)) ∈ ∇yΦ(·, g(u1(t) − u2(t)), γ(t))Dg(u1(t) − u2(t)), in Ω,

u1(t) = u2(t) = `(t), in ∂DΩ,

∂nu1(t) = ∂nu2(t) = 0d, in ∂Ω \ ∂DΩ,

(3.6)

where Dg(δ) denotes the set of matrices m × d whose l-th row belongs to the (convex) subdifferential
of gl at δ.

We now state our first mathematical result, which provides existence of energetic solutions. Its
proof can be found in Section 6.

Theorem 3.5. Let the stiffness tensors Ci satisfy (C1)–(C5) and let the cohesive energy density Φ and
the cohesive variables g satisfy (Φ1)–(Φ5) and (g1)-(g2). Then, given a prescribed displacement ` and
initial data (u0, γ0) fulfilling (3.3) and (3.4), there exists an energetic solution (u, γ) to the potential-
based cohesive interface model in the sense of Definition 3.4.

Furthermore, such pair of displacements u actually belongs to B([0,T ]; H1(Ω;Rd)2) and to
B([0,T ]; C0,α(Ω′;Rd)2) for all Ω′ ⊂⊂ Ω and α ∈ (0, 1), while the history variable γ actually is in
B([0,T ]; C0,α(Ω′;Rm)) for all Ω′ ⊂⊂ Ω and α ∈ (0, 1).
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3.2. Non potential-based model

As explained in the Introduction, non-variational models are described through equilibrium
equations rather than energies. In view of the Euler-Lagrange equations (3.6), the non potential version
of the model under consideration is thus characterized by the following system:

− divC1e(u1(t)) ∈ −T (·, g(u1(t) − u2(t)), γ(t))Dg(u1(t) − u2(t)), in Ω,

− divC2e(u2(t)) ∈ T (·, g(u1(t) − u2(t)), γ(t))Dg(u1(t) − u2(t)), in Ω,

u1(t) = u2(t) = `(t), in ∂DΩ,

∂nu1(t) = ∂nu2(t) = 0d, in ∂Ω \ ∂DΩ,

(3.7)

where the right-hand side ∓T (·, g(u1(t)−u2(t)), γ(t))Dg(u1(t)−u2(t)) ∈ Rd represents the tension acting
on the two layers. With a slight abuse of terminology, we still refer to the vector fieldT : Ω×[0,+∞)m×

[0,+∞)m → Rm with the name cohesive tension. We also stress that it is not necessarily a gradient, as
in the potential-based case. We require that T satisfies the following assumptions:

(T 1) T (x, ·, ·) is bounded, essentially uniformly with respect to x ∈ Ω; also, it is continuous in the
whole [0,+∞)m × [0,+∞)m, for a.e. x ∈ Ω;

(T 2) T (x, y, z) = T (x, y, y ∨ z) for a.e. x ∈ Ω and for all (y, z) ∈ [0,+∞)m × [0,+∞)m.

Analogously to the previous formulation, Section 4 also contains an intrinsic construction of
tensions T possessing a realistic behaviour in both loading and unloading regimes. In particular, they
also fulfil (for a.e. x ∈ Ω and for all z ∈ [0,+∞)2):

(T 3) for all l = 1, . . . ,m, the component Tl(x, y, z) is nonnegative;

(T 4) for all l = 1, . . . ,m, the map yl 7→ Tl(x, y, z) is linear and nondecreasing in the unloading zone yl <

zl, while it is nonincreasing in the loading zone yl ≥ zl (possibly if zl ≥ z̄l > 0, see Remark 3.3);

(T 5) for all l, j = 1, . . . ,m with l , j, the map y j 7→ Tl(x, y, z) is nonincreasing;

(T 6) lim
|y|m→∞

|T (x, y, z)|m = 0.

Remark 3.6. As noticed in Remark 3.3, linearity of the tension in the unloading zone asked in
condition (T 4) may be removed for our arguments, while monotonicity is crucial.

Here, in addition to (g1) and (g2), we also need to require that the cohesive function g fulfils:

(g3) each component of g is convex;

(g4) the following closure property holds: If δn → δ strongly in L2(Ω;Rd), ηn ⇀ η weakly in
L2(Ω;Rm×d), and ηn(x) ∈ Dg(δn(x)) for a.e. x ∈ Ω, then η(x) ∈ Dg(δ(x)) for a.e. x ∈ Ω as
well.

Remark 3.7. It is standard to check that the examples introduced in Remarks 3.1 and 3.2 satisfy the
above assumptions (g3) and (g4).

For the non potential-based model, we consider the following notion of quasistatic solution, which
somehow replaces the stronger global stability condition (GS) with an equilibrium condition.
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Definition 3.8. Given an external displacement ` and initial data (u0, γ0) satisfying (3.3), (3.4a), the
first condition in (3.4b) and solving (3.7) for t = 0 (see (3.8) below), we say that a map [0,T ] 3 t 7→
(u(t), γ(t)) ∈ H1(Ω;Rd)2 × (L0(Ω)+)m is a (generalized) equilibrium solution to the non potential-based
cohesive interface model if the initial conditions (u(0), γ(0)) = (u0, γ0) are attained, each component
of the history variable γ is nondecreasing in time, and the following equilibrium condition is satisfied
for all t ∈ [0,T ]:

(EQ) γl(t) ≥ gl(u1(t) − u2(t)), for all l = 1, . . .m, and u(t) ∈ (H1
D,`(t)(Ω;Rd))2 is a weak solution

to (3.7), namely there exists a function η(t) ∈ (L∞(Ω;Rm×d))2 such that

ηi(t, x) ∈ Dg(u1(t, x) − u2(t, x)), for a.e. x ∈ Ω, and for i = 1, 2,

and for all ϕ ∈ (H1
D,0d

(Ω;Rd))2 there holds

2∑
i=1

∫
Ω

Cie(ui(t)) : e(ϕi) dx = −

∫
Ω

T (x, g(u1(t) − u2(t)), γ(t)) ·
(
η1(t)ϕ1 − η2(t)ϕ2

)
dx. (3.8)

Remark 3.9. If the displacement pair u of an equilibrium solution is more regular in time, say u ∈
AC([0,T ]; H1(Ω;Rd)2), then the following energy balance is also satisfied for all t ∈ [0,T ]:

E(u(t)) +

∫ t

0

∫
Ω

T (x, g(u1(τ) − u2(τ)), γ(τ)) ·
(
η1(τ)(u̇1(τ)− ˙̀(τ))−η2(τ)(u̇2(τ)− ˙̀(τ))

)
dx dτ

=E(u0) +W(t),

where the work of the external displacement W has been introduced in (3.5). In the particular case
T = ∇yΦ, namely if the model admits a potential, then one formally recovers (EB).

A possible approach leading to the validity of a suitable energy balance without additional time-
regularity (which is not expected in general) may be the vanishing viscosity argument. However, this
goes beyond the scopes of the present paper.

In this setting, we are able to show existence of equilibrium solutions. The proof of the following
result is developed in Section 6.

Theorem 3.10. Let the stiffness tensors Ci satisfy (C1)–(C5) and let the cohesive tension T and
the cohesive variables g satisfy (T 1)-(T 2) and (g1)–(g4). Then, given a prescribed displacement `
and initial data (u0, γ0) fulfilling (3.3), (3.4a), the first condition in (3.4b) and (3.8) for t = 0, there
exists an equilibrium solution (u, γ) to the non potential-based cohesive interface model in the sense
of Definition 3.8.

Furthermore, the same regularity properties stated in Theorem 3.5 hold.

4. Construction of cohesive energy densities and tensions

In this section we present an intrinsic way of building a feasible loading-unloading energy density
Φ and tension T , starting from a “purely loading” density Ψ or tension S, respectively. Actually,
as we will see, a good candidate for S is given by ∇Ψ ∨ 0d, indeed the issues observed in [17, 22]
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for potential-based models occur when the partial derivatives ∂iΨ become negative. We then provide
several examples of densities Ψ, including many expressions studied in [17, 21, 22, 24].

Although the model depicted in the previous section deals with cohesive delamination, we point out
that the arguments of the current section are valid for general cohesive models, so for instance they
may be applied to fracture mechanics where both opening and sliding occur.

Also supported by the numerical examples performed in Section 5, our analysis essentially proves
that variational mixed-mode models are consistent just if the complete delamination energies in the
different directions are equal (see (4.11)). Moreover, even in this case, they return physically realistic
responses only in the restrictive (and quite unnatural) situation of unloading happening in one direction,
while the slips in the other ones are still. On the contrary, our construction of non-variational mixed-
mode models provides a satisfactory description of real instances without any limitations and in any
loading-unloading regime.

For applicative reasons, we focus on the physical dimension d = 2; moreover, for the sake of clarity
we restrict our attention to homogeneous interfaces, i.e., the densities do not depend on x ∈ Ω, but we
stress that inhomogeneous ones can be treated in an analogous way.

4.1. Construction of the potential Φ

We consider a loading function Ψ : [0,+∞)2 → [0,+∞) (we write Ψ = Ψ(y1, y2)) satisfying

(Ψ1) Ψ(0, 0) = 0;

(Ψ2) Ψ is bounded, Lipschitz, with ∇Ψ and ∂12Ψ locally Lipschitz in (0,+∞)2;

(Ψ3) for i, j = 1, 2 with j , i there hold ∂iΨ ≥ yi∂iiΨ ∨ 0 and ∂12Ψ ≤ yi∂ii jΨ ∧ 0 a.e. in [0,+∞)2;

(Ψ4) sup
y1,y2>0

(y1 + y2)|∂12Ψ(y1, y2)| < +∞.

These requirements are needed for the validity of the mathematical assumptions (Φ1)–(Φ5); in order
to have also the physical properties (Φ6)–(Φ9) we need to add:

(Ψ5) ∇Ψ and ∂12Ψ vanish at infinity;

(Ψ6) for i, j = 1, 2 with j , i there holds 2∂iiΨ ≤ y j∂ii jΨ ∧ 0 a.e. in [0,+∞)2 (or if yi ≥ z̄i, y j ≥ 0 in
case of Remark 3.3).

Before writing the definition of Φ, we introduce the following notation. Given z1, z2 ≥ 0, playing
the role of history variables, we divide the space of possible openings into four regions:

R1(z1, z2) := {y1 ≥ z1, y2 ≥ z2},

R2(z1, z2) := {0 ≤ y1 < z1, y2 ≥ z2},

R3(z1, z2) := {y1 ≥ z1, 0 ≤ y2 < z2},

R4(z1, z2) := {0 ≤ y1 < z1, 0 ≤ y2 < z2}.

Observe that R1 and R4 represent the pure loading and the pure unloading phase, respectively; while
R2 and R3 describe the mixed phases, in which one direction experiences loading while the other one
unloading.
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We then set Φ : [0,+∞)2×[0,+∞)2 → R as

Φ(y1, y2, z1, z2) :=



Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

Ψ(z1, y2) −
z1

2
∂1Ψ(z1, y2)

1 − (
y1

z1

)2 , if (y1, y2) ∈ R2(z1, z2),

Ψ(y1, z2) −
z2

2
∂2Ψ(y1, z2)

1 − (
y2

z2

)2 , if (y1, y2) ∈ R3(z1, z2),

Ψ(z1, z2) −
z1

2
∂1Ψ(z1, z2)

1 − (
y1

z1

)2
−

z2

2
∂2Ψ(z1, z2)

1 − (
y2

z2

)2
+

z1z2

4
∂12Ψ(z1, z2)

1 − (
y1

z1

)2 1 − (
y2

z2

)2 , if (y1, y2) ∈ R4(z1, z2).

Let us briefly describe the structure of Φ. In the pure loading zone R1 it coincides with the loading
density Ψ; in R2 (and similarly in R3), namely in the unloading phase for y1, it behaves quadratically
with respect to y1, and the coefficients are chosen in order to have a smooth junction; finally, in the
pure unloading zone R4 the function Φ is quadratic in both directions y1 and y2.

We actually observe that this expression provides the only candidate of potential energy whose
partial derivatives (tensions) experience linear decay in the unloading phase with respect to the
corrisponding variable.

We now check the validity of (Φ1)–(Φ5). Continuity of Φ in [0,+∞)2 × [0,+∞)2 and validity of
hypotheses (Φ1) and (Φ4) are immediate. In order the check the remaining assumptions, it is useful to
explicitly compute the partial derivatives of Φ:

∂y1Φ(y1, y2, z1, z2) =



∂1Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

∂1Ψ(z1, y2)
y1

z1
, if (y1, y2) ∈ R2(z1, z2),

∂1Ψ(y1, z2) −
z2

2
∂12Ψ(y1, z2)

1 − (
y2

z2

)2 , if (y1, y2) ∈ R3(z1, z2),∂1Ψ(z1, z2) −
z2

2
∂12Ψ(z1, z2)

1 − (
y2

z2

)2 y1

z1
, if (y1, y2) ∈ R4(z1, z2),

(4.1a)

∂y2Φ(y1, y2, z1, z2) =



∂2Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

∂2Ψ(z1, y2) −
z1

2
∂12Ψ(z1, y2)

1 − (
y1

z1

)2 , if (y1, y2) ∈ R2(z1, z2),

∂2Ψ(y1, z2)
y2

z2
, if (y1, y2) ∈ R3(z1, z2),∂2Ψ(z1, z2) −

z1

2
∂12Ψ(z1, z2)

1 − (
y1

z1

)2 y2

z2
, if (y1, y2) ∈ R4(z1, z2),

(4.1b)
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∂z1Φ(y1, y2, z1, z2) =



0, if (y1, y2) ∈ R1(z1, z2),
∂1Ψ(z1, y2) − z1∂11Ψ(z1, y2)

2

1 − (
y1

z1

)2 , if (y1, y2) ∈ R2(z1, z2),

0, if (y1, y2) ∈ R3(z1, z2),(
∂1Ψ(z1, z2) − z1∂11Ψ(z1, z2)

2
−

z2

4
(∂12Ψ(z1, z2)

−z1∂112Ψ(z1, z2))
1 − (

y2

z2

)2 1 − (
y1

z1

)2 , if (y1, y2) ∈ R4(z1, z2),

∂z2Φ(y1, y2, z1, z2) =



0, if (y1, y2) ∈ R1(z1, z2),
0, if (y1, y2) ∈ R2(z1, z2),
∂2Ψ(y1, z2) − z2∂22Ψ(y1, z2)

2

1 − (
y2

z2

)2 , if (y1, y2) ∈ R3(z1, z2),(
∂2Ψ(z1, z2) − z2∂22Ψ(z1, z2)

2
−

z1

4
(∂12Ψ(z1, z2)

−z2∂122Ψ(z1, z2))
1 − (

y1

z1

)2 1 − (
y2

z2

)2 , if (y1, y2) ∈ R4(z1, z2).

From (Ψ3) we easily get ∂yiΦ ≥ 0 and ∂ziΦ ≥ 0 for i = 1, 2, hence (Φ5) holds. Furthermore, we deduce

0 = Φ(0, 0, 0, 0) ≤ Φ(y1, y2, z1, z2) ≤ Φ(y1 ∨ z1, y2 ∨ z2, z1, z2) = Ψ(y1 ∨ z1, y2 ∨ z2) ≤ sup
[0,+∞)2

Ψ.

Since the supremum in the last term is finite by (Ψ2), we get that Φ is bounded and so in particular
(Φ2) is fulfilled. It remains to verify (Φ3). Let us check that ∂y1Φ is bounded uniformly with respect
to z, the computation for ∂y2Φ being analogous. In R1 and in R2 the fact is trivial by exploiting (Ψ2),
while in R3 we can estimate by using (Ψ4), obtaining

|∂y1Φ(y1, y2, z1, z2)| ≤ |∂1Ψ(y1, z2)| + z2|∂12Ψ(y1, z2)| ≤ C.

Similar computations yield the result also in R4, and we conclude.
Let us now check (Φ6)–(Φ9), assuming in addition (Ψ5) and (Ψ6). Notice that we already proved

(Φ6), while we observe that (Φ9) is automatically satisfied whenever (Ψ5) is in force. Moreover,
(Φ7) follows from (Ψ3) and (Ψ6) by observing that the partial derivatives ∂yiΦ are continuous and by
exploiting the expression

∂y1,y1Φ(y1, y2, z1, z2) =



∂11Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

∂1Ψ(z1, y2)
1
z1
, if (y1, y2) ∈ R2(z1, z2),

∂11Ψ(y1, z2) −
z2

2
∂112Ψ(y1, z2)

1 − (
y2

z2

)2 , if (y1, y2) ∈ R3(z1, z2),∂1Ψ(z1, z2) −
z2

2
∂12Ψ(z1, z2)

1 − (
y2

z2

)2 1
z1
, if (y1, y2) ∈ R4(z1, z2),
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and analogously for ∂y2,y2Φ. Finally, (Ψ3) yields that the mixed derivative

∂y1,y2Φ(y1, y2, z1, z2) =



∂12Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

∂12Ψ(z1, y2)
y1

z1
, if (y1, y2) ∈ R2(z1, z2),

∂12Ψ(y1, z2)
y2

z2
, if (y1, y2) ∈ R3(z1, z2),

∂12Ψ(z1, z2)
y1

z1

y2

z2
, if (y1, y2) ∈ R4(z1, z2),

is nonnegative, whence also (Φ8) holds true.

4.2. Construction of the non-potential tension T

We adopt the same notations of the previous section. Consider a loading tension S =

(S1,S2) : [0,+∞)2 → R2 satisfying

(S1) S is continuous and bounded in [0,+∞)2.

The tension T = (T1,T2) : [0,+∞)2 × [0,+∞)2 → R2 is then defined as

T1(y1, y2, z1, z2) =



S1(y1, y2), if (y1, y2) ∈ R1(z1, z2),

S1(z1, y2)
y1

z1
, if (y1, y2) ∈ R2(z1, z2),

S1(y1, z2), if (y1, y2) ∈ R3(z1, z2),

S1(z1, z2)
y1

z1
, if (y1, y2) ∈ R4(z1, z2),

(4.2a)

T2(y1, y2, z1, z2) =



S2(y1, y2), if (y1, y2) ∈ R1(z1, z2),
S2(z1, y2), if (y1, y2) ∈ R2(z1, z2),

S2(y1, z2)
y2

z2
, if (y1, y2) ∈ R3(z1, z2),

S2(z1, z2)
y2

z2
, if (y1, y2) ∈ R4(z1, z2).

(4.2b)

The validity of (T 1) and (T 2) is immediate. One may also directly verify the physical requirements
(T 3)–(T 6) assuming in addition that

(S2) S is valued in [0,+∞)2 and vanishes at infinity;

(S3) S1 and S2 are nonincreasing in each component (Si nonincreasing with respect to yi only in
[z̄i,+∞) in case of an intrinsic cohesive model).

If S = ∇Ψ for some suitable density Ψ, notice that the expressions (4.2) coincide with (4.1) in
the (not interesting) case of uncoupled directions, namely when ∂12Ψ ≡ 0, or equivalently Ψ(y1, y2) =

ψ1(y1) + ψ2(y2). This is not a coincidence, indeed it is easy to check that the pair (T1,T2) defines a
gradient (with respect to y) just in this occurence.
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4.3. Examples of loading density Ψ

We now present some specific instances of functions Ψ. They all fall within the following abstract
structure.

Let us consider two one-dimensional cohesive densities (see [4, 23]) ψi ∈ C1,1
loc([0,+∞)), i = 1, 2,

namely each ψi is bounded, Lipschitz, nondecreasing, and satisfies ψi(0) = 0 and

ψ′i(y) − yψ′′i (y) ≥ 0, (4.3a)
sup
y>0

yψ′i(y) < +∞. (4.3b)

Assuming that supψi = 1, we also consider a nonnegative function F ∈ C2,1([0, 1]2) such that
F(0, 0) = 0, ∂iF ≥ 0, ∂iiF ≤ 0, ∂12F ≤ 0, ∂ii jF ≥ 0 in [0, 1]2 for i, j = 1, 2, i , j.

The density Ψ is now defined as

Ψ(y1, y2) := F(ψ1(y1), ψ2(y2)). (4.4)

Let us now check that it satisfies conditions (Ψ1)–(Ψ4). It is trivial to see that (Ψ1) and (Ψ2) hold
true, while by simple computations we deduce

∂iΨ(y1, y2) = ∂iF(ψ1(y1), ψ2(y2))ψ′i(yi) ≥ 0, (4.5)

since it is the product of nonnegative terms. Analogously we obtain

∂12Ψ(y1, y2) = ∂12F(ψ1(y1), ψ2(y2))ψ′1(y1)ψ′2(y2) ≤ 0. (4.6)

Moreover, we have

∂iΨ(y1, y2) − yi∂iiΨ(y1, y2)

=∂iF(ψ1(y1), ψ2(y2))
(
ψ′i(yi) − yiψ

′′
i (yi)

)
− yiψ

′
i(yi)2∂iiF(ψ1(y1), ψ2(y2)) ≥ 0, (4.7)

where we used (4.3a) and the assumptions on F. Similarly, there holds

∂12Ψ(y1, y2) − yi∂ii jΨ(y1, y2)

=ψ′j(y j)
(
(ψ′i(yi) − yiψ

′′
i (yi))∂12F(ψ1(y1), ψ2(y2)) − yi(ψ′i(yi))2∂ii jF(ψ1(y1), ψ2(y2))

)
≤ 0. (4.8)

Combining (4.5)–(4.8) we finally infer (Ψ3). By exploiting (4.3b) we also show (Ψ4):

sup
y1,y2>0

(y1 + y2)|∂12Ψ(y1, y2)| = sup
y1,y2>0

(y1 + y2)|∂12F(ψ1(y1), ψ2(y2))|ψ′1(y1)ψ′2(y2)

≤ max
[0,1]2
|∂12F|

(
supψ′2 sup

y1≥0
y1ψ

′
1(y1) + supψ′1 sup

y2≥0
y2ψ

′
2(y2)

)
< +∞.

If in addition F satisfies

∂1F(ξ1, 1) = ∂2F(1, ξ2) = 0, for all (ξ1, ξ2) ∈ [0, 1]2, (4.9)

then also (Ψ5) can be directly obtained.
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The validity of (Ψ6) can be instead deduced if the functions ψi are concave in [0,+∞) (or, in view
of Remark 3.3, in [z̄i,+∞)). Indeed, recalling the assumptions on F, in this case we infer

∂iiΨ(y1, y2) = ψ′′i (yi)∂iF(ψ1(y1), ψ2(y2)) + (ψ′i(yi))2∂iiF(ψ1(y1), ψ2(y2))

≤ 0 ≤
y j

2
ψ′j(y j)

(
ψ′′i (yi)∂12F(ψ1(y1), ψ2(y2)) + (ψ′i(yi))2∂ii jF(ψ1(y1), ψ2(y2))

)
=

y j

2
∂ii jΨ(y1, y2).

The simplest, although effective, choice of auxiliary function F satisfying the previous assumptions
is given by

F(ξ1, ξ2) := Φ1ξ1 + Φ2ξ2 − αξ1ξ2, (4.10)

where Φ1,Φ2 ≥ 0 are nonnegative constants representing complete delamination energies, while the
parameter α satisfies 0 ≤ α ≤ Φ1 ∧ Φ2. However, observe that (4.9), needed to preserve a realistic
behaviour, is in force if and only if

α = Φ1 = Φ2. (4.11)

This represents a first limitation of potential-based models, indeed the above constraint represents
materials whose delamination energies are equal in both directions.

We now consider examples of one-dimensional densities fulfilling the required assumptions.

4.3.1. Negative exponentials

The first example is given by
ψexp(y) = 1 − e−ρy,

with ρ > 0. It features an infinite delamination opening, namely it reaches its supremum just
asymptotically as y→ +∞.

4.3.2. Polynomial behaviour

A second simple example with finite delamination opening δ > 0 is the cubic law

ψcub(y) =


y
δ

((y
δ

)2
− 3

y
δ

+ 3
)
, if y ∈ [0, δ),

1, if y ≥ δ.

4.3.3. Intrinsic densities

Starting from concave densities like the previous two examples one can always construct a whole
family of new densities, featuring an initial quadratic (i.e., elastic) behaviour and thus suitable to
describe the so-called intrinsic cohesive models. Given a concave function ψ ∈ C1,1

loc([0,+∞)) bounded,
Lipschitz, nondecreasing, satisfying ψ(0) = 0 and (4.3b), for any parameter ε > 0 it is enough to define

ψε(y) :=


y2

2ε
, if y ∈ [0, z̄ε],

ψ(y) − ψ(z̄ε) +
z̄2
ε

2ε
, if y ∈ (z̄ε,+∞),
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where z̄ε > 0 is the unique positive number satisfying z̄ε = εψ′(z̄ε). Notice that conditions (4.3), as well
as the above assumptions, are satisfied by ψε; moreover, it is concave in [z̄ε,+∞). We actually observe
that, in order to have supψε = 1, one should rescale the function with the constant (1−ψ(z̄ε)+ z̄2

ε/2ε)−1.

4.3.4. PPR model

We now discuss a more involved example introduced in [22]–and called PPR from the name of
the authors–for an analogous model of fracture. We first introduce the intrinsic cohesive zone model,
characterized by an initial elastic behaviour. For i = 1, 2, let us consider the parameters αi > 1,
Φi, σi > 0 and λi ∈

(
0, 1
√
αi

)
, representing shape index (characterizing material softening responses),

complete delamination energy, cohesive strenght, and initial slope indicator in direction i, respectively.
We then define the constants

mi :=
αi(αi − 1)λ2

i

1 − αiλ
2
i

> 0, (4.12)

the final slip width (or delamination opening)

δi :=
Φi

σi
αiλi(1 − λi)αi−1

(
1 +

αi

mi

) (
1 + λi

αi

mi

)mi−1

> 0, (4.13)

and the energy constants

Γ1 :=


−Φ1

(
α1

m1

)m1

, if Φ1 ≥ Φ2,(
α1

m1

)m1

, if Φ1 < Φ2,

Γ2 :=


(
α2

m2

)m2

, if Φ1 ≥ Φ2,

−Φ2

(
α2

m2

)m2

, if Φ1 < Φ2.

(4.14)

The loading density in the PPR model is then defined as (see (8) in [22])

ΨPPR(y1, y2) :=Φ1 ∧ Φ2 +

[
Γ1

((
1 −

y1

δ1

)+)α1 (m1

α1
+

y1

δ1

)m1

+ (Φ1 − Φ2)+

]
×

[
Γ2

((
1 −

y2

δ2

)+)α2 (m2

α2
+

y2

δ2

)m2

+ (Φ2 − Φ1)+

]
.

We observe that, after some simple manipulation, we can rewrite the PPR density in the form (4.4),
with F as in (4.10). Indeed we have

ΨPPR(y1, y2) = Φ1ψ1(y1) + Φ2ψ2(y2) − Φ1 ∨ Φ2ψ1(y1)ψ2(y2), (4.15)

where the one-dimensional densities are given by

ψi(yi) := 1 −
((

1 −
yi

δi

)+)αi (
1 +

αi

mi

yi

δi

)mi

. (4.16)

Remark 4.1. Comparing (4.15) with (4.10), we observe that the constraint α ≤ Φ1 ∧ Φ2 here yields
Φ1 = Φ2 (see also (4.11)), namely we are forced to consider equal delamination energy in both
directions in order to keep the potential-based structure of the model. This drawback was already
observed in [22, Section 2.2] (see also [21]), and it is an intrinsic limitation of potential-based models,
which can be overcome by means of non potential-based ones.
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We now show that the one-dimensional PPR densities fulfil our assumptions.

Lemma 4.2. If λi ≤
1

√
2αi−1

, then the densities defined in (4.16) are nonnegative and satisfy the following
properties:

• ψi(0) = ψ′i(0) = 0;

• ψi ∈ C1,1([0,+∞)) is nondecreasing and bounded;

• assumption (4.3) holds true;

• ψi is concave in [δiλi,+∞).

Proof. By computing the derivatives of ψi we obtain

ψ′i(yi) =
αi

δi

(
1 +

αi

mi

)
yi

δi

((
1 −

yi

δi

)+)αi−1 (
1 +

αi

mi

yi

δi

)mi−1

,

ψ′′i (yi) =
αi

δ2
i

(
1 +

αi

mi

) ((
1 −

yi

δi

)+)αi−2 (
1 +

αi

mi

yi

δi

)mi−2 (
1 −

αi

mi
(αi + mi − 1)

y2
i

δ2
i

)
,

whence one easily deduces the regularity of ψi and the fact that it is nondecreasing. Moreover, ψ′′i
is nonpositive in

[
δi

√
mi

αi(αi+mi−1) ,+∞
)
, namely in [δiλi,+∞) by means of (4.12), and so ψi is concave

therein.
Using the obvious property ψi(0) = 0, one then infers that ψi is nonnegative and bounded (with

maxψi = 1). Also property (4.3b) easily follows since ψ′i is supported in [0, δi], so we are left to
check (4.3a). To this aim we compute

ψ′i(yi) − yiψ
′′
i (yi) =

αi

δi

(
1+

αi

mi

)
y2

i

δ2
i

((
1−

yi

δi

)+)αi−2(
1+

αi

mi

yi

δi

)mi−2(
αi

mi
(αi+mi−2)

yi

δi
+
αi

mi
−1

)
.

Observing that, by the expression (4.12), the assumption λi ≤ (2αi − 1)−1/2 yields αi ≥ mi, and since
under our set of assumptions there holds αi(αi + mi − 1) ≥ mi, we now infer that the last term within
brackets in the above expression is nonnegative (we recall that it is enough to check it for yi ∈ [0, δi]).
This yields (4.3a) and we conclude. �

Sending the initial slope indicators λi to zero we recover the extrinsic cohesive zone version of the
PPR model, corresponding to a completely anelastic process. By the expressions (4.12)–(4.14), after
simple computations as λi → 0 we deduce

mi → 0,

δi → δ̄i :=
Φi

σi
αi,

Γ1 → Γ̄1 :=

−Φ1, if Φ1 ≥ Φ2,

1, if Φ1 < Φ2,
Γ2 → Γ̄2 :=

1, if Φ1 ≥ Φ2,

−Φ2, if Φ1 < Φ2,
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whence we obtain ΨPPR(y1, y2)→ Ψ̄PPR(y1, y2), where

Ψ̄PPR(y1, y2) := Φ1 ∧ Φ2 +

[
Γ̄1

((
1 −

y1

δ̄1

)+)α1

+ (Φ1−Φ2)+

][
Γ̄2

((
1 −

y2

δ̄2

)+)α2

+ (Φ2−Φ1)+

]
.

Arguing as before we can rewrite Ψ̄PPR as

Ψ̄PPR(y1, y2) = Φ1ψ̄1(y1) + Φ2ψ̄2(y2) − Φ1 ∨ Φ2ψ̄1(y1)ψ̄2(y2), (4.17)

where the extrinsic one-dimensional densities are given by

ψ̄i(yi) := 1 −
((

1 −
yi

δ̄i

)+)αi

. (4.18)

Again, we stress that Remark 4.1 still applies.
We conclude by showing that also in the extrinsic case the one-dimensional densities fulfil our

assumptions.

Lemma 4.3. The densities defined in (4.18) are nonnegative and satisfy the following properties:

• ψ̄i(0) = 0;

• ψ̄i ∈ C1,1([0,+∞)) is nondecreasing, bounded and concave;

• assumption (4.3) holds true;

• ψ̄i is concave.

Proof. The result follows by arguing as in Lemma 4.2 once we compute

ψ̄′i(yi) =
αi

δ̄i

((
1 −

yi

δ̄i

)+)αi−1

≥ 0, ψ̄′′i (yi) = −
αi(αi − 1)

δ̄2
i

((
1 −

yi

δ̄i

)+)αi−2

≤ 0.

�

4.4. Examples of loading tension S

In non potential-based models a good choice of loading tension is given by

S(y1, y2) := ∇Ψ(y1, y2) ∨ 02 = (∂1Ψ(y1, y2)+, ∂2Ψ(y1, y2)+), (4.19)

where Ψ has again the form (4.4), but with weaker requirements than before. Here, the function F is just
assumed to be of class C1, with no constraints on the sign of its derivatives; while the one-dimensional
densities ψi do not need to fulfil (4.3) anymore. Condition (S1) is now a direct consequence of the just
listed regularity assumptions.

Conditions (S2) and (S3) require slightly stronger assumptions, as expected. The former is fulfilled
whenever ψ′i vanish as yi → +∞ and

∂1F(ξ1, 1) ≤ 0, and ∂2F(1, ξ2) ≤ 0, for all (ξ1, ξ2) ∈ [0, 1]2. (4.20)
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The latter is instead implied by assuming that ψi are concave in [z̄i,+∞), and that F is of class C2 with
∂12F ≤ 0 and ∂iiF ≤ 0. To show it, as before it is enough to compute the derivatives of S i and verify
that they are nonpositive.

The explicit form (4.10) of F is included in this setting (in particular (4.20) is in force) if and only
if the parameter α satisfies α ≥ Φ1 ∨Φ2. For instance, observe that the PPR densities (4.15) and (4.17)
fit in the non-potential framework even if, differently than the potential-based model (see Remark 4.1),
the two delamination energies Φ1 and Φ2 are different.

This fact shows the flexibility of non-variational models with respect to variational ones, in the
mixed-mode case.

5. Representative instances: non trivial loading/unloading paths

In this section, supported by Figures 1–7, we illustrate the response of a cohesive interface under non
trivial loading/unloading/reloading paths in dimension d = 2 with the prototypical cohesive variable
g(δ) = (|δ1|, |δ2|). In particular, the respective opening separations are assumed to follow the relations:

y1(t) = |a1 sin(b1t)|, y2(t) = |a2 sin(b2t)|,

where t is a time-like parameter. We consider the variational intrinsic PPR energy density (4.15) and
the corresponding non potential-based law induced by (4.19), although analogous behaviours can be
observed for general densities fitting the assumptions of the present paper. Without loss of generality
the following parameter values are taken: α1 = α2 = 2, σ1 = σ2 = 2 MPa and λ1 = λ2 = 0.2.

The following situations are investigated:

• CASE 1: Equal displacement slip evolution (a1 = a2 = 1, b1 = b2 = 0.2) and equal energy values
Φ1 = Φ2 = 2 N/m (see Figure 1a);

• CASE 2: Equal displacement slip values with different phases (a1 = a2 = 1, b1 = 0.2, b2 = 0.3)
and equal energy values Φ1 = Φ2 = 2 N/m (see Figure 3a);

• CASE 3: Different displacement slip values with different phases (a1 = 1, a2 = 3, b1 = 0.2, b2 =

0.3) and different energy values Φ1 = 6, Φ2 = 2 N/m (see Figure 5a);

• CASE 4: Different displacement slip values with different phases (a1 = 1, a2 = 0.5, b1 =

0.125, b2 = 0.4) but unloading of y1 at fixed y2 value and equal energy values Φ1 = Φ2 = 2
N/m (see Figure 7a).

For each case the following plots are given: evolution of displacement slip values y1, y2 and
history variables z1, z2, energy evolution (only for the variational model) and traction-displacement
slip relations.

Although the energy evolutions of the variational model depicted in Figures 1b, 3b, and 5b seem
consistent, the same cannot be said of its derivatives, which from the engineering point of view have
a crucial meaning. In all cases, the computed traction–separation relations during the first loading
path for the potential-based model and the non potential-based law are equivalent. In CASE 1, the
unloading/reloading path is nonlinear for the variational model, see Figure 1c,d, while it is fully linear
for the non-potential model Figure 2a,b. For CASE 2, the unloading/reloading path of the potential-
based model reported in Figure 3c,d reveals significant deviations from the expected results as the
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one obtained with the non potential-based law as depicted in Figure 4a,b. The problem is further
exacerbated in CASE 3, where the potential-based model gives a totally nonphysical response as
reported in Figure 5c,d differently from the non potential-based model that does not allow the change
of sign of the stress under partial unloading conditions, see Figure 6a,b. Only in the very special
CASE 4 the variational model provides a physically reasonable result in the case of partial unloading
as illustrated in Figure 7.

Figure 1. CASE 1: potential-based model. a) Evolution of displacement slip values y1, y2 and
history variables z1, z2. b) Energy evolution. c) Traction-displacement slip relation T1 − y1.
d) Traction-displacement slip relation T2 − y2.

Figure 2. CASE 1: non potential-based model. a) Traction-displacement slip relation T1−y1.
b) Traction-displacement slip relation T2 − y2.
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Figure 3. CASE 2: potential-based model. a) Evolution of displacement slip values y1, y2 and
history variables z1, z2, b) Energy evolution, c) Traction-displacement slip relation T1− y1, d)
Traction-displacement slip relation T2 − y2.

Figure 4. CASE 2: non potential-based model. a) Traction-displacement slip relation T1−y1.
b) Traction-displacement slip relation T2 − y2.
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Figure 5. CASE 3: potential-based model. a) Evolution of displacement slip values y1, y2 and
history variables z1, z2. b) Energy evolution. c) Traction-displacement slip relation T1 − y1.
d) Traction-displacement slip relation T2 − y2.

Figure 6. CASE 3: non potential-based model. a) Traction-displacement slip relation T1−y1.
b) Traction-displacement slip relation T2 − y2.
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Figure 7. CASE 4: potential-based model. a) Evolution of displacement slip values y1, y2 and
history variables z1, z2. b) Energy evolution. c) Traction-displacement slip relation T1 − y1.
d) Traction-displacement slip relation T2 − y2.

6. Proof of the existence results

This last section is devoted to the proof of Theorems 3.5 and 3.10; we thus tacitly assume all their
hypotheses, when needed.

6.1. Energetic solutions

We first consider the potential-based model. The argument is similar to the one developed in [4,
23], so we only sketch the various proofs stressing the differences which arise due to the anisotropy.
We begin by performing a time-discretization algorithm. Let τ > 0 such that T/τ ∈ N, and for
k = 0, . . . ,T/τ we define tk := kτ. For k = 1, . . . ,T/τ we now consider the following recursive
minimization scheme: Given (uk−1, γk−1), we setuk ∈ argmin

v∈H1(Ω;Rd)2
F (tk, v, γk−1),

γk := γk−1 ∨ g(uk
1 − uk

2),
(6.1)
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where the initial conditions naturally are the given pair of initial data (u0, γ0).
The existence of the minimum in (6.1)1 directly follows from the Direct Method of the Calculus

of Variations in the weak topology of H1(Ω;Rd)2. Coercivity is ensured by Korn-Poincarè inequality,
since the cohesive energy K is nonnegative; on the other hand, lower semicontinuity of the elastic
energy E is standard, while it follows by Fatou’s lemma for K .

A crucial tool in order to gain compactness for the discrete history variable γk will be the following
regularity result, whose proof can be found in [12, Theorem 7.2].

Theorem 6.1. Let the set Ω ⊆ Rd be bilipschitz diffeomorphic to the open unit cube. Let u ∈ H1(Ω;Rd)
be a weak solution of the equation

−div (Ce(u)) = g, in Ω,

where the tensor C satisfies (C1), (C3) and (3.1).
If g ∈ L

dp
d+p (Ω;Rd) for some p > 2, then ∇u ∈ Lp

loc(Ω;Rd×d) and for all open set Ω′ ⊂⊂ Ω there holds

‖∇u‖Lp(Ω′) ≤ C′
(
‖g‖

L
dp

d+p (Ω)
+ ‖∇u‖L2(Ω)

)
,

where the constant C′ > 0 depends only on p, d, c, ω and dist(Ω′,Ω).

This first lemma provides boundedness of the discrete displacements uk, by exploiting their
minimality property (6.1)1.

Lemma 6.2. There exists a constant C > 0 independent of τ such that

max
k=0,...,T/τ

‖uk‖H1(Ω)2 ≤ C. (6.2)

Proof. For k = 0 there is nothing to prove. So we fix k ≥ 1 and we pick `(tk) := (`(tk), `(tk)) as a
competitor for uk in (6.1)1. By employing (C1), (C5), (g1) and (Φ2) we estimate

2∑
i=1

ci

2
‖e(uk

i )‖
2
L2(Ω) ≤ F (tk,uk, γk−1) ≤ F (tk, `(tk), γk−1) = E(`(tk)) +K(0d, γ

k−1)

≤ C‖`(tk)‖2H1(Ω) +

∫
Ω

Φ(x, 0m, γ
k−1) dx ≤ C(max

t∈[0,T ]
‖`(t)‖2H1(Ω) + 1).

We now conclude by means of (3.3) and Korn-Poincarè inequality. �

By somehow computing the Euler-Lagrange equations of F (tk, ·, γk−1), see also (3.6), we deduce
the following uniform estimate.

Lemma 6.3. There exists a constant C > 0 independent of τ such that for i = 1, 2 and for any
ϕ ∈ H1

0(Ω;Rd) there holds

max
k=0,...,T/τ

|〈divCie(uk
i ), ϕ〉H1

0 (Ω;Rd)| ≤ C‖ϕ‖L1(Ω). (6.3)
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Proof. Fix k = 0, . . . ,T/τ and let ϕ ∈ H1
0(Ω;Rd)2 and h > 0. By taking uk + hϕ as a competitor for uk

in (6.1)1 and (3.4b) (we set γ−1 := γ0), we obtain

0 ≤ lim inf
h→0+

F (tk,uk + hϕ, γk−1) − F (tk,uk, γk−1)
h

=

2∑
i=1

∫
Ω

Cie(uk
i ) : e(ϕi) dx + lim inf

h→0+

K(uk
1 − uk

2 + h(ϕ1 − ϕ2), γk−1) − K(uk
1 − uk

2, γ
k−1)

h
.

Observing that by (g2) and (Φ3) there holds

|K(uk
1 − uk

2 + h(ϕ1 − ϕ2), γk−1) − K(uk
1 − uk

2, γ
k−1)| ≤ Ch‖ϕ1 − ϕ2‖L1(Ω),

we thus deduce
2∑

i=1

〈divCie(uk
i ), ϕi〉H1

0 (Ω;Rd) ≤ C‖ϕ1 − ϕ2‖L1(Ω).

By choosing ϕ1 = 0d or ϕ2 = 0d we finally conclude. �

We now employ the above two lemmas, together with Theorem 6.1, in order to improve the previous
uniform bounds.

Lemma 6.4. For k = 0, . . . ,T/τ, there holds

uk ∈ W1,p
loc (Ω;Rd)2 for all p > 2, (6.4a)

γk ∈ C0,α
loc (Ω;Rm) for all α ∈ (0, 1), (6.4b)

and for every Ω′ ⊂⊂ Ω there exists a constant C′ > 0 independent of τ (possibly depending on p and
Ω′) such that

max
k=0,...,T/τ

‖uk‖W1,p(Ω′)2 ≤ C′, (6.5a)

max
k=0,...,T/τ

‖γk‖C0,α(Ω
′
) ≤ C′. (6.5b)

Proof. We fix k = 0, . . . ,T/τ, p > 2 and we first observe that by intersecting the set Ω with a
sufficiently fine cubic grid we may write it as

Ω =

N⋃
j=1

Ω j, where each Ω j is bilipschitz diffeomorphic to the open unit cube in Rd.

Pay attention that we are not requiring the subsets to be disjoint. We start working in a single set Ω j

introduced above. For i = 1, 2, by (6.3) we infer that

divCie(uk
i ) ∈ L∞(Ω j;Rd), with ‖divCie(uk

i )‖L∞(Ω j) ≤ C.

The regularity Theorem 6.1 now yields ∇uk
i ∈ Lq

loc(Ω j;Rd×d) for any q > 2 with

‖∇uk
i ‖Lq(Ω′j) ≤ C′j(‖divCie(uk

i )‖L∞(Ω j) + ‖∇uk
i ‖L2(Ω j)) ≤ C′j, for any Ω′j ⊂⊂ Ω j,
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where we exploited (6.2) in the last inequality.
By arguing as in [23, Proposition 2.5], we then deduce that uk

i ∈ W1,p
loc (Ω j;Rd) with

‖uk
i ‖W1,p(Ω′j)

≤ C′j, for any Ω′j ⊂⊂ Ω j.

This readily implies (6.4a) and (6.5a), indeed for any Ω′ ⊂⊂ Ω one can easily find sets Ω′j ⊂⊂ Ω j such
that Ω′ =

⋃N
j=1 Ω′j.

We now fix k = 0, . . . ,T/τ and α ∈ (0, 1). If k = 0 there is nothing to prove since γ0 ∈ C0,1
loc(Ω;Rm).

If k ≥ 1 we consider p > d
1−α , so that by Sobolev embedding one actually has un ∈ C0,α

loc (Ω;Rd)2 for any
n = 1 . . . , k with

max
n=1,...,k

‖un‖C0,α(Ω′)2 ≤ C′ max
n=1,...,k

‖un‖W1,p(Ω′′)2 ≤ C′, for any Ω′ ⊂⊂ Ω,

where Ω′′ is an open set with Lipschitz boundary such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω.
In particular, since g is continuous, for any l = 1, . . . ,m one deduces

max
n=1,...,k

‖gl(un
1 − un

2)‖C0(Ω′) ≤ C′.

Moreover the discrete history variable γk
l = max

n=1,...,k
gl(un

1 − un
2) ∨ γ0

l is continuous in Ω since it is a finite

maximum of continuous functions, and for any Ω′ ⊂⊂ Ω there holds

‖γk
l ‖C0(Ω′) = max

n=1,...,k
‖gl(un

1 − un
2)‖C0(Ω′) ∨ ‖γ

0
l ‖C0(Ω′) ≤ C′.

In order to show the validity of (6.4b) and (6.5b) we just need to control the Hölder seminorms
[γk

l ]α,Ω′ for an arbitrary set Ω′ ⊂⊂ Ω. Let us fix two different points x, y ∈ Ω′; then there are two
possibilities: either γk

l (x) = γ0
l (x) or there exists n̄ ∈ {1, . . . , k} such that γk

l (x) = gl(un̄
1(x) − un̄

2(x)). In
the first case we can estimate

γk
l (x) ≤ γ0

l (y) + |γ0
l (x) − γ0

l (y)| ≤ γk
l (y) + C′|x − y|αd .

In the second case, instead, by using (g2) we have

γk
l (x) ≤ gl(un̄

1(y) − un̄
2(y)) + |gl(un̄

1(x) − un̄
2(x)) − gl(un̄

1(y) − un̄
2(y))|

≤ γk
l (y) + C

2∑
i=1

|un̄
i (x) − un̄

i (y)|d ≤ γk
l (y) + C′|x − y|αd .

By the arbitrariness of x and y we finally conclude. �

We now introduce the piecewise constant interpolants (uτ, γτ) of the discrete displacements and
history variable defined as uτ(t) := uk, γτ(t) := γk, if t ∈ [tk, tk+1),

uτ(T ) := uT/τ, γτ(T ) := γT/τ.
(6.6)
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For conveniency, we also set wτ aswτ(t) := w(tk), if t ∈ [tk, tk+1),
wτ(T ) := w(T ).

For a given t ∈ [0,T ] we finally define

tτ := max{tk : tk ≤ t}.

We first show that such interpolants satisfy a discrete energy inequality.

Proposition 6.5. For every t ∈ [0,T ] and τ > 0 the following discrete energy inequality holds true:

F (tτ,uτ(t), γτ(t)) ≤ F (0,u0, γ0) +Wτ(t) + Rτ, (6.7)

where

Wτ(t) =

∫ t

0

∫
Ω

2∑
i=1

Cie(uτi (s)) : e( ˙̀(s)) dx ds,

while Rτ ≥ 0 is an infinitesimal remainder.

Proof. The proof follows arguing as in [23, Proposition 3.1] by observing that for any k = 1, . . . ,T/τ
assumption (Φ4) yields

K(uk
1 − uk

2, γ
k) = K(uk

1 − uk
2, γ

k−1
∨ g(uk

1 − uk
2)) = K(uk

1 − uk
2, γ

k−1). (6.8)

�

In view of the bounds obtained in Lemma 6.4, we now deduce the following compactness result.

Proposition 6.6. There exists a subsequence τ j ↘ 0 and for all t ∈ [0,T ] there exist a further
subsequence τ j(t) (possibly depending on time), and functions u(t) ∈ (H1

D,`(t)(Ω;Rd) ∩ C0,α
loc (Ω;Rd))2

and γ(t) ∈ C0,α
loc (Ω;Rm) for any α ∈ (0, 1) such that for all t ∈ [0,T ] there hold:

uτ j(t)(t)
H1(Ω;Rd)2

−−−−−−−⇀
j→+∞

u(t), and uτ j(t)(t) −−−−→
j→+∞

u(t) locally uniformly in Ω,

γτ j(t) −−−−→
j→+∞

γ(t) locally uniformly in Ω.
(6.9)

In particular one has (u(0), γ(0)) = (u0, γ0).
Moreover for all l = 1, . . . ,m the function γl is nondecreasing in time, and

γl(t, x) ≥ sup
s∈[0,t]
gl(u1(s, x) − u2(s, x)), for every (t, x) ∈ [0,T ] ×Ω. (6.10)

Finally there holds u ∈ B([0,T ]; H1(Ω;Rd)2) and for all Ω′ ⊂⊂ Ω and any α ∈ (0, 1) there also hold
u ∈ B([0,T ]; C0,α(Ω′;Rd))2) and γ ∈ B([0,T ]; C0,α(Ω′;Rm)).

Proof. The compactness result (6.9) can be proved exactly as in [23, Proposition 3.3] once we have
at our disposal the uniform bounds (6.5). In the same way, inequality (6.10) follows arguing as [23,
Proposition 3.3] since gl is a continuous function. All the other properties are simple byproducts of the
convergences (6.9) and the uniform bounds (6.2) and (6.5). �
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We finally conclude by showing that the just obtained limit functions are an energetic solution to
the potential-based cohesive interface model.

Proposition 6.7. For every t ∈ [0,T ] the limit pair (u, γ) obtained in Proposition 6.6 satisfies the
global stability condition (GS) and the energy balance (EB) of Definition 3.4.

Proof. The first condition in (GS) is implied by (6.10), while the global minimality property follows
as in [23, Proposition 3.5] recalling assumptions (Φ4), (Φ5) and property (6.8).

As a consequence of (GS), arguing as in [4, Proposition 3.10] one can prove the lower energy
inequality

F (t,u(t), γ(t)) ≥ F (0,u0, γ0) +W(t),

by exploiting assumption (Φ5). The opposite inequality, which finally yields (EB), instead follows by
sending τ j → 0 in the discrete energy inequality (6.7), see [23, Proposition 3.4] for more details. �

6.2. Equilibrium solutions

We now focus on Theorem 3.10. We discretize the time interval [0,T ] as in the previous section,
but here we need to consider a different recursive scheme. Given a pair (uk−1, γk−1) we first select
uk ∈ (H1

D,`(tk)(Ω;Rd))2 as a solution to (3.7) with history variable at the previous step γk−1, namely
satisfying

2∑
i=1

∫
Ω

Cie(uk
i ) : e(ϕi) dx = −

∫
Ω

T (x, g(uk
1 − uk

2), γk−1) · (ηk
1ϕ1 − η

k
2ϕ2) dx, (6.11a)

for all ϕ ∈ (H1
D,0d

(Ω;Rd))2 and for some

ηk ∈ (L∞(Ω;Rm×d))2 such that ηk
i (x) ∈ Dg(uk

1(x) − uk
2(x)) for a.e. x ∈ Ω. (6.11b)

Then we define γk as in (6.1)2.
The existence of a solution uk to (6.11) is granted by the well-known Kakutani’s fixed point theorem

(or better, by its infinite-dimensional generalization [10, 13]).

Theorem 6.8. Let S be a nonempty convex compact subset of a Hausdorff locally convex topological
vector space, and consider a set-valued function R : S → 2S satisfying:

• R(s) is nonempty and convex for all s ∈ S ;

• the graph of R is closed, i.e., if sn → s, un → u, sn ∈ S and un ∈ R(sn), then u ∈ R(s).

Then, there exists a fixed point s ∈ R(s).

Corollary 6.9. Under the assumptions of Theorem 3.10, system (6.11) admits a solution.

Proof. It is enough to show that the following set-valued map admits a fixed point. We define S :={
s ∈ (H1

D,`(tk)(Ω;Rd))2 : ‖si‖H1(Ω) ≤ R for i = 1, 2
}
, with R > 0 to be chosen, and we consider Rk : S →

2S which maps a function s ∈ S to the set of functions u ∈ (H1
D,`(tk)(Ω;Rd))2 solving

2∑
i=1

∫
Ω

Cie(ui) : e(ϕi) dx = −

∫
Ω

T (x, g(s1 − s2), γk−1) · (η1ϕ1 − η2ϕ2) dx, (6.12)
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for all ϕ ∈ (H1
D,0d

(Ω;Rd))2, as η ∈ (L∞(Ω;Rm×d))2 such that ηi(x) ∈ Dg(s1(x) − s2(x)) for a.e. x ∈ Ω

varies.
The set S is clearly nonempty and convex; moreover, it is compact if endowed with the weak

topology of (H1(Ω;Rd))2 (which is also metrizable on S , since it is bounded). Let us first show that Rk

is valued in S , up to choosing R large enough. Given u ∈ Rk(s), by taking as a test function ϕ = u−`(tk)
we infer

2∑
i=1

ci‖e(ui)‖2L2(Ω) ≤

2∑
i=1

∫
Ω

Cie(ui) : e(ui − `(tk)) dx +

∫
Ω

Cie(ui) : e(`(tk)) dx

≤ C‖T ‖L∞‖g‖C0,1(Rd)

2∑
i=1

‖ui − `(tk)‖L2(Ω) + C
2∑

i=1

‖e(ui)‖L2(Ω) (6.13)

≤ C

 2∑
i=1

‖e(ui)‖L2(Ω) + 1

 ,
where we exploited assumptions (T 1), (g2) together with Korn-Poincaré inequality. Notice that the
constant C does not depend on s, thus the above chain of inequalities implies that ‖e(ui)‖L2(Ω) is
uniformly bounded, and so again by Korn-Poincaré inequality one infers that u ∈ S if R is large.

Recalling that by (g3) the set Dg(δ) is convex for all δ ∈ Rd, we also easily deduce that Rk(s) is
convex as well (and clearly nonempty) for all s ∈ S .

In order to apply Theorem 6.8 and conclude, we just need to show that the graph of Rk is closed
with respect to the weak topology of (H1(Ω;Rd))2. To this aim, consider sequences sn ⇀ s, un ⇀ u
weakly in (H1(Ω;Rd))2, such that un ∈ Rk(sn). In particular, let ηn ∈ (L∞(Ω;Rm×d))2 such that ηn

i (x) ∈
Dg(sn

1(x) − sn
2(x)) for a.e. x ∈ Ω satisfying (6.12) given by the definition of Rk. Since g is Lipschitz,

then ηn is uniformly bounded in L∞, so without loss of generality we may assume that ηn ∗
−⇀ η weakly∗

in (L∞(Ω;Rm×d))2. Hence, by means of (g4), we deduce that ηi(x) ∈ Dg(s1(x) − s2(x)) for a.e. x ∈ Ω.
Moreover, Eq (6.12) passes to the limit: indeed, on the left-hand side we may use weak convergence
in H1, while on the right-hand side we exploit the fact that

T (·, g(sn
1 − sn

2), γk−1)ηn
i ⇀ T (·, g(s1 − s2), γk−1)ηi, weakly in L2(Ω;Rd),

since it is the product of the weak convergent sequence ηn
i and of the strong convergent one T (·, g(sn

1 −

sn
2), γk−1) (this latter property follows by Dominated Convergence Theorem in view of (T 1) and (g2)),

and both of them are bounded in L∞.
We have thus proved that u ∈ Rk(s), namely the graph of Rk is closed, and we conclude. �

From now on, the strategy is similar to the one presented in the previous section. We first show
uniform bounds for the sequence of pairs (uk, γk), which yield convergence of the corresponding
piecewise constant interpolants. We then prove that the obtained limit are indeed an equilibrium
solution to the non potential-based cohesive interface model.

Proposition 6.10. There exists a constant C > 0 independent of τ such that the bounds (6.2) and (6.5)
hold true.

Proof. The H1 bound (6.2) can be obtained as in (6.13) by taking as a test function ϕ = uk − `(tk).
Instead, the bounds (6.5) follow by arguing exactly as in the proof of Lemma 6.4: The validity of (6.3)
in the current framework can be indeed directly checked from (6.11a) by means of (T 1) and (g2). �
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We now consider the piecewise constant interpolants (uτ, γτ) defined as in (6.6). Due to the just
obtained uniform bounds, we immediately deduce that the same results of Proposition 6.6 hold true
also in the current setting. We thus conclude the proof of Theorem 3.10 if we show that the limit pair
(u(t), γ(t)) solves the equilibrium Eq (3.8) for all times.

To this aim, we first introduce the piecewise constant interpolant ητ defined as in (6.6) where the
discrete values ηk are given by (6.11). Notice that, by (g3), without loss of generality we may assume
that

ητ j(t)(t)
L∞(Ω;Rm×d)2

∗

−−−−−−−−−⇀
j→+∞

η(t), for all t ∈ [0,T ].

Moreover, by using (g4), we also infer that ηi(t, x) ∈ Dg(u1(t, x) − u2(t, x)) for a.e. x ∈ Ω. Then, fix
t ∈ [0,T ] and ϕ ∈ (H1

D,0d
(Ω;Rd))2. By (6.11a) and exploiting (T 2) together with the definition of γk

we observe that

2∑
i=1

∫
Ω

Cie(uτ j(t)
i (t)) : e(ϕi) dx

= −

∫
Ω

T (x, g(uτ j(t)
1 (t) − uτ j(t)

2 (t)), γτ j(t)(t − τ j(t))) · (η
τ j(t)
1 (t)ϕ1 − η

τ j(t)
2 (t)ϕ2) dx,

= −

∫
Ω

T (x, g(uτ j(t)
1 (t) − uτ j(t)

2 (t)), γτ j(t)(t)) · (ητ j(t)
1 (t)ϕ1 − η

τ j(t)
2 (t)ϕ2) dx.

By means of (6.9), and arguing as in the last part of Corollary 6.9, we can pass to the limit the first and
the last line above by weak convergence in H1 and L2, respectively, exploiting (T 1) and (g2). Thus,
Eq (3.8) is satisfied and Theorem 3.10 is proved.

7. Conclusions

We proposed a unified mathematical formulation of potential-based and non potential-based
cohesive models encompassing both loading and unloading paths. In particular, we provided an
analytical construction of energy densities and tensions formula starting from expressions just related
to the loading phase (many examples are listed for instance in [21]). Although the paper focuses on
anisotropic cohesive energies, in the sense that different cohesive variables represent different in-plane
sliding directions, the presented strategy can be also applied with no changes for the construction of
classical cohesive laws in the case in which both opening and sliding are possible.

We showed, both theoretically and with representative examples, that potential-based models are
fully consistent only if all the delamination energies Φi coincide and, at the same time, either the energy
density is uncoupled (i.e., changes in one direction are independent of others) or the whole process
always experiences loading in all directions. Indeed, both situations avoid mixed loading/unloading
phases, which, as we observed, produce bizarre and unphysical behaviours in potential-based models.
The examples of Section 5 are specific of the PPR formulation, but analogous plots can be obtained
from arbitrary energy density fulfilling the assumptions of the paper.

On the contrary, we proved that non potential-based models never present such issues. Furthermore,
since pathologies usually may arise due to negative stresses in the mixed regimes (as also noted in [17,
22]), we proposed formula (4.19) (linked with (4.2)), which simply considers the nonnegative part of
the components of the gradient, as a natural choice for non potential loading tensions. The validity of

Mathematics in Engineering Volume 7, Issue 3, 406–438.



436

such expression is again supported by the examples, which return feasible outputs in all the possible
regimes.

We finally applied our models to the mechanical system of two linearly elastic laminates
horizontally sliding, due to a prescribed boundary displacement, along their planar interface. Therein
we allow for anisotropic cohesive laws, meaning that they may also depend on the direction of the
displacement slip. In this setting, we provided rigorous existence results for suitable notions of
solutions to both the potential-based and the non potential-based framework.
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17. J. P. McGarry, É. Ó Máirtı́n, G. Parry, G. E. Beltz, Potential-based and non-potential-based cohesive
zone formulations under mixed-mode separation and over-closure. Part I: theoretical analysis, J.
Mech. Phys. Solids, 63 (2014), 336–362. https://doi.org/10.1016/j.jmps.2013.08.020
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