Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

Local Calderón-Zygmund estimates for parabolic equations in weighted Lebesgue spaces

  • We prove local Calderón-Zygmund type estimates for the gradient of weak solutions to degenerate or singular parabolic equations of p-Laplacian type with p>2nn+2 in weighted Lebesgue spaces Lqw. We introduce a new condition on the weight w which depends on the intrinsic geometry concerned with the parabolic p-Laplace problems. Our condition is weaker than the one in [13], where similar estimates were obtained. In particular, in the case p=2, it is the same as the condition of the usual parabolic Aq weight.

    Citation: Mikyoung Lee, Jihoon Ok. Local Calderón-Zygmund estimates for parabolic equations in weighted Lebesgue spaces[J]. Mathematics in Engineering, 2023, 5(3): 1-20. doi: 10.3934/mine.2023062

    Related Papers:

    [1] Cristiana De Filippis . Optimal gradient estimates for multi-phase integrals. Mathematics in Engineering, 2022, 4(5): 1-36. doi: 10.3934/mine.2022043
    [2] María Ángeles García-Ferrero, Angkana Rüland . Strong unique continuation for the higher order fractional Laplacian. Mathematics in Engineering, 2019, 1(4): 715-774. doi: 10.3934/mine.2019.4.715
    [3] Lucas C. F. Ferreira . On the uniqueness of mild solutions for the parabolic-elliptic Keller-Segel system in the critical Lp-space. Mathematics in Engineering, 2022, 4(6): 1-14. doi: 10.3934/mine.2022048
    [4] Nicolai Krylov . On parabolic Adams's, the Chiarenza-Frasca theorems, and some other results related to parabolic Morrey spaces. Mathematics in Engineering, 2023, 5(2): 1-20. doi: 10.3934/mine.2023038
    [5] La-Su Mai, Suriguga . Local well-posedness of 1D degenerate drift diffusion equation. Mathematics in Engineering, 2024, 6(1): 155-172. doi: 10.3934/mine.2024007
    [6] Márcio Batista, Giovanni Molica Bisci, Henrique de Lima . Spacelike translating solitons of the mean curvature flow in Lorentzian product spaces with density. Mathematics in Engineering, 2023, 5(3): 1-18. doi: 10.3934/mine.2023054
    [7] David Cruz-Uribe, Michael Penrod, Scott Rodney . Poincaré inequalities and Neumann problems for the variable exponent setting. Mathematics in Engineering, 2022, 4(5): 1-22. doi: 10.3934/mine.2022036
    [8] Arthur. J. Vromans, Fons van de Ven, Adrian Muntean . Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: Upscaling and corrector estimates for perforated domains. Mathematics in Engineering, 2019, 1(3): 548-582. doi: 10.3934/mine.2019.3.548
    [9] François Murat, Alessio Porretta . The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021031
    [10] Pengfei Guan . A weighted gradient estimate for solutions of Lp Christoffel-Minkowski problem. Mathematics in Engineering, 2023, 5(3): 1-14. doi: 10.3934/mine.2023067
  • We prove local Calderón-Zygmund type estimates for the gradient of weak solutions to degenerate or singular parabolic equations of p-Laplacian type with p>2nn+2 in weighted Lebesgue spaces Lqw. We introduce a new condition on the weight w which depends on the intrinsic geometry concerned with the parabolic p-Laplace problems. Our condition is weaker than the one in [13], where similar estimates were obtained. In particular, in the case p=2, it is the same as the condition of the usual parabolic Aq weight.



    Dedicated to Giuseppe Rosario Mingione, on the occasion of his 50th birthday.

    We study local regularity theory for weak solutions to the following parabolic equations of p-Laplacian type:

    utdiva(Du)=div(|F|p2F)in  ΩT:=Ω×(0,T], (1.1)

    where ΩRn (n2) is an open set, T is a positive constant, u=u(x,t) is a real valued function with (x,t)Ω×(0,T]=ΩT, ut is the partial derivative of u with respect to the time variable t, and DuRn is the gradient of u with respect to the space variable x (i.e., Du=Dxu). For given p(1,), we assume that a:RnRn satisfies the following p-growth and p-ellipticity conditions:

    |a(ξ)|+|Dξa(ξ)||ξ|L|ξ|p1 (1.2)

    and

    Dξa(ξ)ηην|ξ|p2|η|2, (1.3)

    for every ξ,ηRn{0}, and for some constants ν and L with 0<ν1L. The prototype of a is

    a(ξ)=|ξ|p2ξ.

    Lq-regularity theory with Calderón-Zygmund estimates for partial differential equations is originated from the classical result of Calderón and Zygmund [16] about the boundedness of linear operators including the Laplace operator. For the following p-Laplacian type equation

    div(|Du|p2Du)=div(|F|p2F),

    a fundamental Lq-regularity theory, which is also called (nonlinear) Calderón-Zygmund theory, is to show the following implication:

    |F|pLq    |Du|pLq,q>1, (1.4)

    and obtain corresponding estimates, so-called Calderón-Zygmund estimates. In this regard, Iwaniec [26] first obtained Calderón-Zygmund estimates in the whole space Rn when p2, and DiBenedetto and Manfredi [21] extended this result to the corresponding system with 1<p<. Thereafter, Caffarelli and Peral [15] considered general elliptic equations with p-growth, for instance, the stationary case of (1.1), applying a new approach by means of maximal functions and a covering argument obtained by Krylov and Safonov based on the Calderón-Zygmund decomposition. We further refer to e.g., [1,11,14,17,28] for Lq-regularity theory with corresponding Calderón-Zygmund estimates for elliptic problems.

    Difficulty of the study on regularity theory for parabolic problems of p-Laplacian type is originated from the absence of the scaling invariant property: a constant multiple of a solution of the parabolic p-Laplace equation utdiv(|Du|p2Du)=0 does not become a solution. It could be overcome by considering intrinsic parabolic cylinders depending on solutions, instead of the usual parabolic cylinders. This idea was introduced by DiBenedetto and Friedman in [19,20], see also the monograph [18], where Hölder regularity for parabolic p-Laplace systems had been established.

    For the Lq-regularity theory, on the other hand, the approaches used in [26] and [15] are not directly applicable to the parabolic p-Laplacian type problems when p2, since the intrinsic geometry prevents the use of maximal functions. Finally, Acerbi and Mingione [2] established local Calderón-Zygmund estimates when p>2nn+2 with a new approach, hence proved the implication (1.4) in the local sense. We also refer to the higher integrability result of Kinnunen and Lewis in [27], where the implication (1.4) is obtained when q is sufficiently close to 1. Note that the condition p>2nn+2 is essential since there exists an unbounded weak solution to the parabolic p-Laplace system in this case, see [18]. It is worth pointing out that the approach in [2] does not employ maximal functions and the covering argument by Krylov and Safonov but a new covering argument used in [31] which is based on the Vitali covering lemma. It has led to the development of the Calderón- Zygmund theory for parabolic problems. For instance, we refer to [5,7,10] for global Calderón Zygmund theory in bounded domains, [6,33] for parabolic obstacle problems, [4,9] for parabolic problems with variable exponent, [25,32] for parabolic problems with growth and [35] for parabolic variational problems.

    Research on Calderón-Zygmund estimates in general function spaces such as weighted Lebesgue spaces, Orlicz spaces, variable exponent Lebesgue spaces, Lorentz spaces have been actively conducted for the last decade, e.g., [3,8,12,29,36]. In particular, estimates in weighted Lebesgue spaces are crucial since these imply estimates in various function spaces by extrapolation argument, see [24, Section 5]. For parabolic problems with p-growth as in (1.1), Byun and Ryu [13] obtained global Calderón-Zygmund estimates in the weight Lebesgue spaces Lqw hence proved the following implication:

    |F|pLqw    |Du|pLqw, (1.5)

    with q>1 and the weight w satisfying the following Muckenhoupt type condition:

    supQC(Qwdz)(Qw1q1dz)q1<, (1.6)

    where C is the set of all cylinders of the form Br(x0)×(t1,t2)Rn×R. On the other hand, if p=2, the same implication can be obtained for every usual parabolic Aq weight w, that is, w satisfies (1.6) with C the set of all parabolic cylinders of the form Br(x0)×(t0r2,t0+r2). Therefore, there is a drastic change between the conditions of weights when p=2 and p2.

    In this paper, we introduce a new parabolic Muckenhoupt type condition depending on the intrinsic geometry concerned with the parabolic p-Laplacian setting, see Definition 2.1. We emphasize that our condition on weights depends on p, and is weaker than the one in [13] and exactly the same as the parabolic Aq condition when p=2. With this condition we prove the implication (1.5) in the local sense by obtaining corresponding Calderón-Zymund estimates.

    Now, we state our main result. Notation and the definition of the p-intrinsic Aq weight are introduced in next section. We say that uC0(0,T;L2(Ω))Lp(0,T;W1,p(Ω)) is a weak solution to (1.1) if

    ΩTuζtdz+ΩTa(Du)Dζdz=ΩT|F|p2FDζdz

    holds for every ζC0(ΩT).

    Theorem 1.1. Let p>2nn+2 and uC0(0,T;L2(Ω))Lp(0,T;W1,p(Ω)) be a weak solution to (1.1) with FLp(ΩT,Rn). If w is a p-intrinsic Aq weight with q>1 and |F|pLqw,loc(ΩT), then |Du|pLqw,loc(ΩT).

    Furthermore, there exists R0=R0(n,ν,L,p,q,[w]q,Du,F)>0 such that for every Q2r with 2r < R_0 ,

    \begin{equation} \begin{split} &\left(\frac{1}{w(Q_r)} \int_{Q_{r}} |Du|^{pq}w \, dz\right)^{\frac1q} \\ & \qquad \leqslant c \left(\mathit{{\rlap{-} \smallint }}_{Q_{2r}} \left[|Du|^p +|F|^p +1\right] \, dz\right)^{d} + c \left(\frac{1}{w(Q_{2r})} \int_{Q_{2r}} |F|^{pq}w \, dz\right)^{\frac1q} \end{split} \end{equation} (1.7)

    for some c = c(n, \nu, L, p, q, [w]_q) > 0 , where

    \begin{equation} d : = \begin{cases} \frac{2p}{p(n+2)-2n}, & { if }\; \frac{2n}{n+2} < p < 2 , \\ \frac{p}{2}, & { if }\; p \geqslant 2. \end{cases} \end{equation} (1.8)

    Remark 1.1. In the above theorem, R_0 will be chosen as in (3.1). Furthermore, when p = 2 we may put R_0 = \infty .

    Remark 1.2. (Possible extensions) In this paper, we deal with only scalar problems without coefficients for simplicity. We can consider more general problems such as general non-autonomous parabolic equations with p -growth

    u_t -\mathrm{div}\, \mathbf{a}(x,t,Du) = - \operatorname{div} \left(|F|^{p-2}F\right),

    where \mathbf a(x, t, \xi) satisfies (1.2), (1.3) and a VMO condition (see [10]), and parabolic p -Laplace systems with coefficients

    u_t-\mathrm{div}\, \left((A(x,t)Du:Du)^{\frac{p-2}{2}}A(x,t)Du\right) = - \operatorname{div} \left(|F|^{p-2}F\right),

    where u : \Omega_T \to \mathbb{R}^N and A(x, t): \mathbb{R}^{n+1}\to \mathbb{R}^{n^2N^2} satisfies a VMO condition (see [2]). Moreover, as in [13], we can also consider global Calderón-Zygmund estimates in Reifenberg flat domains.

    The remaining part of the paper is organized as follows. In Section 2, we introduce notation, weights with their main assumption, and comparison and regularity estimates for corresponding homogeneous problems. In Section 3, we prove our main theorem, Theorem 1.1.

    Let z_0 = (x_0, t_0)\in \mathbb{R}^n\times \mathbb{R} with x_0 = (x_0^1, \dots, x_0^n) , r, \alpha, \lambda > 0 and 1 < p < \infty . We define an \alpha -parabolic cylinder by Q_{r, \alpha}(z_0) = B_r(x_0)\times (t_0-\alpha r^2, t_0+\alpha r^2) and an \alpha -parabolic cube by \tilde Q_{r, \alpha}(z_0) = C_r(x_0)\times (t_0-\alpha r^2, t_0+\alpha r^2) , where B_r(x_0): = \{x\in \mathbb{R}^n: |x-x_0| < r\} and C_r(x_0): = \{x = (x^1, \dots, x^n)\in \mathbb{R}^n: \max\{|x^1-x_0^1|, \dots, |x^n-x_0^n|\} < r\} . Note that Q_r(z_0): = Q_{r, 1}(z_0) and \tilde Q_r(z_0): = \tilde Q_{r, 1}(z_0) is the usual parabolic cylinder and cube, respectively, and we denote \partial_{\mathrm{p}}Q_r(z_0): = (B_r(x_0)\times \{t = t_0-r^2\})\cup(\partial B_r(x_0) \times [t_0-r^2, t_0+r^2)) Furthermore, when \alpha = \lambda^{2-p} we write Q^\lambda_r(z_0) = Q_{r, \lambda^{2-p}}(z_0) = B_r(x_0)\times (t_0-\lambda^{2-p} r^2, t_0+\lambda^{2-p} r^2) which is usually called a p -intrinsic parabolic cylinder since we will consider \lambda related to the weak solution to (1.1).

    For an integrable function f: U\to \mathbb{R}^m with U\subset \mathbb{R}^{n+1} and 0 < |U| < \infty , we write (f)_{U} = \mathit{{\rlap{-} \smallint }}_U f\, dz : = \frac{1}{|U|}\int_U f \, dz , where |U| is the Lebesgue measure of U in \mathbb{R}^{n+1} .

    We say that w: \mathbb{R}^{n+1}\to \mathbb{R} is a weight if it is nonnegative and locally integrable. For a weight w and a bounded open set U\subset \mathbb{R}^{n+1} , we write

    w(U) : = \int_U w\, dz,

    and define by weighted Lebesgue space L^q_w(U) , 1 \leqslant q < \infty , the set of all measurable function f on U such that

    \|f\|_{L^q_w(U)}: = \left(\int_U |f|^q w\, dz \right)^{\frac{1}{q}} < \infty.

    We introduce the assumption of the weight w in Theorem 1.1.

    Definition 2.1. Let p, q\in(1, \infty) . We say that weight w: \mathbb{R}^{n+1}\to \mathbb{R} is a p -intrinsic parabolic A_q weight if it satisfies that

    \begin{equation} [w]_q: = \sup\limits_{Q\in \mathcal C_p} \left(\mathit{{\rlap{-} \smallint }}_{Q} w \, dz \right) \left( \mathit{{\rlap{-} \smallint }}_{Q} w^{-\frac{1}{q-1}} \, dz\right)^{q-1} < \infty, \end{equation} (2.1)

    where

    \mathcal C_p : = \left\{ Q_{r,\alpha}(z_0) \,:\, z_0\in \mathbb{R}^{n+1},\ \ r > 0, \ \ \alpha = \lambda^{2-p},\ \ 1 \leqslant \lambda \leqslant \max\{1,r^{-\frac{n+2}{2}}\}\right\}.

    Here, the \alpha -parabolic cylinders Q_{r, \alpha}(z_0) can be replaced by the \alpha -parabolic cubes \tilde Q_{r, \alpha}(z_0) .

    Note that in the definition of the class \mathcal C_p , the range of \alpha with respect to p is following:

    \begin{cases} 1 \leqslant \alpha \leqslant \max\{1,r^{\frac{(p-2)(n+2)}{2}}\} & \text{if }\ p < 2,\\ \alpha = 1 & \text{if }\ p = 2,\\ \min\{1,r^{\frac{(p-2)(n+2)}{2}}\} \leqslant \alpha \leqslant 1 & \text{if }\ p > 2.\\ \end{cases}

    Hence, \mathcal C_p contains all the parabolic cylinders Q_r(z_0) and, in particular, \mathcal C_2 (i.e., p = 2 ) consists of only the parabolic cylinders. Moreover, since r^{-\frac{n+2}{2}} \leqslant \rho^{-\frac{n+2}{2}} for \rho\in(0, r] , we have

    Q_{r,\alpha} \in \mathcal C_p \ \ \Longrightarrow\ \ Q_{\rho,\alpha}\in \mathcal C_p \ \ \text{for every }\ \rho\in (0,r].

    From this fact, we can obtain the following properties for p -intrinsic parabolic A_q weights, which are well known properties of the usual A_q weights, see e.g., [23, Section 7.2]. Proofs are exactly the same as the ones in there with just replacing cubes and the dimension n by the \alpha -parabolic cubes and n+2 , respectively. Therefore, we omit their proofs.

    Proposition 2.1. Let p, q\in(1, \infty) and w: \mathbb{R}^{n+1}\to \mathbb{R} be a p -intrinsic parabolic A_q weight.

    (1) For every f\in L^q_w(Q) with Q\in \mathcal C_p ,

    \begin{equation} \left(\mathit{{\rlap{-} \smallint }}_Q |f| \,dz \right)^q \leqslant \frac{[w]_q}{w(Q)}\int_Q |f|^q \, w \, dz. \end{equation} (2.2)

    (2) There exist \gamma, c > 0 depending on n , q and [w]_q such that

    \left(\mathit{{\rlap{-} \smallint }}_{Q} w^{1+\gamma}\, dz \right)^{\frac{1}{1+\gamma}} \leqslant c \mathit{{\rlap{-} \smallint }}_{Q} w\, dz.

    (3) There exist \gamma_1 > 0 and c_1, c_2 \geqslant 1 depending on n , q and [w]_q such that for every Q\in \mathcal C_p and E\subset Q

    \begin{equation} \frac{1}{c_1}\left(\frac{|E|}{|Q|}\right)^q \leqslant \frac{w(E)}{w(Q)} \leqslant c_2 \left(\frac{|E|}{|Q|}\right)^{\gamma_1} . \end{equation} (2.3)

    (4) w is a p -intrinsic parabolic A_{q_1} weight for every q_1 > q . Moreover, w is a p -intrinsic parabolic A_{q'} weight for some q'\in (1, q) , where q' and [w]_{q'} depend on n , q and [w]_q .

    Example. On \mathbb{R}^{n+1} , the function w(x, t) = \max\{|x|, \sqrt{|t|}\}^\gamma is a p -intrinsic A_q weight for p \geqslant 2 , q\in(1, \infty) when -n < \gamma < n(q-1) . Indeed, we first write

    I[Q] : = \left(\mathit{{\rlap{-} \smallint }}_{Q} \max\{|x|,\sqrt{|t|}\}^\gamma \, dz \right) \left( \mathit{{\rlap{-} \smallint }}_{Q} \max\{|x|,\sqrt{|t|}\}^{-\frac{\gamma}{q-1}} \, dz\right)^{q-1}, \qquad Q \in \mathcal{C}_p.

    We divide the \alpha -parabolic cylinders Q_{r, \lambda^{2-p}}(z_0) in \mathcal C_p for z_0 = (x_0, t_0)\in \mathbb{R}^{n+1} into three cases:

    (i) \min\{|x_0|, \sqrt{|t_0|}\} \geqslant 3r ,

    (ii) |x_0| < 3r and 3\lambda^{\frac{2-p}{2}}r \leqslant \sqrt{|t_0|} < 3r ,

    (iii) |x_0| < 3r and \sqrt{|t_0|} < 3\lambda^{\frac{2-p}{2}}r .

    Note that if x\in B_r(x_0) and |x_0| \geqslant 3r ,

    \frac{2}{3}|x_0| \leqslant |x_0| - |x-x_0| \leqslant |x| \leqslant |x-x_0|+|x_0| \leqslant \frac{4}{3}|x_0|,

    and if t_0-\lambda^{2-p}r^2 \leqslant t \leqslant t_0+\lambda^{2-p}r^2 and \sqrt{|t_0|} > 3 \lambda^{\frac{2-p}{2}}r ,

    \frac{\sqrt{8}}{3}\sqrt{|t_0|} \leqslant \sqrt{|t_0| - |t-t_0|} \leqslant \sqrt{|t|} \leqslant \sqrt{|t-t_0|+|t_0|} \leqslant \frac{\sqrt{10}}{3}\sqrt{|t_0|}.

    In Case (i), if (x, t)\in Q_{r, \lambda^{2-p}}(z_0) , we have |x|\approx |x_0| and |t|\approx |t_0| , hence

    \begin{aligned} &I[Q_{r,\lambda^{2-p}}(z_0)] \\ & \leqslant c \underbrace{\left(\mathit{{\rlap{-} \smallint }}_{Q_{r,\lambda^{2-p}}(z_0)} \max\{|x_0|,\sqrt{|t_0|}\}^\gamma \, dz \right) \left( \mathit{{\rlap{-} \smallint }}_{Q_{r,\lambda^{2-p}}(z_0)} \max\{|x_0|,\sqrt{|t_0|}\}^{-\frac{\gamma}{q-1}} \, dz\right)^{q-1}}_{ = 1} = c . \end{aligned}

    In Case (ii), if (x, t)\in Q_{r, \lambda^{2-p}}(z_0) , then |x| < 4r and |t|\approx |t_0| < 9r^2 , and hence

    \begin{aligned} I[Q_{r,\lambda^{2-p}}(z_0)] & \leqslant c \left(\mathit{{\rlap{-} \smallint }}^{t_0+\lambda^{2-p}r^2}_{t_0-\lambda^{2-p}r^2} \mathit{{\rlap{-} \smallint }}_{B_{4r}(0)} \max\{|x|,\sqrt{|t_0|}\}^\gamma \, dx dt \right) \\ &\qquad \times \left( \mathit{{\rlap{-} \smallint }}^{t_0+\lambda^{2-p}r^2}_{t_0-\lambda^{2-p}r^2} \mathit{{\rlap{-} \smallint }}_{B_{4r}(0)} \max\{|x|,\sqrt{|t_0|}\}^{-\frac{\gamma}{q-1}} \, dx\right)^{q-1} \\ & \leqslant c\left[ \frac{1}{r^n}\left(\int^{\sqrt{|t_0|}}_{0} |t_0|^{\frac{\gamma}{2}} \rho^{n-1}\, d\rho + \int^{4r}_{\sqrt{|t_0|}} \rho^{\gamma+n-1} \, d\rho\right) \right] \\ &\qquad \times \left[ \frac{1}{r^n}\left(\int^{\sqrt{|t_0|}}_{0} |t_0|^{-\frac{\gamma}{2(q-1)}} \rho^{n-1}\, d\rho + \int^{4r}_{\sqrt{|t_0|}} \rho^{-\frac{\gamma}{q-1}+n-1} \, d\rho\right) \right]^{q-1}\\ & \leqslant \frac{c}{r^{nq}} \left[ \frac{\gamma |t_0|^{\frac{\gamma+n}{2}} }{n(n+\gamma)} + \frac{(4r)^{\gamma+n}}{\gamma+n} \right] \left[ \frac{-\gamma |t_0|^{\frac{nq-n-\gamma}{2(q-1)}} }{n(nq-n-\gamma)} + \frac{(q-1)(4r)^{\frac{nq-n-\gamma}{q-1}} }{nq-n-\gamma} \right]^{q-1}\\ & \leqslant \frac{c}{r^{nq}} r^{\gamma+n} r^{nq-n-\gamma} = c, \end{aligned}

    where we have used -n < \gamma < n (q-1) .

    In Case (iii), if (x, t)\in Q_{r, \lambda^{2-p}}(z_0) , then |x| \leqslant 4r and |t| \leqslant 10 \lambda^{2-p}r^2 , and hence, by the similar computation as in Case (ii), we have

    \begin{aligned} I[Q_{r,\lambda^{2-p}}(z_0)] & \leqslant \frac{c}{r^{nq}} \bigg[ \frac{\gamma}{n(n+\gamma)} \mathit{{\rlap{-} \smallint }}^{10\lambda^{2-p}r^2}_{-10 \lambda^{2-p}r^2} |t|^{\frac{\gamma+n}{2}} \, dt + \frac{(4r)^{\gamma+n}}{\gamma+n} \bigg] \\ &\qquad \times \bigg[ \frac{-\gamma}{n(nq-n-\gamma)} \mathit{{\rlap{-} \smallint }}^{10\lambda^{2-p}r^2}_{-10\lambda^{2-p}r^2} |t|^{\frac{n(q-1)-\gamma}{2(q-1)}} \, dt + \frac{(q-1)(4r)^{\frac{nq-n-\gamma}{q-1} }}{nq-n-\gamma} \bigg]^{q-1}. \end{aligned}

    Finally, using the facts that -n < \gamma < n (q-1) and \lambda \geqslant 1 ,

    \begin{aligned} I[Q_{r,\lambda^{2-p}}(z_0)] & \leqslant \frac{c}{r^{nq}} \bigg[ \gamma (\lambda^{2-p}r^2)^{\frac{\gamma+n}{2}} + r^{\gamma+n} \bigg] \bigg[ -\gamma (\lambda^{2-p}r^2)^{\frac{n(q-1)-\gamma}{2(q-1)}} + r^{\frac{nq-n-\gamma}{q-1}} \bigg]^{q-1} \\ & \leqslant \frac{c}{r^{nq}} \bigg( \gamma \lambda^{\frac{(2-p)(\gamma+n)}{2}}r^{\gamma+n} + r^{\gamma+n} \bigg) \bigg( -\gamma \lambda^{\frac{(2-p)(nq-n-\gamma)}{2(q-1)}}r^{\frac{nq-n-\gamma}{q-1}} + r^{\frac{nq-n-\gamma}{q-1}} \bigg)^{q-1}\\ & \leqslant \frac{c}{r^{nq}} r^{\gamma+n} r^{nq-n-\gamma} = c. \end{aligned}

    We consider the following homogeneous problem in simple parabolic cylinder Q_{2} = Q_{2}(0) :

    \begin{equation} \left\{ \begin{array}{rclcl} h_t-\mathrm{div}\, \mathbf{a}(Dh) & = & 0 & \ \text{in} & Q_{2}, \\ h & = & u & \ \text{on} & \partial_{\mathrm p} Q_{2}, \end{array} \right. \end{equation} (2.4)

    where u \in C^0(-2^2, 2^2;L^{2}(B_2))\cap L^p(-2^2, 2^2;W^{1, p}(B_2)) is a weak solution to (1.1) with replacing \Omega_T by Q_2 . For the existence and the uniqueness of the weak solution h\in C^0(-2^2, 2^2;L^{2}(B_2))\cap L^p(-2^2, 2^2; W^{1, p}(B_2)) to the above equation, we refer to e.g., [34, Section III.4]. Then, we obtain the following regularity estimates for h and comparison estimate between u and h .

    Lemma 2.1. Let u be a weak solution to (1.1) in Q_{2} with

    \begin{equation} \mathit{{\rlap{-} \smallint }}_{Q_{2}} | Du|^p dz \leqslant 1 \qquad\mathit{\text{and}}\qquad \mathit{{\rlap{-} \smallint }}_{Q_{2}} |F|^p dz \leqslant \delta^p \end{equation} (2.5)

    for some \delta\in(0, 1) , and let h be the weak solution to (2.4). Then

    \begin{equation} \|Dh\|_{L^\infty(Q_1, \mathbb{R}^n)} \leqslant c \left(\mathit{{\rlap{-} \smallint }}_{Q_{2}} |Dh|^p\, dz+1\right)^{\frac{d}{p}} \leqslant c_{\mathrm{Lip}} \end{equation} (2.6)

    for some c, c_{\mathrm{Lip}} \geqslant 1 depending on n, \nu, L and p , where d \geqslant 1 is from (1.8).

    Moreover, for any \varepsilon\in(0, 1) , there exists small \delta = \delta(n, \nu, L, p, \varepsilon)\in(0, 1) such that

    \begin{equation} \mathit{{\rlap{-} \smallint }}_{Q_{2}} | Du-Dh |^p dz \leqslant \varepsilon. \end{equation} (2.7)

    Proof. In view of [18, Section VIII.5], we have the first inequality in (2.6). We note that the Lipschitz regularity estimates in [18] are obtained for the parabolic p -Laplace systems. However, the same argument can apply to equations of p -Laplacian type such as (1.1) with the nonlinearity \mathbf a satisfying (1.2) and (1.3).

    Regarding (2.7) and the second inequality in (2.6), similar comparison estimates can be found in numerous papers, see e.g., [2,5,10]. But, we shall prove them in details for completeness.

    We take \zeta = u-h as a test function in (1.1) and (2.4) to obtain

    \int_{Q_{2}} u_t (u-h) \, dz + \int_{Q_{2}} \mathbf{a}(Du) \cdot (Du-Dh) \, dz = \int_{Q_{2}} |F|^{p-2}F \cdot (Du-Dh)\,dz

    and

    \begin{split} & \int_{Q_{2}} h_t (u-h) \, dz + \int_{Q_{2}} \mathbf{a}(Dh) \cdot (Du-Dh) \, dz = 0. \end{split}

    We notice that u and h are not differentiable for t . However, by considering their Steklov averages (see e.g., [18, Section I.3] and [6]), we may assume that they are differentiable for t . Then we have

    \int_{Q_{2}} (u-h)_t (u-h) \, dz + \int_{Q_{2}} (\mathbf{a}(Du)-\mathbf{a}(Dh) ) \cdot (Du-Dh) \, dz = \int_{Q_{2}} |F|^{p-2}F \cdot (Du-Dh)\,dz.

    Note that

    \begin{split} \int_{Q_{2}} (u-h)_t (u-h) \, dz & = \int_{Q_{2}} \frac12 \frac{\partial}{\partial t} (u-h)^2 \, dz \\ & = \frac12 \int_{B_r} (u-h)^2 \bigg|_{t = 4} \, dx- \frac12 \int_{B_r} \underbrace{(u-h)^2 \bigg|_{t = -4}}_{\equiv\, 0} \, dx \geqslant 0. \end{split}

    We remark that the condition (1.3) implies the monotonicity condition:

    \left( \mathbf{a}(\xi) - \mathbf{a}(\eta) \right) \cdot (\xi-\eta) \geqslant c(p,\nu) \left( |\xi|^2 + |\eta|^2 \right)^{\frac{p-2}{2}} |\xi-\eta|^2

    for every \xi, \eta \in \mathbb{R}^n\setminus\{0\} . Then we see

    (|Du|^2 + |Dh|^2)^{\frac{p-2}{2}} |Du-Dh|^2 \leqslant c \, \big(\mathbf{a}(Du)-\mathbf{a}(Dh)\big) \cdot (Du-Dh).

    Therefore, by the above estimates, Young's inequality and the second inequality in (2.5), we have that for any \kappa_1\in(0, 1) ,

    \begin{split} \mathit{{\rlap{-} \smallint }}_{Q_{2}} (|Du|^2 + |Dh|^2)^{\frac{p-2}{2}} |Du-Dh|^2 \,dz & \leqslant c \kappa_1 \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du-Dh|^p\,dz + c\kappa_1^{-\frac{1}{p-1}}\mathit{{\rlap{-} \smallint }}_{Q_{2}} |F|^p\,dz \\ & \leqslant c \kappa_1 \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du-Dh|^p\,dz + c\kappa_1^{-\frac{1}{p-1}}\delta^p. \end{split}

    If p \geqslant 2 , since |Du-Dh|^p \leqslant (|Du|^2 + |Dh|^2)^{\frac{p-2}{2}} |Du-Dh|^2 , by taking sufficiently small \kappa_1 = \kappa_1(n, \nu, L, p) > 0 we have

    \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du-Dh|^{p} \,dz \leqslant c \delta^p.

    The second inequality in (2.6) follows from the first inequality in (2.5) together with \delta \leqslant 1 . Moreover, by choosing small \delta depending on \varepsilon , we get (2.7).

    If \frac{2n}{n+2} < p < 2 , on the other hand, applying Young's inequality, we have that for any \kappa_2\in(0, 1) ,

    \begin{split} \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du-Dh|^p \,dz & = \mathit{{\rlap{-} \smallint }}_{Q_{2}} (|Du|^2 + |Dh|^2)^{\frac{p(2-p)}{4}} (|Du|^2 + |Dh|^2)^{\frac{p(p-2)}{4}} |Du-Dh|^p \,dz \\ & \leqslant c\kappa_2 \mathit{{\rlap{-} \smallint }}_{Q_{2}} (|Du|^2 + |Dh|^2)^{\frac{p}{2}} \,dz \\ &\qquad + c \kappa_2^{-\frac{2-p}{p}}\mathit{{\rlap{-} \smallint }}_{Q_{2}} (|Du|^2 + |Dh|^2)^{\frac{p-2}{2}} |Du-Dh|^2 \,dz \\ & \leqslant c \kappa_2 \mathit{{\rlap{-} \smallint }}_{Q_{2}} \big[|Du|^p + |Dh|^{p}\big] \,dz \\ &\qquad + c \kappa_2^{-\frac{2-p}{p}} \kappa_1 \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du-Dh|^p\,dz + c \kappa_2^{-\frac{2-p}{p}} \kappa_1^{-\frac{1}{p-1}}\delta^p. \end{split}

    Hence by choosing \kappa_1 sufficiently small depending on \kappa_2 we have

    \begin{equation} \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du-Dh|^p \,dz \leqslant c \kappa_2 \left(\mathit{{\rlap{-} \smallint }}_{Q_{2}} |Dh|^{p} \,dz +\mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du|^{p} \,dz\right) +c(\kappa_2) \delta^p. \end{equation} (2.8)

    We first note that

    \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Dh|^p \,dz \leqslant c \kappa_2 \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Dh|^{p} \,dz + c \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du|^{p} \,dz + +c(\kappa_2) \delta^p.

    Then by choosing \kappa_2 sufficiently small and using the first inequality in (2.5) and \delta \leqslant 1 we have the second inequality in (2.6). Finally, applying the second inequalities of (2.5) and (2.6) to (2.8), we have

    \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du-Dh|^p \,dz \leqslant c \kappa_2 +c(\kappa_2) \delta^p.

    Finally, choosing \kappa_2 and \delta sufficiently small depending on \varepsilon we get (2.7).

    Now we start with the proof of the main theorem, Theorem 1.1. As we mentioned in the introduction, we follow the approach introduced in [2], see also [13] for the case of the weighted Lebesgue space. We divide the proof into five steps.

    Step 1. (Setting and stopping time argument)

    Let \delta\in (0, 1) , which will be determined as a small constant depending only on n , \nu , L , p , q and [w]_q in below (3.17). Then there exists R_0 > 0 satisfying that

    \begin{equation} \int_{Q_{R_0}(z_0)\cap \Omega_T}\left[ |Du|^p+\left|\frac{F}{\delta}\right|^p\right] \,dz \leqslant \frac{2|B_1|}{5^{n+2}} \quad \text{for all }\ z_0\in \Omega_T. \end{equation} (3.1)

    We fix any Q_{2r} = Q_{2r}(z_0)\Subset \Omega_T with 2r < R_0 . For simplicity, we write Q_\rho = Q_\rho(z_0) , \rho\in(0, 2r] . In addition, for \rho > 0 and \lambda > 0 , we define the super level set

    E(\rho,\lambda): = \{z\in Q_{\rho}:|Du(z)| > \lambda\},

    and

    \begin{equation} \lambda_0^{\frac{p}{d}} : = \mathit{{\rlap{-} \smallint }}_{Q_{2r}} \left[|Du|^p+ \left|\frac{F}{\delta}\right|^p+1 \right] \, dz \geqslant 1, \end{equation} (3.2)

    where d \geqslant 1 is from (1.8).

    Let r \leqslant r_1 < r_2 \leqslant 2r and consider any \lambda satisfying the following:

    \begin{equation} \lambda \geqslant B \lambda_0 \quad\text{with }\ B: = \left(\frac{20r}{r_2-r_1}\right)^ {\frac{d(n+2)}{p} }. \end{equation} (3.3)

    We notice that Q^{\lambda}_{\rho}(\tilde{z}) \subset Q_{r_2}\subset Q_{2r} for any \tilde{z} = (\tilde{x}, \tilde{t}) \in E(r_1, \lambda) and all \rho < \rho_0 where

    \rho_0: = \begin{cases} \lambda^{\frac{p-2}2} (r_2-r_1) & \text{ if } \ \frac{2n}{n+2} < p < 2 , \\ r_2-r_1 & \text{ if }\ p \geqslant 2. \end{cases}

    Then we obtain the following Vitali type covering result for the super-level set E(r_1, \lambda) .

    Lemma 3.1. For each r \leqslant r_1 < r_2 \leqslant 2r and \lambda \geqslant B\lambda_0 , there exist z_i\in E(r_1, \lambda) and \rho_i\in \left(0, \frac{\rho_0}{10} \right) , i = 1, 2, 3, \cdots , such that the intrinsic parabolic cylinders Q^\lambda_{\rho_i}(z_i) are mutually disjoint,

    E(r_1,\lambda)\setminus \mathcal{N}\ \subset\ \bigcup\limits_{i = 1}^\infty Q^\lambda_{5\rho_i}(z_i)

    for some Lebesgue measure zero set \mathcal{N} ,

    \begin{equation} \mathit{{\rlap{-} \smallint }}_{Q^\lambda_{\rho_i}(z_i)} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right]\, dz = \lambda^p \end{equation} (3.4)

    and

    \begin{equation} \mathit{{\rlap{-} \smallint }}_{Q^\lambda_{\rho}(z_i)} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right]\,dz < \lambda^p \ \ \ \mathit{\text{for all}}\; \rho \in(\rho_i,r_2-r_1]. \end{equation} (3.5)

    Proof. For \tilde{z}\in E(r_1, \lambda) and \rho \in \left[\frac{\rho_0}{10}, \rho_0 \right) , by (3.2) and (3.3), we derive

    \begin{split} \mathit{{\rlap{-} \smallint }}_{Q^\lambda_{\rho}(\tilde{z})} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right] \, dz & \leqslant \frac{|Q_{2r}|}{|Q^\lambda_{\rho}(\tilde{z})|} \mathit{{\rlap{-} \smallint }}_{Q_{2r}} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p+1 \right]\,dz \\ & = \frac{|Q_{2r}|\lambda_0 ^{\frac{p}{d}}}{|Q^\lambda_{\rho}(\tilde{z})|} \\ & \leqslant \lambda^p. \end{split}

    To attain the last bound, we consider two cases p < 2 and p \geqslant 2 . When p \geqslant2 , we see \frac{p}{d} = 2 and so

    \frac{|Q_{2r}|\lambda_0 ^{\frac{p}{d}}}{|Q^\lambda_{\rho}(\tilde{z})|} = \frac{(2r)^{n+2}\lambda_0 ^{2}}{\lambda^{2-p} \rho^{n+2} } \leqslant \left( \frac{20r}{r_2-r_1}\right)^{n+2} \lambda^{p-2} \lambda_0 ^{2} \leqslant \left( \frac{20r}{r_2-r_1}\right)^{n+2} \lambda^{p} (B\lambda_0)^{-2}\lambda_0 ^{2} = \lambda^p.

    When p < 2 , we see \frac{p}{d} = \frac{(p-2)(n+2)}{2}+2 and \rho \geqslant \frac{\lambda^{\frac{p-2}2} (r_2-r_1)}{10} and so

    \begin{split} \frac{|Q_{2r}|\lambda_0 ^{\frac{p}{d}}}{|Q^\lambda_{\rho}(\tilde{z})|} & = \frac{(2r)^{n+2}\lambda_0 ^{\frac{p}{d}}}{\lambda^{2-p} \rho^{n+2} } \\ & \leqslant \left( \frac{20r}{\lambda^{\frac{p-2}2} (r_2-r_1)}\right)^{n+2} \lambda^{p-2} \lambda_0 ^{\frac{p}{d}} \\ & = \left( \frac{20r}{r_2-r_1}\right)^{n+2} \left(\frac{\lambda_0}{\lambda}\right)^{\frac{p}{d}} \lambda^{p}\\ & \leqslant \left( \frac{20r}{r_2-r_1}\right)^{n+2} \left(\frac{\lambda_0}{B\lambda_0}\right)^{\frac{p}{d}} \lambda^{p} = \lambda^p. \end{split}

    Moreover, from the parabolic Lebesgue differentiation theorem, we deduce that, for almost every \tilde{z}\in E(r_1, \lambda) ,

    \lim\limits_{\rho \to 0^+}\mathit{{\rlap{-} \smallint }}_{Q^\lambda_{\rho}(\tilde{z})} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right]\, dz \geqslant |Dw(\tilde{z})|^p > \lambda^p.

    Since the map \rho \mapsto \mathit{{\rlap{-} \smallint }}_{Q^\lambda_{\rho}(\tilde{z})} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right]\, dz is continuous, there exists \rho_{\tilde{z}}\in \left(0, \frac{r_2-r_1}{10}\right) such that

    \mathit{{\rlap{-} \smallint }}_{Q^\lambda_{\rho_{\tilde{z}}}(\tilde{z})} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right]\,dz = \lambda^p

    and

    \mathit{{\rlap{-} \smallint }}_{Q^\lambda_{\rho}(\tilde{z})} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right]\, dz < \lambda^p \quad \text{for all }\ \rho \in(\rho_{\tilde{z}},r_2-r_1].

    Hence we apply Vitali's covering lemma for \{Q^\lambda_{\rho_{\tilde{z}}}(\tilde{z}): \tilde{z} \in E(r_1, \lambda) \} to complete the proof.

    From now on, let us set for i = 1, 2, 3, \dots ,

    Q_i^{(0)} : = Q^\lambda_{\rho_i}(z_i) \quad \text{and}\quad Q_i^{(j)} : = Q^\lambda_{5j \rho_i}(z_i), \ \ j = 1,2.

    Step 2. (Estimates of super-level sets)

    With the result in Lemma 3.1, we first estimates the Lebesgue measure of super-level set

    |\{z\in Q^{(1)}_i : |Du(z)| > A\lambda \}| \quad \text{with }\ \lambda \geqslant B\lambda_0,

    where A \geqslant 1 will be determined below in (3.9), by using estimates in Lemma 2.1. Note from (3.5) that

    \begin{equation} \mathit{{\rlap{-} \smallint }}_{Q_i^{(2)}} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right]\,dz < \lambda^p. \end{equation} (3.6)

    We consider the following rescaled functions:

    \mathbf{a}_{\lambda}(\xi) : = \frac{\mathbf{a}(\lambda \xi)}{\lambda^{p-1}} \quad \text{for } \xi \in \mathbb{R}^n,
    u_{\lambda, i}(z) : = \frac{u(Z_i)}{5\rho_i \lambda} \quad \text{and} \quad F_{\lambda, i}(z) : = \frac{F(Z_i)}{\lambda} \quad \text{for } \ Z_i = z_i+ \left( 5\rho_i x, \lambda^{2-p}(5\rho_i)^2 t \right)

    with z = (x, t) \in Q_{2} . Then it is obvious that \mathbf{a}_{\lambda}(\xi) satisfies (1.2) and (1.3) with \Omega_T = Q_2(0) = Q_2 . Then we see that u_{\lambda, i} is a weak solution to

    (u_{\lambda, i})_t-\mathrm{div}\, \mathbf{a}_{\lambda}(Du_{\lambda, i}) = -\mathrm{div}(|F_{\lambda, i}|^{p-2} F_{\lambda, i}) \ \ \text{in}\ Q_{2}.

    Moreover we have from (3.6) that

    \mathit{{\rlap{-} \smallint }}_{Q_{2}} \left[ |Du_{\lambda, i}|^p + \left|\frac{F_{\lambda, i}}{\delta}\right|^p\right]\, dz = \frac{1}{\lambda^{p}} \mathit{{\rlap{-} \smallint }}_{Q_i^{(2)}} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right]\,dz < 1,

    which implies

    \begin{equation} \mathit{{\rlap{-} \smallint }}_{Q_{2}} |Du_{\lambda, i}|^p \, dz \leqslant 1 \qquad\text{and}\qquad \mathit{{\rlap{-} \smallint }}_{Q_{2}} |F_{\lambda, i}|^p\, dz \leqslant \delta^p. \end{equation} (3.7)

    In addition, let \widetilde{h}_{\lambda, i} be a weak solution to

    ( \widetilde{h}_{\lambda, i})_t-\mathrm{div}\, \mathbf{a}_{\lambda}(D\widetilde{h}_{\lambda, i}) = 0 \ \ \text{in}\ Q_{2}, \qquad \text{and}\qquad \widetilde{h}_{\lambda, i} = u_{\lambda,i} \ \ \text{on}\ \partial_{\mathrm p} Q_2.

    Now, we consider sufficiently small constant \varepsilon > 0 which will be determined below in (3.17). Then by applying Lemma 2.1, one can find \delta = \delta(n, \nu, L, p, \varepsilon) > 0 satisfying (3.7) such that

    \mathit{{\rlap{-} \smallint }}_{Q_1} | Du_{\lambda, i}-D\widetilde{h}_{\lambda, i}|^p dz \leqslant \varepsilon \qquad \text{and} \qquad \|D\widetilde{h}_{\lambda, i}\|_{L^\infty(Q_1)} \leqslant c_{\mathrm{Lip}}.

    Remark that both \delta and c_{\mathrm{Lip}} are independent of \lambda and i . Therefore setting

    h_{\lambda, i}(z) = h_{\lambda, i}(x,t): = 5\rho_i \lambda \, \widetilde{h}_{\lambda, i} \bigg( \frac{x-y_i}{5\rho_i}, \frac{t-\tau_i}{\lambda^{2-p}(5\rho_i)^2} \bigg)

    where z_i = (y_i, \tau_i) , we obtain

    \begin{equation} \mathit{{\rlap{-} \smallint }}_{Q_i^{(1)}} | Du-Dh_{\lambda, i}|^p dz \leqslant \varepsilon \lambda^p , \quad \text{and} \quad \|Dh_{\lambda, i}\|_{L^\infty(Q_i^{(1)})} \leqslant c_{\mathrm{Lip}} \lambda. \end{equation} (3.8)

    We set

    \begin{equation} A: = 2c_{\mathrm{Lip}} > 1. \end{equation} (3.9)

    Then since

    \begin{split} &\{z\in Q^{(1)}_i : |Du(z)| > A \lambda \}\\ &\qquad \subset \left\{z\in Q^{(1)}_i : |Du(z)-Dh_{\lambda,i}(z)| > \frac{A\lambda}{2} \right\}\cup \left\{z\in Q^{(1)}_i : |Dh_{\lambda,i}(z)| > \frac{A \lambda}{2} \right\}, \end{split}

    we have from the estimates in (3.8) that

    \begin{split} |\{z\in Q^{(1)}_i : |Du(z)| > A \lambda \}| & \leqslant |\{z\in Q^{(1)}_i : |Du(z)-Dh_{\lambda,i}(z)| > c_{\mathrm{Lip}}\lambda \}| \\ &\qquad + \underbrace{|\{z\in Q^{(1)}_i : |Dh_{\lambda,i}(z)| > c_{\mathrm{Lip}}\lambda \}|}_{ = 0} \\ & \leqslant \frac{1}{\lambda^p} \int_{Q^{(1)}_i} |Du-Dh_{\lambda,i}|^p \, dz \leqslant \varepsilon |Q^{(1)}_i| \\ \end{split}

    which implies

    \begin{equation} \frac{|\{z\in Q^{(1)}_i : |Du(z)| > A \lambda \}| }{|Q^{(1)}_i|} \leqslant \varepsilon. \end{equation} (3.10)

    Step 3. (weighted estimates of supper-level sets)

    In this step, we estimate the weighted measure of super-level set

    w(E(r_1,A \lambda)) \quad \text{with }\ \lambda \geqslant B\lambda_0.

    We first observe from (3.1) and (3.4) that

    \lambda^p \leqslant \frac{1}{|Q^{(0)}_i|}\int_{Q_{2r}} \left[|Du|^p + \left|\frac{F}{\delta}\right|^p \right] \,dz \leqslant \frac{2|B_1|5^{-n-2}}{2|B_1| \rho_i^{n+2} \lambda^{2-p}} ,

    hence

    \lambda \leqslant (5\rho_i)^{-\frac{n+2}{2}}.

    This and the fact \lambda \geqslant 1 from (3.3) imply Q^{(1)}_{i}\in \mathcal C_p for every i = 1, 2, 3, \dots . Then we obtain from (2.3) and (3.10) that

    \begin{equation} \frac{w(\{z\in Q^{(1)}_i : |Du(z)| > A \lambda \}) }{w(|Q^{(1)}_i|)} \leqslant c_2 \varepsilon^{\gamma_1}. \end{equation} (3.11)

    By Proposition 2.1, w is a p -intrinsic A_{q'} for some q'\in (1, q) . Now we suppose that

    \begin{equation} \int_{Q_{2r}} |Du|^{p q'}w\,dz < \infty. \end{equation} (3.12)

    Then by (3.4) and (2.2) with q replaced by q' we have

    \begin{split} \lambda^{pq'}& \leqslant 2^{q'-1}\left(\mathit{{\rlap{-} \smallint }}_{Q^{(0)}_{i}} |Du|^p\,dz\right)^{q'}+2^{q'-1} \left(\mathit{{\rlap{-} \smallint }}_{Q^{(0)}_{i}} \left|\frac{F}{\delta}\right|^p \, dz\right)^{q'}\\ & \leqslant \frac{2^{q'-1}[w]_{q'}}{w(Q^{(0)}_{i})} \left(\int_{Q^{(0)}_{i}} |Du|^{pq'}w\,dz+ \int_{Q^{(0)}_{i}} \left|\frac{F}{\delta}\right|^{pq'} w\, dz\right)\\ & \leqslant \frac{2^{q'-1}[w]_{q'}}{w(Q^{(0)}_{i})} \bigg(\int_{Q^{(0)}_{i}\cap\{|Du| > \frac{\lambda}{c_0}\}} |Du|^{pq'}w\,dz\\ &\qquad \qquad\qquad\qquad + \int_{Q^{(0)}_{i}\cap\{\frac{|F|}{\delta} > \frac{\lambda}{c_0}\}} \left|\frac{F}{\delta}\right|^{pq'}w \, dz+2c_0^{-pq'}\lambda^{pq'}w(Q^{(0)}_{i}) \bigg), \end{split}

    where c_0: = (2^{q'+1}[w]_{q'})^{\frac{1}{pq'}} . Note that the right hand side is finite by the assumptions F\in L^{pq}_{w, \mathrm{loc}}(\Omega_T) and (3.12). The above estimate means

    \begin{equation} w(Q^{(0)}_{i}) \leqslant \frac{2^{q'}[w]_{q'}}{\lambda^{pq'}} \left(\int_{Q^{(0)}_{i}\cap\{|Du| > \frac{\lambda}{c_0}\}} |Du|^{pq'}w\,dz + \int_{Q^{(0)}_{i}\cap\{\frac{|F|}{\delta} > \frac{\lambda}{c_0}\}} \left|\frac{F}{\delta}\right|^{pq'}w \, dz\right). \end{equation} (3.13)

    Therefore, using Lemma 3.1, (3.11), (2.3) and (3.13), we obtain

    \begin{equation} \begin{split} w(E&(r_1,A \lambda)) = w(\{z\in Q_{r_1} : |Du(z)| > A \lambda \}) \\ & \leqslant \sum\limits_{i = 1}^\infty w(\{z\in Q^{(1)}_i : |Du(z)| > A \lambda \}) \\ & \leqslant c \varepsilon^{\gamma_1} \sum\limits_{i = 1}^\infty w(Q^{(1)}_i) \\ & \leqslant c \varepsilon^{\gamma_1} \sum\limits_{i = 1}^\infty \left(\frac{|Q^{(1)}_i|}{|Q^{(0)}_i|}\right)^q w(Q^{(0)}_i)\\ & \leqslant c \frac{ \varepsilon^{\gamma_1}}{\lambda^{pq'}} \sum\limits_{i = 1}^\infty \left(\int_{Q^{(0)}_{i}\cap\{|Du| > \frac{\lambda}{c_0}\}} |Du|^{pq'}w\,dz + \int_{Q^{(0)}_{i}\cap\{\frac{|F|}{\delta} > \frac{\lambda}{c_0}\}} \left|\frac{F}{\delta}\right|^{pq'}w \, dz\right)\\ & \leqslant c \frac{ \varepsilon^{\gamma_1}}{\lambda^{pq'}} \left(\int_{Q_{r_2}\cap\{|Du| > \frac{\lambda}{c_0}\}} |Du|^{pq'}w\,dz + \int_{Q_{r_2}\cap\{\frac{|F|}{\delta} > \frac{\lambda}{c_0}\}} \left|\frac{F}{\delta}\right|^{pq'} w\, dz\right). \end{split} \end{equation} (3.14)

    Step 4. (A priori estimates)

    We prove the estimate (1.7) under the additional assumption

    \begin{equation} \int_{Q_{2r}} |Du|^{p q}w\,dz < \infty, \end{equation} (3.15)

    where 2r < R_0 and R_0 satisfies (3.1). Note that (3.15) implies (3.12).

    Fix any r \leqslant r_1 < r_2 \leqslant 2r . Observe that

    \begin{equation} \begin{split} \int_{Q_{r_1}} & |Du|^{pq}w\, dz = pq A^{pq} \int_0^\infty w\left(E(r_1,A \lambda)\right) \lambda^{pq-1}d\lambda \\ & = pq A^{pq} \int_0^{B\lambda_0} w\left(E(r_1,A \lambda)\right) \lambda^{pq-1}d\lambda + pq A^{pq} \underbrace{\int_{B\lambda_0}^\infty w\left(E(r_1,A \lambda)\right) \lambda^{pq-1}d\lambda}_{ = :I}\\ & = (AB\lambda_0)^{pq} w(Q_{2r}) +pq A^{pq} I, \end{split} \end{equation} (3.16)

    where A and B are from (3.9) and (3.3). We estimate the second term I . Applying (3.14), we derive

    \begin{split} I & \leqslant c \varepsilon^{\gamma_1} \int_{B\lambda_0}^\infty \left(\int_{Q_{r_2}\cap\{|Du| > \frac{\lambda}{c_0}\}} |Du|^{pq'}w\,dz + \int_{Q_{r_2}\cap\{\frac{|F|}{\delta} > \frac{\lambda}{c_0}\}} \left|\frac{F}{\delta}\right|^{pq'} w\, dz\right)\lambda^{pq-pq'-1}d\lambda \\ & \leqslant c \varepsilon^{\gamma_1} \int_{0}^\infty \left(\int_{Q_{r_2}\cap\{|Du| > \frac{\lambda}{c_0}\}} (c_0|Du|)^{pq'}w\,dz + \int_{Q_{r_2}\cap\{\frac{|F|}{\delta} > \frac{\lambda}{c_0}\}} \left|\frac{c_0F}{\delta}\right|^{pq'} w\, dz\right)\lambda^{pq-pq'-1}d\lambda\\ & \leqslant c \varepsilon^{\gamma_1} \left(\int_{Q_{r_2}} |Du|^{pq}w\, dz + \int_{Q_{r_2}} \left|\frac{F}{\delta}\right|^{pq} w\, dz\right). \end{split}

    In the last inequality we apply the following elementary identity with g = c_0|Du| or \frac{c_0|F|}{\delta} , \beta_2 = pq , \beta_1 = pq' and U = Q_{r_2} :

    \int_U g^{\beta_2} w\, dz = (\beta_2-\beta_1) \int_0^\infty \lambda^{\beta_2-\beta_1-1}\int_{\{z\in U:g(z) > \lambda\}} g^{\beta_1} w\,dz \, d\lambda , \quad \beta_2 > \beta_1 > 1.

    Inserting the estimate for I into (3.16) and recalling the definitions of A and B and the fact that \varepsilon\in(0, 1) , we have

    \int_{Q_{r_1}} |Du|^{pq}w\, dz \leqslant c_* \varepsilon^{\gamma_1} \int_{Q_{r_2}} |Du|^{pq}w\, dz + \frac{c w(Q_{2r}) \lambda_0^{pq} r^ {d(n+2)q }}{(r_2-r_1)^ {d(n+2)q }} + c \int_{Q_{2r}} \left|\frac{F}{\delta}\right|^{pq} w\, dz,

    where the constants c_* , \gamma_1 and c depend on n, p, \nu, L, q and [w]_q . At this stage, we choose \varepsilon = \varepsilon(n, p, \nu, L, q, [w]_q) such that

    \begin{equation} c_* \varepsilon^{\gamma_1} \leqslant \frac{1}{2}, \end{equation} (3.17)

    hence \delta is also determined as a small constant depending on n, p, \nu, L, q and [w]_q . Therefore we obtain

    \int_{Q_{r_1}} |Du|^{pq}w\, dz \leqslant \frac{1}{2} \int_{Q_{r_2}} |Du|^{pq}w\, dz + \frac{c \lambda_0^{pq} w(Q_{2r})r^ {d(n+2)q }}{(r_2-r_1)^ {d(n+2)q }} + c \int_{Q_{2r}} |F|^{pq} w\, dz

    for every r \leqslant r_1 < r_2 \leqslant 2r . Finally, applying Lemma 3.2 below with \Psi(\rho) = \int_{Q_{\rho}}|Du|^{pq}w\, dz with R_1 = r and R_2 = 2r and recalling (3.2), we have that

    \begin{split} \int_{Q_{r}} |Du|^{pq}w\, dz & \leqslant c w(Q_{2r}) \lambda_0^{pq} + c \int_{Q_{2r}} |F|^{pq} w\, dz\\ & \leqslant c w(Q_{2r}) \left(\mathit{{\rlap{-} \smallint }}_{Q_{2r}} \left[|Du|^p+ |F|^p+1 \right]\,dz\right) ^{dq} + c \int_{Q_{2r}} |F|^{pq} w\, dz. \end{split}

    This together with (2.3) implies (1.7).

    Lemma 3.2 (Lemma 6.1 in [22]). Let \Psi : [R_1, R_2] \rightarrow [0, \infty) be a bounded function. Suppose that for any r_1 and r_2 with 0 < R_1 \leqslant r_1 < r_2 \leqslant R_2 ,

    \Psi(r_1) \leqslant \vartheta \Psi(r_2) + \frac{C}{(r_2-r_1)^{\kappa}} + D

    where C > 0 and D \geqslant 0 , \kappa > 0 and \vartheta \in [0, 1) . Then there exists c = (\vartheta, \kappa) > 0 such that

    \Psi(R_1) \leqslant c(\vartheta,\kappa) \left[ \frac{A}{(R_2-R_1)^{\kappa}} + B \right].

    Step 5. (Approximation)

    Finally, we remove the a priori assumption (3.15) by a standard approximation argument. Suppose w is a p -intrinsic A_q weight and F\in L^{pq}_{w, \mathrm{loc}}(\Omega_T, \mathbb{R}^n) . Fix any Q_{2r} = Q_{2r}(z_0)\Subset \Omega_T with 2r < R_0 . Then there exists Q_R = Q_R(z_0) such that Q_{2r}\Subset Q_R \Subset \Omega_T . Note that by Proposition 2.1 (4), w is a p -intrinsic A_{pq} weight hence a usual parabolic A_{pq} weight. Therefore, C^\infty_{\mathrm c}(\mathbb{R}^{n+1}) is dense in L^{pq}_w(\mathbb{R}^{n+1}) , see e.g., [30, Lemma 2.1]. Therefore there exist F_k\in C^\infty_{\mathrm c}(\mathbb{R}^{n+1}, \mathbb{R}^n) , k = 1, 2, 3, \dots , such that

    F_k \longrightarrow F \quad \text{in }\ L^{pq}_w(Q_{R}, \mathbb{R}^n) \quad \text{ as} \ k\to\infty ,

    hence by (2.2),

    \begin{equation} F_k \longrightarrow F \quad \text{in }\ L^p(Q_{R}, \mathbb{R}^n) \quad \text{ as} \ k\to\infty . \end{equation} (3.18)

    We further assume that

    \begin{equation} \int_{Q_R} |F_k|^p\,dz \leqslant 2 \int_{Q_R} |F|^p\,dz. \end{equation} (3.19)

    Let u_k \in C^0(t_0-R^2, t_0+R^2; L^2(B_R(x_0)) \cap L^p(t_0-R^2, t_0+R^2; W^{1, p}(B_R(x_0)) be the unique weak solution to

    \begin{equation} \left\{ \begin{array}{rclcl} ( u_k)_t -\mathrm{div}\, \mathbf{a}(Du_k) & = & \mathrm{div}(|F_k|^{p-2}F_k) & \ \text{in} & Q_{R}, \\ u_k & = & u & \ \text{on} & \partial_{\mathrm p} Q_{R}, \end{array} \right. \end{equation} (3.20)

    see e.g., [34, Section III.4] for the existence of such u_k . In view of [2], we have at least |Du_k|^p\in L^{\gamma}_{\mathrm{loc}}(Q_R) for every \gamma > 1 since |F_k|^p\in L^{\gamma}(Q_{R}) . In particular, by Hölder's inequality with Proposition 2.1 (2),

    \int_{Q_{2r}} |Du_k|^{p q}w\,dz \leqslant \left(\int_{Q_{2r}} |Du_k|^{\frac{p q (1+\gamma)}{\gamma}}\,dz \right)^{\frac{\gamma}{1+\gamma}}\left(\int_{Q_{2r}} w^{1+\gamma}\,dz\right)^{\frac{1}{1+\gamma}} < \infty,

    which implies the a priori assumption in (3.15) for u_k hence it follows from the previous results in Step 4 that

    \begin{equation} \begin{split} &\left(\frac{1}{w(Q_r)} \int_{Q_{r}} |Du_k|^{pq}w \, dz\right)^{\frac1q} \\ & \qquad \leqslant c \left(\mathit{{\rlap{-} \smallint }}_{Q_{2r}} \left[|Du_k|^p +|F_k|^p +1\right] \, dz\right)^{d} + c \left(\frac{1}{w(Q_{2r})} \int_{Q_{2r}} |F_k|^{pq}w \, dz\right)^{\frac1q}. \end{split} \end{equation} (3.21)

    Now we take u-u_k as a test function in the weak forms of (1.1) and (3.20) to get

    \begin{split} \int_{Q_R}(u-u_k)_t (u-u_k) \,dz + & \int_{Q_R} (\mathbf{a}(Du)-\mathbf{a}(Du_k))\cdot (Du-Du_k)\, dz\\ & = \int_{Q_R} (|F|^{p-2}F-|F_k|^{p-2}F_k) \cdot (Du-Du_k)\, dz. \end{split}

    Then, in a similar way as in the proof of Lemma 2.1, we derive

    \begin{equation} \begin{split} & \int_{Q_{R}} (|Du_k|^2+|Du|^2)^{\frac{p-2}{2}}|Du_k-Du|^2\,dz \\ & \qquad \leqslant c \int_{Q_{R}} ||F_k|^{p-2}F_k-|F|^{p-2}F|| Du_k-Du|\, dz\\ & \qquad \leqslant c \tau_1^{-\frac{1}{p-1}} \int_{Q_{R}} ||F_k|^{p-2}F_k-|F|^{p-2}F|^{\frac{p}{p-1}} \, dz + \tau_1 \int_{Q_{R}} |Du_k|^p+|Du|^p \, dz \end{split} \end{equation} (3.22)

    for any \tau_1 \in (0, 1) , by applying Young's inequality.

    If p \geqslant 2 , since |Du_k-Du|^p \leqslant (|Du_k|^2 + |Du|^2)^{\frac{p-2}{2}} |Du_k-Du|^2 , we infer

    \int_{Q_{R}} |Du_k|^p\,dz \leqslant c \int_{Q_{R}} |F|^p + |Du|^p\, dz

    by taking sufficiently small \tau_1 > 0 and (3.19). If \frac{2n}{n+2} < p < 2 , applying Young's inequality, we have that for any \tau_2\in(0, 1) ,

    \begin{split} \int_{Q_{R}} |Du_k-Du|^p \,dz & \leqslant \tau_2 \int_{Q_{R}} (|Du_k|^2 + |Du|^2)^{\frac{p}{2}} \,dz \\ &\qquad + c \tau_2^{-\frac{2-p}{p}}\int_{Q_{R}} (|Du_k|^2 + |Du|^2)^{\frac{p-2}{2}} |Du_k-Du|^2 \,dz \\ & \leqslant c \big( \tau_2 + \tau_1\tau_2^{-\frac{2-p}{p}} \big) \int_{Q_{R}} \big[ |Du_k|^p + |Du|^{p}\big] \,dz \\ &\qquad + c \tau_1^{-\frac{1}{p-1}} \tau_2^{-\frac{2-p}{p}} \int_{Q_{R}} ||F_k|^{p-2}F_k-|F|^{p-2}F|^{\frac{p}{p-1}} \, dz \end{split}

    and then by taking sufficiently small \tau_1, \tau_2 > 0 and (3.19),

    \int_{Q_{R}} |Du_k|^p\,dz \leqslant c \int_{Q_{R}} |F|^p + |Du|^p\, dz.

    Eventually, for any p > \frac{2n}{n+2} , we obtain that

    \begin{equation} \int_{Q_{R}} |Du_k|^p\,dz \leqslant c \int_{Q_{R}} |F|^p + |Du|^p\, dz < \infty \quad \text{for all } \ k = 1,2,3,\dots. \end{equation} (3.23)

    Moreover, from (3.18) we see

    \int_{Q_{R}} ||F_k|^{p-2}F_k-|F|^{p-2}F|^{\frac{p}{p-1}} \, dz \rightarrow 0 \quad \text{ as } \; k\to\infty .

    Then taking into account (3.22) with (3.23),

    \limsup\limits_{k\to \infty} \int_{Q_{R}} (|Du_k|^2+|Du|^2)^{\frac{p-2}{2}}|Du_k-Du|^2\,dz \leqslant c \tau_1 \int_{Q_{R}} |F|^p + |Du|^p\, dz.

    Since \tau_1\in(0, 1) is arbitrary, we have that

    \int_{Q_{R}} (|Du_k|^2+|Du|^2)^{\frac{p-2}{2}}|Du_k-Du|^2\,dz \rightarrow 0 \quad \text{ as }\; \ k\to\infty .

    Now, if \frac{2n}{n+2} < p < 2 , the Hölder inequality yields

    \begin{split} &\int_{Q_{R}} |Du_k-Du|^p \,dz = \int_{Q_{R}} (|Du_k|^2 + |Du|^2)^{\frac{p(2-p)}{4}} (|Du_k|^2 + |Du|^2)^{\frac{p(p-2)}{4}} |Du_k-Du|^p \,dz \\ & \leqslant \bigg( \int_{Q_{R}} (|Du_k|^2 + |Du|^2)^\frac{p}{2} \,dz \bigg)^{\frac{2-p}2}\bigg( \int_{Q_{R}} (|Du_k|^2 + |Du|^2)^{\frac{p-2}{2}} |Du_k-Du|^2 \,dz \bigg)^{\frac p2} \end{split}

    and therefore by virtue of (3.23), we obtain

    \int_{Q_{R}} |Du_k-Du|^p\,dz \rightarrow 0 \quad \text{ as } \; k\to\infty .

    This also holds in case p \geqslant 2 from (3.22), because

    \int_{Q_{R}} |Du_k-Du|^p\,dz \leqslant \int_{Q_{R}} (|Du_k|^2+|Du|^2)^{\frac{p-2}{2}}|Du_k-Du|^2\,dz.

    In turn, we obtain that for every p > \frac{2n}{n+2}

    Du_k \longrightarrow Du \quad \text{in }\ L^{p}(Q_{R}, \mathbb{R}^n)\subset L^{p}(Q_{2r}, \mathbb{R}^n) \quad \text{ as } \; k\to\infty .

    In particular, we also have that Du_k \longrightarrow Du a.e. in L^{p}(Q_{2r}, \mathbb{R}^n) as k\to \infty , up to subsequence.

    Finally by passing k\to\infty from (3.21) and applying the above convergence results for F_k and Du_k with Fatou's lemma, we obtain

    \begin{split} &\left(\frac{1}{w(Q_r)} \int_{Q_{r}} |Du|^{pq}w \, dz\right)^{\frac1q} \leqslant \liminf\limits_{k\rightarrow \infty}\left(\frac{1}{w(Q_r)} \int_{Q_{r}} |Du_k|^{pq}w \, dz\right)^{\frac1q} \\ & \qquad \leqslant \liminf\limits_{k\rightarrow \infty} \bigg[ c\left(\mathit{{\rlap{-} \smallint }}_{Q_{2r}} \left[|Du_k|^p +|F_k|^p +1\right] \, dz\right)^{d} + c\left(\frac{1}{w(Q_{2r})} \int_{Q_{2r}} |F_k|^{pq}w \, dz\right)^{\frac1q}\bigg]\\ & \qquad = c\left(\mathit{{\rlap{-} \smallint }}_{Q_{2r}} \left[|Du|^p +|F|^p +1\right] \, dz\right)^{d} + c \left(\frac{1}{w(Q_{2r})} \int_{Q_{2r}} |F|^{pq}w \, dz\right)^{\frac1q}. \end{split}

    Therefore, we complete the proof.

    We would like to thank the referees for many helpful comments. M. Lee was supported by the National Research Foundation of Korea by the Korean Government (NRF-2021R1A4A1032418). J. Ok was supported by the National Research Foundation of Korea by the Korean Government (NRF-2022R1C1C1004523).

    The authors declare no conflict of interest.



    [1] E. Acerbi, G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math., 2005 (2005), 117–148. http://doi.org/10.1515/crll.2005.2005.584.117 doi: 10.1515/crll.2005.2005.584.117
    [2] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. http://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8
    [3] P. Baroni, Lorentz estimates for degenerate and singular evolutionary systems, J. Differ. Equations, 255 (2013), 2927–2951. http://doi.org/10.1016/j.jde.2013.07.024 doi: 10.1016/j.jde.2013.07.024
    [4] P. Baroni, V. Bögelein, Calderón-Zygmund estimates for parabolic p(x, t)-Laplacian systems, Rev. Mat. Iberoam., 30 (2014), 1355–1386. http://doi.org/10.4171/RMI/817 doi: 10.4171/RMI/817
    [5] V. Bögelein, Global gradient bounds for the parabolic p-Laplacian system, Proc. Lond. Math. Soc., 111 (2015), 633–680. http://doi.org/10.1112/plms/pdv027 doi: 10.1112/plms/pdv027
    [6] V. Bögelein, F. Duzaar, G. Mingione, Degenerate problems with irregular obstacles, J. Reine Angew. Math., 2011 (2011), 107–160. http://doi.org/10.1515/crelle.2011.006 doi: 10.1515/crelle.2011.006
    [7] S.-S. Byun, W. Kim, Global Calderón-Zygmund estimate for p-Laplacian parabolic system, Math. Ann., 383 (2022), 77–118. http://doi.org/10.1007/s00208-020-02089-z doi: 10.1007/s00208-020-02089-z
    [8] S.-S. Byun, J. Ok, On W^{1, q(\cdot)}-estimates for elliptic equations of p(x)-Laplacian type, J. Math. Pure. Appl., 106 (2016), 512–545. http://doi.org/10.1016/j.matpur.2016.03.002 doi: 10.1016/j.matpur.2016.03.002
    [9] S.-S. Byun, J. Ok, Nonlinear parabolic equations with variable exponent growth in nonsmooth domains, SIAM J. Math. Anal., 48 (2016), 3148–3190. http://doi.org/10.1137/16M1056298 doi: 10.1137/16M1056298
    [10] S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differ. Equations, 254 (2013), 4290–4326. http://doi.org/10.1016/j.jde.2013.03.004 doi: 10.1016/j.jde.2013.03.004
    [11] S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for elliptic equations of p(x)-Laplacian type with BMO nonlinearity, J. Reine Angew. Math., 2016 (2016), 1–38. http://doi.org/10.1515/crelle-2014-0004 doi: 10.1515/crelle-2014-0004
    [12] S.-S. Byun, S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 30 (2013), 291–313. http://doi.org/10.1016/j.anihpc.2012.08.001 doi: 10.1016/j.anihpc.2012.08.001
    [13] S.-S. Byun, S. Ryu, Weighted Orlicz estimates for general nonlinear parabolic equations over nonsmooth domains, J. Funct. Anal., 272 (2017), 4103–4121. http://doi.org/10.1016/j.jfa.2017.01.024 doi: 10.1016/j.jfa.2017.01.024
    [14] S.-S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Commun. Pure Appl. Math., 57 (2004), 1283–1310. http://doi.org/10.1002/cpa.20037 doi: 10.1002/cpa.20037
    [15] L. A. Caffarelli, I. Peral, On W^{1, p} estimates for elliptic equations in divergence form, Commun. Pure Appl. Math., 51 (1998), 1–21. http://doi.org/10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
    [16] A. P. Calderon, A. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), 85–139. http://doi.org/10.1007/BF02392130 doi: 10.1007/BF02392130
    [17] M. Colombo, G. Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. http://doi.org/10.1016/j.jfa.2015.06.022 doi: 10.1016/j.jfa.2015.06.022
    [18] E. DiBenedetto, Degenerate parabolic equations, New York: Springer, 1993. http://doi.org/10.1007/978-1-4612-0895-2
    [19] E. DiBenedetto, A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math., 1984 (1984), 83–128. http://doi.org/10.1515/crll.1984.349.83 doi: 10.1515/crll.1984.349.83
    [20] E. DiBenedetto, A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 1985 (1985), 1–22. http://doi.org/10.1515/crll.1985.357.1 doi: 10.1515/crll.1985.357.1
    [21] E. DiBenedetto, J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., 115 (1993), 1107–1134.
    [22] E. Giusti, Direct methods in the calculus of variations, River Edge, NJ: World Scientific Publishing Co., Inc., 2003. http://doi.org/10.1142/5002
    [23] L. Grafakos, Classical Fourier analysis, 3 Eds., New York: Springer, 2014. http://doi.org/10.1007/978-1-4939-1194-3
    [24] P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Cham: Springer, 2019. http://doi.org/10.1007/978-3-030-15100-3
    [25] P. Hästö, J. Ok, Higher integrability for parabolic systems with Orlicz growth, J. Differ. Equations, 300 (2021), 925–948. http://doi.org/10.1016/j.jde.2021.08.012 doi: 10.1016/j.jde.2021.08.012
    [26] T. Iwaniec, Projections onto gradient fields and L^p-estimates for degenerated elliptic operators, Stud. Math., 75 (1983), 293–312. http://doi.org/10.4064/sm-75-3-293-312 doi: 10.4064/sm-75-3-293-312
    [27] J. Kinnunen, J. Lewis, Higher integrability for parabolic systems of p-Laplacian type, Duke Math. J., 102 (2000), 253–271. http://doi.org/10.1215/S0012-7094-00-10223-2 doi: 10.1215/S0012-7094-00-10223-2
    [28] J. Kinnunen, S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Commun. Part. Diff. Eq., 24 (1999), 2043–2068. http://doi.org/10.1080/03605309908821494 doi: 10.1080/03605309908821494
    [29] T. Mengesha, N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Rational Mech. Anal., 203 (2012), 189–216. http://doi.org/10.1007/s00205-011-0446-7 doi: 10.1007/s00205-011-0446-7
    [30] N. Miller, Weighted Sobolev spaces and pseudodifferential operators with smooth symbols, Trans. Amer. Math. Soc., 269 (1982), 91–109. http://doi.org/10.1090/S0002-9947-1982-0637030-4 doi: 10.1090/S0002-9947-1982-0637030-4
    [31] G. Mingione, The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 6 (2007), 195–261. http://doi.org/10.2422/2036-2145.2007.2.01 doi: 10.2422/2036-2145.2007.2.01
    [32] J. Oh, J. OK, Gradient estimates for parabolic problems with Orlicz growth and discontinuous coefficients, Math. Method. Appl. Sci., 45 (2022), 8718–8736. http://doi.org/10.1002/mma.7845 doi: 10.1002/mma.7845
    [33] C. Scheven, Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, Manuscripta Math., 146 (2015), 7–63. http://doi.org/10.1007/s00229-014-0684-8 doi: 10.1007/s00229-014-0684-8
    [34] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997.
    [35] D. Signoriello, T. Singer, Local Calderón-Zygmund estimates for parabolic minimizers, Nonlinear Anal., 125 (2015), 561–581. http://doi.org/10.1016/j.na.2015.06.005 doi: 10.1016/j.na.2015.06.005
    [36] A. Verde, Calderón–Zygmund estimates for systems of \varphi-growth, J. Convex Anal., 18 (2011), 67–84.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2260) PDF downloads(146) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog