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Abstract: We prove local Calderón-Zygmund type estimates for the gradient of weak solutions to
degenerate or singular parabolic equations of p-Laplacian type with p > 2n

n+2 in weighted Lebesgue
spaces Lq

w. We introduce a new condition on the weight w which depends on the intrinsic geometry
concerned with the parabolic p-Laplace problems. Our condition is weaker than the one in [13], where
similar estimates were obtained. In particular, in the case p = 2, it is the same as the condition of the
usual parabolic Aq weight.
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1. Introduction

We study local regularity theory for weak solutions to the following parabolic equations of
p-Laplacian type:

ut − div a(Du) = − div
(
|F|p−2F

)
in ΩT := Ω × (0,T ], (1.1)

where Ω ⊂ Rn (n > 2) is an open set, T is a positive constant, u = u(x, t) is a real valued function with
(x, t) ∈ Ω× (0,T ] = ΩT , ut is the partial derivative of u with respect to the time variable t, and Du ∈ Rn

is the gradient of u with respect to the space variable x (i.e., Du = Dxu). For given p ∈ (1,∞), we
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assume that a : Rn → Rn satisfies the following p-growth and p-ellipticity conditions:

|a(ξ)| + |Dξa(ξ)||ξ| 6 L|ξ|p−1 (1.2)

and
Dξa(ξ) η · η > ν|ξ|p−2|η|2, (1.3)

for every ξ, η ∈ Rn \ {0}, and for some constants ν and L with 0 < ν 6 1 6 L. The prototype of a is

a(ξ) = |ξ|p−2ξ.

Lq-regularity theory with Calderón-Zygmund estimates for partial differential equations is
originated from the classical result of Calderón and Zygmund [16] about the boundedness of linear
operators including the Laplace operator. For the following p-Laplacian type equation

div
(
|Du|p−2Du

)
= div

(
|F|p−2F

)
,

a fundamental Lq-regularity theory, which is also called (nonlinear) Calderón-Zygmund theory, is to
show the following implication:

|F|p ∈ Lq =⇒ |Du|p ∈ Lq, q > 1, (1.4)

and obtain corresponding estimates, so-called Calderón-Zygmund estimates. In this regard,
Iwaniec [26] first obtained Calderón-Zygmund estimates in the whole space Rn when p > 2, and
DiBenedetto and Manfredi [21] extended this result to the corresponding system with 1 < p < ∞.
Thereafter, Caffarelli and Peral [15] considered general elliptic equations with p-growth, for instance,
the stationary case of (1.1), applying a new approach by means of maximal functions and a covering
argument obtained by Krylov and Safonov based on the Calderón-Zygmund decomposition. We
further refer to e.g., [1, 11, 14, 17, 28] for Lq-regularity theory with corresponding Calderón-Zygmund
estimates for elliptic problems.

Difficulty of the study on regularity theory for parabolic problems of p-Laplacian type is
originated from the absence of the scaling invariant property: a constant multiple of a solution of the
parabolic p-Laplace equation ut − div(|Du|p−2Du) = 0 does not become a solution. It could be
overcome by considering intrinsic parabolic cylinders depending on solutions, instead of the usual
parabolic cylinders. This idea was introduced by DiBenedetto and Friedman in [19, 20], see also the
monograph [18], where Hölder regularity for parabolic p-Laplace systems had been established.

For the Lq-regularity theory, on the other hand, the approaches used in [26] and [15] are not
directly applicable to the parabolic p-Laplacian type problems when p , 2, since the intrinsic
geometry prevents the use of maximal functions. Finally, Acerbi and Mingione [2] established local
Calderón-Zygmund estimates when p > 2n

n+2 with a new approach, hence proved the implication (1.4)
in the local sense. We also refer to the higher integrability result of Kinnunen and Lewis in [27],
where the implication (1.4) is obtained when q is sufficiently close to 1. Note that the condition
p > 2n

n+2 is essential since there exists an unbounded weak solution to the parabolic p-Laplace system
in this case, see [18]. It is worth pointing out that the approach in [2] does not employ maximal
functions and the covering argument by Krylov and Safonov but a new covering argument used
in [31] which is based on the Vitali covering lemma. It has led to the development of the Calderón-
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Zygmund theory for parabolic problems. For instance, we refer to [5, 7, 10] for global Calderón
Zygmund theory in bounded domains, [6, 33] for parabolic obstacle problems, [4, 9] for parabolic
problems with variable exponent, [25, 32] for parabolic problems with growth and [35] for parabolic
variational problems.

Research on Calderón-Zygmund estimates in general function spaces such as weighted Lebesgue
spaces, Orlicz spaces, variable exponent Lebesgue spaces, Lorentz spaces have been actively
conducted for the last decade, e.g., [3, 8, 12, 29, 36]. In particular, estimates in weighted Lebesgue
spaces are crucial since these imply estimates in various function spaces by extrapolation argument,
see [24, Section 5]. For parabolic problems with p-growth as in (1.1), Byun and Ryu [13] obtained
global Calderón-Zygmund estimates in the weight Lebesgue spaces Lq

w hence proved the following
implication:

|F|p ∈ Lq
w =⇒ |Du|p ∈ Lq

w, (1.5)

with q > 1 and the weight w satisfying the following Muckenhoupt type condition:

sup
Q∈C

(?
Q

w dz
) (?

Q
w−

1
q−1 dz

)q−1

< ∞, (1.6)

where C is the set of all cylinders of the form Br(x0)× (t1, t2) ⊂ Rn ×R. On the other hand, if p = 2, the
same implication can be obtained for every usual parabolic Aq weight w, that is, w satisfies (2.1) with
C the set of all parabolic cylinders of the form Br(x0) × (t0 − r2, t0 + r2). Therefore, there is a drastic
change between the conditions of weights when p = 2 and p , 2.

In this paper, we introduce a new parabolic Muckenhoupt type condition depending on the intrinsic
geometry concerned with the parabolic p-Laplacian setting, see Definition 2.1. We emphasize that our
condition on weights depends on p, and is weaker than the one in [13] and exactly the same as the
parabolic Aq condition when p = 2. With this condition we prove the implication (1.5) in the local
sense by obtaining corresponding Calderón-Zymund estimates.

Now, we state our main result. Notation and the definition of the p-intrinsic Aq weight are introduced
in next section. We say that u ∈ C0(0,T ; L2(Ω)) ∩ Lp(0,T ; W1,p(Ω)) is a weak solution to (1.1) if

−

∫
ΩT

u ζt dz +

∫
ΩT

a(Du) · Dζ dz =

∫
ΩT

|F|p−2F · Dζ dz

holds for every ζ ∈ C∞0 (ΩT ).

Theorem 1.1. Let p > 2n
n+2 and u ∈ C0(0,T ; L2(Ω))∩Lp(0,T ; W1,p(Ω)) be a weak solution to (1.1) with

F ∈ Lp(ΩT ,R
n). If w is a p-intrinsic Aq weight with q > 1 and |F|p ∈ Lq

w,loc(ΩT ), then |Du|p ∈ Lq
w,loc(ΩT ).

Furthermore, there exists R0 = R0(n, ν, L, p, q, [w]q,Du, F) > 0 such that for every Q2r b ΩT with
2r < R0, (

1
w(Qr)

∫
Qr

|Du|pqw dz
) 1

q

6 c
(?

Q2r

[|Du|p + |F|p + 1] dz
)d

+ c
(

1
w(Q2r)

∫
Q2r

|F|pqw dz
) 1

q
(1.7)
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for some c = c(n, ν, L, p, q, [w]q) > 0, where

d :=

 2p
p(n+2)−2n , if 2n

n+2 < p < 2,
p
2 , if p > 2.

(1.8)

Remark 1.1. In the above theorem, R0 will be chosen as in (3.1). Furthermore, when p = 2 we may
put R0 = ∞.

Remark 1.2. (Possible extensions) In this paper, we deal with only scalar problems without coefficients
for simplicity. We can consider more general problems such as general non-autonomous parabolic
equations with p-growth

ut − div a(x, t,Du) = − div
(
|F|p−2F

)
,

where a(x, t, ξ) satisfies (1.2), (1.3) and a VMO condition (see [10]), and parabolic p-Laplace systems
with coefficients

ut − div
(
(A(x, t)Du : Du)

p−2
2 A(x, t)Du

)
= − div

(
|F|p−2F

)
,

where u : ΩT → R
N and A(x, t) : Rn+1 → Rn2N2

satisfies a VMO condition (see [2]). Moreover, as
in [13], we can also consider global Calderón-Zygmund estimates in Reifenberg flat domains.

The remaining part of the paper is organized as follows. In Section 2, we introduce notation, weights
with their main assumption, and comparison and regularity estimates for corresponding homogeneous
problems. In Section 3, we prove our main theorem, Theorem 1.1.

2. Preliminaries

2.1. Notation

Let z0 = (x0, t0) ∈ Rn×Rwith x0 = (x1
0, . . . , x

n
0), r, α, λ > 0 and 1 < p < ∞. We define an α-parabolic

cylinder by Qr,α(z0) = Br(x0) × (t0 − αr2, t0 + αr2) and an α-parabolic cube by Q̃r,α(z0) = Cr(x0) × (t0 −

αr2, t0 + αr2), where Br(x0) := {x ∈ Rn : |x − x0| < r} and Cr(x0) := {x = (x1, . . . , xn) ∈ Rn : max{|x1 −

x1
0|, . . . , |x

n− xn
0|} < r}. Note that Qr(z0) := Qr,1(z0) and Q̃r(z0) := Q̃r,1(z0) is the usual parabolic cylinder

and cube, respectively, and we denote ∂pQr(z0) := (Br(x0) × {t = t0 − r2}) ∪ (∂Br(x0) × [t0 − r2, t0 + r2))
Furthermore, when α = λ2−p we write Qλ

r (z0) = Qr,λ2−p(z0) = Br(x0) × (t0 − λ
2−pr2, t0 + λ2−pr2) which

is usually called a p-intrinsic parabolic cylinder since we will consider λ related to the weak solution
to (1.1).

For an integrable function f : U → Rm with U ⊂ Rn+1 and 0 < |U | < ∞, we write ( f )U =
>

U
f dz :=

1
|U |

∫
U

f dz, where |U | is the Lebesgue measure of U in Rn+1.

2.2. Weights

We say that w : Rn+1 → R is a weight if it is nonnegative and locally integrable. For a weight w and
a bounded open set U ⊂ Rn+1, we write

w(U) :=
∫

U
w dz,
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and define by weighted Lebesgue space Lq
w(U), 1 6 q < ∞, the set of all measurable function f on U

such that

‖ f ‖Lq
w(U) :=

(∫
U
| f |qw dz

) 1
q

< ∞.

We introduce the assumption of the weight w in Theorem 1.1.

Definition 2.1. Let p, q ∈ (1,∞). We say that weight w : Rn+1 → R is a p-intrinsic parabolic Aq

weight if it satisfies that

[w]q := sup
Q∈Cp

(?
Q

w dz
) (?

Q
w−

1
q−1 dz

)q−1

< ∞, (2.1)

where
Cp :=

{
Qr,α(z0) : z0 ∈ R

n+1, r > 0, α = λ2−p, 1 6 λ 6 max{1, r−
n+2

2 }
}
.

Here, the α-parabolic cylinders Qr,α(z0) can be replaced by the α-parabolic cubes Q̃r,α(z0).

Note that in the definition of the class Cp, the range of α with respect to p is following:
1 6 α 6 max{1, r

(p−2)(n+2)
2 } if p < 2,

α = 1 if p = 2,
min{1, r

(p−2)(n+2)
2 } 6 α 6 1 if p > 2.

Hence, Cp contains all the parabolic cylinders Qr(z0) and, in particular, C2 (i.e., p = 2) consists of only
the parabolic cylinders. Moreover, since r−

n+2
2 6 ρ−

n+2
2 for ρ ∈ (0, r], we have

Qr,α ∈ Cp =⇒ Qρ,α ∈ Cp for every ρ ∈ (0, r].

From this fact, we can obtain the following properties for p-intrinsic parabolic Aq weights, which are
well known properties of the usual Aq weights, see e.g., [23, Section 7.2]. Proofs are exactly the same
as the ones in there with just replacing cubes and the dimension n by the α-parabolic cubes and n + 2,
respectively. Therefore, we omit their proofs.

Proposition 2.1. Let p, q ∈ (1,∞) and w : Rn+1 → R be a p-intrinsic parabolic Aq weight.

(1) For every f ∈ Lq
w(Q) with Q ∈ Cp,(?

Q
| f | dz

)q

6
[w]q

w(Q)

∫
Q
| f |q w dz. (2.2)

(2) There exist γ, c > 0 depending on n, q and [w]q such that(?
Q

w1+γ dz
) 1

1+γ

6 c
?

Q
w dz.

(3) There exist γ1 > 0 and c1, c2 > 1 depending on n, q and [w]q such that for every Q ∈ Cp and
E ⊂ Q

1
c1

(
|E|
|Q|

)q

6
w(E)
w(Q)

6 c2

(
|E|
|Q|

)γ1

. (2.3)
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(4) w is a p-intrinsic parabolic Aq1 weight for every q1 > q. Moreover, w is a p-intrinsic parabolic
Aq′ weight for some q′ ∈ (1, q), where q′ and [w]q′ depend on n, q and [w]q.

Example. On Rn+1, the function w(x, t) = max{|x|,
√
|t|}γ is a p-intrinsic Aq weight for p > 2, q ∈ (1,∞)

when −n < γ < n(q − 1). Indeed, we first write

I[Q] :=
(?

Q
max{|x|,

√
|t|}γ dz

) (?
Q

max{|x|,
√
|t|}−

γ
q−1 dz

)q−1

, Q ∈ Cp.

We divide the α-parabolic cylinders Qr,λ2−p(z0) in Cp for z0 = (x0, t0) ∈ Rn+1 into three cases:

(i) min{|x0|,
√
|t0|} > 3r,

(ii) |x0| < 3r and 3λ
2−p

2 r 6
√
|t0| < 3r,

(iii) |x0| < 3r and
√
|t0| < 3λ

2−p
2 r.

Note that if x ∈ Br(x0) and |x0| > 3r,

2
3
|x0| 6 |x0| − |x − x0| 6 |x| 6 |x − x0| + |x0| 6

4
3
|x0|,

and if t0 − λ
2−pr2 6 t 6 t0 + λ2−pr2 and

√
|t0| > 3λ

2−p
2 r,

√
8

3

√
|t0| 6

√
|t0| − |t − t0| 6

√
|t| 6

√
|t − t0| + |t0| 6

√
10
3

√
|t0|.

In Case (i), if (x, t) ∈ Qr,λ2−p(z0), we have |x| ≈ |x0| and |t| ≈ |t0|, hence

I[Qr,λ2−p(z0)]

6 c

?
Qr,λ2−p (z0)

max{|x0|,
√
|t0|}

γ dz

 ?
Qr,λ2−p (z0)

max{|x0|,
√
|t0|}

−
γ

q−1 dz

q−1

︸                                                                                    ︷︷                                                                                    ︸
=1

= c.

In Case (ii), if (x, t) ∈ Qr,λ2−p(z0), then |x| < 4r and |t| ≈ |t0| < 9r2, and hence

I[Qr,λ2−p(z0)] 6 c

? t0+λ2−pr2

t0−λ2−pr2

?
B4r(0)

max{|x|,
√
|t0|}

γ dxdt


×

? t0+λ2−pr2

t0−λ2−pr2

?
B4r(0)

max{|x|,
√
|t0|}

−
γ

q−1 dx

q−1

6 c

 1
rn

∫
√
|t0 |

0
|t0|

γ
2ρn−1 dρ +

∫ 4r

√
|t0 |
ργ+n−1 dρ


×

 1
rn

∫
√
|t0 |

0
|t0|
−

γ
2(q−1)ρn−1 dρ +

∫ 4r

√
|t0 |
ρ−

γ
q−1 +n−1 dρ

q−1

6
c

rnq

 γ|t0|
γ+n

2

n(n + γ)
+

(4r)γ+n

γ + n

  −γ|t0|
nq−n−γ
2(q−1)

n(nq − n − γ)
+

(q − 1)(4r)
nq−n−γ

q−1

nq − n − γ

q−1

6
c

rnq rγ+nrnq−n−γ = c,
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where we have used −n < γ < n(q − 1).
In Case (iii), if (x, t) ∈ Qr,λ2−p(z0), then |x| 6 4r and |t| 6 10λ2−pr2, and hence, by the similar

computation as in Case (ii), we have

I[Qr,λ2−p(z0)] 6
c

rnq

[
γ

n(n + γ)

? 10λ2−pr2

−10λ2−pr2
|t|

γ+n
2 dt +

(4r)γ+n

γ + n

]
×

[
−γ

n(nq − n − γ)

? 10λ2−pr2

−10λ2−pr2
|t|

n(q−1)−γ
2(q−1) dt +

(q − 1)(4r)
nq−n−γ

q−1

nq − n − γ

]q−1

.

Finally, using the facts that −n < γ < n(q − 1) and λ > 1,

I[Qr,λ2−p(z0)] 6
c

rnq

[
γ(λ2−pr2)

γ+n
2 + rγ+n

][
− γ(λ2−pr2)

n(q−1)−γ
2(q−1) + r

nq−n−γ
q−1

]q−1

6
c

rnq

(
γλ

(2−p)(γ+n)
2 rγ+n + rγ+n

)(
− γλ

(2−p)(nq−n−γ)
2(q−1) r

nq−n−γ
q−1 + r

nq−n−γ
q−1

)q−1

6
c

rnq rγ+nrnq−n−γ = c.

2.3. Comparison and Lipschitz regularity of homogeneous problems

We consider the following homogeneous problem in simple parabolic cylinder Q2 = Q2(0):{
ht − div a(Dh) = 0 in Q2,

h = u on ∂pQ2,
(2.4)

where u ∈ C0(−22, 22; L2(B2)) ∩ Lp(−22, 22; W1,p(B2)) is a weak solution to (1.1) with replacing ΩT by
Q2. For the existence and the uniqueness of the weak solution h ∈ C0(−22, 22; L2(B2)) ∩ Lp(−22, 22;
W1,p(B2)) to the above equation, we refer to e.g., [34, Section III.4]. Then, we obtain the following
regularity estimates for h and comparison estimate between u and h.

Lemma 2.1. Let u be a weak solution to (1.1) in Q2 with?
Q2

|Du|pdz 6 1 and
?

Q2

|F|pdz 6 δp (2.5)

for some δ ∈ (0, 1), and let h be the weak solution to (2.4). Then

‖Dh‖L∞(Q1,Rn) 6 c
(?

Q2

|Dh|p dz + 1
) d

p

6 cLip (2.6)

for some c, cLip > 1 depending on n, ν, L and p, where d > 1 is from (1.8).
Moreover, for any ε ∈ (0, 1), there exists small δ = δ(n, ν, L, p, ε) ∈ (0, 1) such that?

Q2

|Du − Dh|pdz 6 ε. (2.7)

Proof. In view of [18, Section VIII.5], we have the first inequality in (2.6). We note that the Lipschitz
regularity estimates in [18] are obtained for the parabolic p-Laplace systems. However, the same

Mathematics in Engineering Volume 5, Issue 3, 1–20.



8

argument can apply to equations of p-Laplacian type such as (1.1) with the nonlinearity a
satisfying (1.2) and (1.3).

Regarding (2.7) and the second inequality in (2.6), similar comparison estimates can be found in
numerous papers, see e.g., [2, 5, 10]. But, we shall prove them in details for completeness.

We take ζ = u − h as a test function in (1.1) and (2.4) to obtain∫
Q2

ut(u − h) dz +

∫
Q2

a(Du) · (Du − Dh) dz =

∫
Q2

|F|p−2F · (Du − Dh) dz

and ∫
Q2

ht(u − h) dz +

∫
Q2

a(Dh) · (Du − Dh) dz = 0.

We notice that u and h are not differentiable for t. However, by considering their Steklov averages (see
e.g., [18, Section I.3] and [6]), we may assume that they are differentiable for t. Then we have∫

Q2

(u − h)t(u − h) dz +

∫
Q2

(a(Du) − a(Dh)) · (Du − Dh) dz =

∫
Q2

|F|p−2F · (Du − Dh) dz.

Note that ∫
Q2

(u − h)t(u − h) dz =

∫
Q2

1
2
∂

∂t
(u − h)2 dz

=
1
2

∫
Br

(u − h)2
∣∣∣∣∣
t=4

dx −
1
2

∫
Br

(u − h)2
∣∣∣∣∣
t=−4︸        ︷︷        ︸

≡ 0

dx > 0.

We remark that the condition (1.3) implies the monotonicity condition:

(a(ξ) − a(η)) · (ξ − η) > c(p, ν)
(
|ξ|2 + |η|2

) p−2
2
|ξ − η|2

for every ξ, η ∈ Rn \ {0}. Then we see

(|Du|2 + |Dh|2)
p−2

2 |Du − Dh|2 6 c
(
a(Du) − a(Dh)

)
· (Du − Dh).

Therefore, by the above estimates, Young’s inequality and the second inequality in (2.5), we have that
for any κ1 ∈ (0, 1),?

Q2

(|Du|2 + |Dh|2)
p−2

2 |Du − Dh|2 dz 6 cκ1

?
Q2

|Du − Dh|p dz + cκ
− 1

p−1

1

?
Q2

|F|p dz

6 cκ1

?
Q2

|Du − Dh|p dz + cκ
− 1

p−1

1 δp.

If p > 2, since |Du − Dh|p 6 (|Du|2 + |Dh|2)
p−2

2 |Du − Dh|2, by taking sufficiently small
κ1 = κ1(n, ν, L, p) > 0 we have ?

Q2

|Du − Dh|p dz 6 cδp.
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The second inequality in (2.6) follows from the first inequality in (2.5) together with δ 6 1. Moreover,
by choosing small δ depending on ε, we get (2.7).

If 2n
n+2 < p < 2, on the other hand, applying Young’s inequality, we have that for any κ2 ∈ (0, 1),?

Q2

|Du − Dh|p dz =

?
Q2

(|Du|2 + |Dh|2)
p(2−p)

4 (|Du|2 + |Dh|2)
p(p−2)

4 |Du − Dh|p dz

6 cκ2

?
Q2

(|Du|2 + |Dh|2)
p
2 dz

+ cκ
−

2−p
p

2

?
Q2

(|Du|2 + |Dh|2)
p−2

2 |Du − Dh|2 dz

6 cκ2

?
Q2

[
|Du|p + |Dh|p

]
dz

+ cκ
−

2−p
p

2 κ1

?
Q2

|Du − Dh|p dz + cκ
−

2−p
p

2 κ
− 1

p−1

1 δp.

Hence by choosing κ1 sufficiently small depending on κ2 we have?
Q2

|Du − Dh|p dz 6 cκ2

(?
Q2

|Dh|p dz +

?
Q2

|Du|p dz
)

+ c(κ2)δp. (2.8)

We first note that ?
Q2

|Dh|p dz 6 cκ2

?
Q2

|Dh|p dz + c
?

Q2

|Du|p dz + +c(κ2)δp.

Then by choosing κ2 sufficiently small and using the first inequality in (2.5) and δ 6 1 we have the
second inequality in (2.6). Finally, applying the second inequalities of (2.5) and (2.6) to (2.8), we have?

Q2

|Du − Dh|p dz 6 cκ2 + c(κ2)δp.

Finally, choosing κ2 and δ sufficiently small depending on ε we get (2.7). �

3. Proof of Theorem 1.1

Now we start with the proof of the main theorem, Theorem 1.1. As we mentioned in the
introduction, we follow the approach introduced in [2], see also [13] for the case of the weighted
Lebesgue space. We divide the proof into five steps.

Step 1. (Setting and stopping time argument)

Let δ ∈ (0, 1), which will be determined as a small constant depending only on n, ν, L, p, q and [w]q

in below (3.17). Then there exists R0 > 0 satisfying that∫
QR0 (z0)∩ΩT

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz 6

2|B1|

5n+2 for all z0 ∈ ΩT . (3.1)

Mathematics in Engineering Volume 5, Issue 3, 1–20.



10

We fix any Q2r = Q2r(z0) b ΩT with 2r < R0. For simplicity, we write Qρ = Qρ(z0), ρ ∈ (0, 2r]. In
addition, for ρ > 0 and λ > 0, we define the super level set

E(ρ, λ) := {z ∈ Qρ : |Du(z)| > λ},

and

λ
p
d
0 :=

?
Q2r

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p + 1

]
dz > 1, (3.2)

where d > 1 is from (1.8).
Let r 6 r1 < r2 6 2r and consider any λ satisfying the following:

λ > Bλ0 with B :=
(

20r
r2 − r1

) d(n+2)
p

. (3.3)

We notice that Qλ
ρ(z̃) ⊂ Qr2 ⊂ Q2r for any z̃ = (x̃, t̃) ∈ E(r1, λ) and all ρ < ρ0 where

ρ0 :=

λ
p−2

2 (r2 − r1) if 2n
n+2 < p < 2,

r2 − r1 if p > 2.

Then we obtain the following Vitali type covering result for the super-level set E(r1, λ).

Lemma 3.1. For each r 6 r1 < r2 6 2r and λ > Bλ0, there exist zi ∈ E(r1, λ) and ρi ∈
(
0, ρ0

10

)
,

i = 1, 2, 3, · · · , such that the intrinsic parabolic cylinders Qλ
ρi

(zi) are mutually disjoint,

E(r1, λ) \ N ⊂
∞⋃

i=1

Qλ
5ρi

(zi)

for some Lebesgue measure zero set N ,?
Qλ
ρi (zi)

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz = λp (3.4)

and ?
Qλ
ρ(zi)

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz < λp for all ρ ∈ (ρi, r2 − r1]. (3.5)

Proof. For z̃ ∈ E(r1, λ) and ρ ∈
[
ρ0
10 , ρ0

)
, by (3.2) and (3.3), we derive?

Qλ
ρ(z̃)

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz 6

|Q2r|

|Qλ
ρ(z̃)|

?
Q2r

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p + 1

]
dz

=
|Q2r|λ

p
d
0

|Qλ
ρ(z̃)|

6 λp.
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To attain the last bound, we consider two cases p < 2 and p > 2. When p > 2, we see p
d = 2 and so

|Q2r|λ
p
d
0

|Qλ
ρ(z̃)|

=
(2r)n+2λ2

0

λ2−pρn+2 6

(
20r

r2 − r1

)n+2

λp−2λ2
0 6

(
20r

r2 − r1

)n+2

λp(Bλ0)−2λ2
0 = λp.

When p < 2, we see p
d =

(p−2)(n+2)
2 + 2 and ρ > λ

p−2
2 (r2−r1)

10 and so

|Q2r|λ
p
d
0

|Qλ
ρ(z̃)|

=
(2r)n+2λ

p
d
0

λ2−pρn+2

6

 20r

λ
p−2

2 (r2 − r1)

n+2

λp−2λ
p
d
0

=

(
20r

r2 − r1

)n+2 (
λ0

λ

) p
d

λp

6

(
20r

r2 − r1

)n+2 (
λ0

Bλ0

) p
d

λp = λp.

Moreover, from the parabolic Lebesgue differentiation theorem, we deduce that, for almost every
z̃ ∈ E(r1, λ),

lim
ρ→0+

?
Qλ
ρ(z̃)

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz > |Dw(z̃)|p > λp.

Since the map ρ 7→
?

Qλ
ρ(z̃)

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz is continuous, there exists ρz̃ ∈

(
0, r2−r1

10

)
such that

?
Qλ
ρz̃ (z̃)

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz = λp

and ?
Qλ
ρ(z̃)

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz < λp for all ρ ∈ (ρz̃, r2 − r1].

Hence we apply Vitali’s covering lemma for {Qλ
ρz̃

(z̃) : z̃ ∈ E(r1, λ)} to complete the proof. �

From now on, let us set for i = 1, 2, 3, . . . ,

Q(0)
i := Qλ

ρi
(zi) and Q( j)

i := Qλ
5 jρi

(zi), j = 1, 2.

Step 2. (Estimates of super-level sets)

With the result in Lemma 3.1, we first estimates the Lebesgue measure of super-level set

|{z ∈ Q(1)
i : |Du(z)| > Aλ}| with λ > Bλ0,

where A > 1 will be determined below in (3.9), by using estimates in Lemma 2.1. Note from (3.5) that?
Q(2)

i

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz < λp. (3.6)
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We consider the following rescaled functions:

aλ(ξ) :=
a(λξ)
λp−1 for ξ ∈ Rn,

uλ,i(z) :=
u(Zi)
5ρiλ

and Fλ,i(z) :=
F(Zi)
λ

for Zi = zi +
(
5ρix, λ2−p(5ρi)2t

)
with z = (x, t) ∈ Q2. Then it is obvious that aλ(ξ) satisfies (1.2) and (1.3) with ΩT = Q2(0) = Q2. Then
we see that uλ,i is a weak solution to

(uλ,i)t − div aλ(Duλ,i) = −div(|Fλ,i|
p−2Fλ,i) in Q2.

Moreover we have from (3.6) that?
Q2

[
|Duλ,i|p +

∣∣∣∣∣Fλ,i

δ

∣∣∣∣∣p] dz =
1
λp

?
Q(2)

i

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz < 1,

which implies ?
Q2

|Duλ,i|p dz 6 1 and
?

Q2

|Fλ,i|
p dz 6 δp. (3.7)

In addition, let h̃λ,i be a weak solution to

(̃hλ,i)t − div aλ(Dh̃λ,i) = 0 in Q2, and h̃λ,i = uλ,i on ∂pQ2.

Now, we consider sufficiently small constant ε > 0 which will be determined below in (3.17). Then by
applying Lemma 2.1, one can find δ = δ(n, ν, L, p, ε) > 0 satisfying (3.7) such that?

Q1

|Duλ,i − Dh̃λ,i|pdz 6 ε and ‖Dh̃λ,i‖L∞(Q1) 6 cLip.

Remark that both δ and cLip are independent of λ and i. Therefore setting

hλ,i(z) = hλ,i(x, t) := 5ρiλ h̃λ,i
( x − yi

5ρi
,

t − τi

λ2−p(5ρi)2

)
where zi = (yi, τi), we obtain?

Q(1)
i

|Du − Dhλ,i|pdz 6 ελp, and ‖Dhλ,i‖L∞(Q(1)
i ) 6 cLipλ. (3.8)

We set
A := 2cLip > 1. (3.9)

Then since

{z ∈ Q(1)
i : |Du(z)| > Aλ}

⊂

{
z ∈ Q(1)

i : |Du(z) − Dhλ,i(z)| >
Aλ
2

}
∪

{
z ∈ Q(1)

i : |Dhλ,i(z)| >
Aλ
2

}
,
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we have from the estimates in (3.8) that

|{z ∈ Q(1)
i : |Du(z)| > Aλ}| 6 |{z ∈ Q(1)

i : |Du(z) − Dhλ,i(z)| > cLipλ}|

+ |{z ∈ Q(1)
i : |Dhλ,i(z)| > cLipλ}|︸                                ︷︷                                ︸

=0

6
1
λp

∫
Q(1)

i

|Du − Dhλ,i|p dz 6 ε|Q(1)
i |

which implies
|{z ∈ Q(1)

i : |Du(z)| > Aλ}|

|Q(1)
i |

6 ε. (3.10)

Step 3. (weighted estimates of supper-level sets)

In this step, we estimate the weighted measure of super-level set

w(E(r1, Aλ)) with λ > Bλ0.

We first observe from (3.1) and (3.4) that

λp 6
1

|Q(0)
i |

∫
Q2r

[
|Du|p +

∣∣∣∣∣Fδ
∣∣∣∣∣p] dz 6

2|B1|5−n−2

2|B1|ρ
n+2
i λ2−p

,

hence
λ 6 (5ρi)−

n+2
2 .

This and the fact λ > 1 from (3.3) imply Q(1)
i ∈ Cp for every i = 1, 2, 3, . . . . Then we obtain from (2.3)

and (3.10) that
w({z ∈ Q(1)

i : |Du(z)| > Aλ})

w(|Q(1)
i |)

6 c2ε
γ1 . (3.11)

By Proposition 2.1, w is a p-intrinsic Aq′ for some q′ ∈ (1, q). Now we suppose that∫
Q2r

|Du|pq′w dz < ∞. (3.12)

Then by (3.4) and (2.2) with q replaced by q′ we have

λpq′ 6 2q′−1

?
Q(0)

i

|Du|p dz
q′

+ 2q′−1

?
Q(0)

i

∣∣∣∣∣Fδ
∣∣∣∣∣p dz

q′

6
2q′−1[w]q′

w(Q(0)
i )

∫
Q(0)

i

|Du|pq′w dz +

∫
Q(0)

i

∣∣∣∣∣Fδ
∣∣∣∣∣pq′

w dz


6
2q′−1[w]q′

w(Q(0)
i )

( ∫
Q(0)

i ∩{|Du|> λ
c0
}

|Du|pq′w dz

+

∫
Q(0)

i ∩{
|F|
δ >

λ
c0
}

∣∣∣∣∣Fδ
∣∣∣∣∣pq′

w dz + 2c−pq′

0 λpq′w(Q(0)
i )

)
,
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where c0 := (2q′+1[w]q′)
1

pq′ . Note that the right hand side is finite by the assumptions F ∈ Lpq
w,loc(ΩT )

and (3.12). The above estimate means

w(Q(0)
i ) 6

2q′[w]q′

λpq′

∫
Q(0)

i ∩{|Du|> λ
c0
}

|Du|pq′w dz +

∫
Q(0)

i ∩{
|F|
δ >

λ
c0
}

∣∣∣∣∣Fδ
∣∣∣∣∣pq′

w dz

 . (3.13)

Therefore, using Lemma 3.1, (3.11), (2.3) and (3.13), we obtain

w(E(r1, Aλ)) = w({z ∈ Qr1 : |Du(z)| > Aλ})

6
∞∑

i=1

w({z ∈ Q(1)
i : |Du(z)| > Aλ})

6 cεγ1

∞∑
i=1

w(Q(1)
i )

6 cεγ1

∞∑
i=1

 |Q(1)
i |

|Q(0)
i |

q

w(Q(0)
i )

6 c
εγ1

λpq′

∞∑
i=1

∫
Q(0)

i ∩{|Du|> λ
c0
}

|Du|pq′w dz +

∫
Q(0)

i ∩{
|F|
δ >

λ
c0
}

∣∣∣∣∣Fδ
∣∣∣∣∣pq′

w dz


6 c

εγ1

λpq′

∫
Qr2∩{|Du|> λ

c0
}

|Du|pq′w dz +

∫
Qr2∩{

|F|
δ >

λ
c0
}

∣∣∣∣∣Fδ
∣∣∣∣∣pq′

w dz

 .

(3.14)

Step 4. (A priori estimates)

We prove the estimate (1.7) under the additional assumption

∫
Q2r

|Du|pqw dz < ∞, (3.15)

where 2r < R0 and R0 satisfies (3.1). Note that (3.15) implies (3.12).

Fix any r 6 r1 < r2 6 2r. Observe that

∫
Qr1

|Du|pqw dz = pqApq
∫ ∞

0
w (E(r1, Aλ)) λpq−1dλ

= pqApq
∫ Bλ0

0
w (E(r1, Aλ)) λpq−1dλ + pqApq

∫ ∞

Bλ0

w (E(r1, Aλ)) λpq−1dλ︸                            ︷︷                            ︸
=:I

= (ABλ0)pqw(Q2r) + pqApqI,

(3.16)
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where A and B are from (3.9) and (3.3). We estimate the second term I. Applying (3.14), we derive

I 6 cεγ1

∫ ∞

Bλ0

∫
Qr2∩{|Du|> λ

c0
}

|Du|pq′w dz +

∫
Qr2∩{

|F|
δ >

λ
c0
}

∣∣∣∣∣Fδ
∣∣∣∣∣pq′

w dz

 λpq−pq′−1dλ

6 cεγ1

∫ ∞

0

∫
Qr2∩{|Du|> λ

c0
}

(c0|Du|)pq′w dz +

∫
Qr2∩{

|F|
δ >

λ
c0
}

∣∣∣∣∣c0F
δ

∣∣∣∣∣pq′

w dz

 λpq−pq′−1dλ

6 cεγ1

∫
Qr2

|Du|pqw dz +

∫
Qr2

∣∣∣∣∣Fδ
∣∣∣∣∣pq

w dz
 .

In the last inequality we apply the following elementary identity with g = c0|Du| or c0 |F|
δ

, β2 = pq,
β1 = pq′ and U = Qr2:∫

U
gβ2w dz = (β2 − β1)

∫ ∞

0
λβ2−β1−1

∫
{z∈U:g(z)>λ}

gβ1w dz dλ, β2 > β1 > 1.

Inserting the estimate for I into (3.16) and recalling the definitions of A and B and the fact that ε ∈ (0, 1),
we have ∫

Qr1

|Du|pqw dz 6 c∗εγ1

∫
Qr2

|Du|pqw dz +
cw(Q2r)λ

pq
0 rd(n+2)q

(r2 − r1)d(n+2)q + c
∫

Q2r

∣∣∣∣∣Fδ
∣∣∣∣∣pq

w dz,

where the constants c∗, γ1 and c depend on n, p, ν, L, q and [w]q. At this stage, we choose
ε = ε(n, p, ν, L, q, [w]q) such that

c∗εγ1 6
1
2
, (3.17)

hence δ is also determined as a small constant depending on n, p, ν, L, q and [w]q. Therefore we obtain∫
Qr1

|Du|pqw dz 6
1
2

∫
Qr2

|Du|pqw dz +
cλpq

0 w(Q2r)rd(n+2)q

(r2 − r1)d(n+2)q + c
∫

Q2r

|F|pqw dz

for every r 6 r1 < r2 6 2r. Finally, applying Lemma 3.2 below with Ψ(ρ) =
∫

Qρ
|Du|pqw dz with R1 = r

and R2 = 2r and recalling (3.2), we have that∫
Qr

|Du|pqw dz 6 cw(Q2r)λ
pq
0 + c

∫
Q2r

|F|pqw dz

6 cw(Q2r)
(?

Q2r

[|Du|p + |F|p + 1] dz
)dq

+ c
∫

Q2r

|F|pqw dz.

This together with (2.3) implies (1.7).

Lemma 3.2 (Lemma 6.1 in [22]). Let Ψ : [R1,R2] → [0,∞) be a bounded function. Suppose that for
any r1 and r2 with 0 < R1 6 r1 < r2 6 R2,

Ψ(r1) 6 ϑΨ(r2) +
C

(r2 − r1)κ
+ D

where C > 0 and D > 0, κ > 0 and ϑ ∈ [0, 1). Then there exists c = (ϑ, κ) > 0 such that

Ψ(R1) 6 c(ϑ, κ)
[

A
(R2 − R1)κ

+ B
]
.
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Step 5. (Approximation)

Finally, we remove the a priori assumption (3.15) by a standard approximation argument. Suppose
w is a p-intrinsic Aq weight and F ∈ Lpq

w,loc(ΩT ,R
n). Fix any Q2r = Q2r(z0) b ΩT with 2r < R0.

Then there exists QR = QR(z0) such that Q2r b QR b ΩT . Note that by Proposition 2.1 (4), w is a
p-intrinsic Apq weight hence a usual parabolic Apq weight. Therefore, C∞c (Rn+1) is dense in Lpq

w (Rn+1),
see e.g., [30, Lemma 2.1]. Therefore there exist Fk ∈ C∞c (Rn+1,Rn), k = 1, 2, 3, . . . , such that

Fk −→ F in Lpq
w (QR,R

n) as k → ∞,

hence by (2.2),
Fk −→ F in Lp(QR,R

n) as k → ∞. (3.18)

We further assume that ∫
QR

|Fk|
p dz 6 2

∫
QR

|F|p dz. (3.19)

Let uk ∈ C0(t0−R2, t0 +R2; L2(BR(x0))∩Lp(t0−R2, t0 +R2; W1,p(BR(x0)) be the unique weak solution
to {

(uk)t − div a(Duk) = div(|Fk|
p−2Fk) in QR,

uk = u on ∂pQR,
(3.20)

see e.g., [34, Section III.4] for the existence of such uk. In view of [2], we have at least |Duk|
p ∈ Lγloc(QR)

for every γ > 1 since |Fk|
p ∈ Lγ(QR). In particular, by Hölder’s inequality with Proposition 2.1 (2),∫

Q2r

|Duk|
pqw dz 6

(∫
Q2r

|Duk|
pq(1+γ)

γ dz
) γ

1+γ
(∫

Q2r

w1+γ dz
) 1

1+γ

< ∞,

which implies the a priori assumption in (3.15) for uk hence it follows from the previous results in
Step 4 that (

1
w(Qr)

∫
Qr

|Duk|
pqw dz

) 1
q

6 c
(?

Q2r

[|Duk|
p + |Fk|

p + 1] dz
)d

+ c
(

1
w(Q2r)

∫
Q2r

|Fk|
pqw dz

) 1
q

.

(3.21)

Now we take u − uk as a test function in the weak forms of (1.1) and (3.20) to get∫
QR

(u − uk)t(u − uk) dz+
∫

QR

(a(Du) − a(Duk)) · (Du − Duk) dz

=

∫
QR

(|F|p−2F − |Fk|
p−2Fk) · (Du − Duk) dz.

Then, in a similar way as in the proof of Lemma 2.1, we derive∫
QR

(|Duk|
2 + |Du|2)

p−2
2 |Duk − Du|2 dz

6 c
∫

QR

||Fk|
p−2Fk − |F|p−2F||Duk − Du| dz

6 cτ
− 1

p−1

1

∫
QR

||Fk|
p−2Fk − |F|p−2F|

p
p−1 dz + τ1

∫
QR

|Duk|
p + |Du|p dz

(3.22)
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for any τ1 ∈ (0, 1), by applying Young’s inequality.
If p > 2, since |Duk − Du|p 6 (|Duk|

2 + |Du|2)
p−2

2 |Duk − Du|2, we infer∫
QR

|Duk|
p dz 6 c

∫
QR

|F|p + |Du|p dz

by taking sufficiently small τ1 > 0 and (3.19). If 2n
n+2 < p < 2, applying Young’s inequality, we have

that for any τ2 ∈ (0, 1),∫
QR

|Duk − Du|p dz 6 τ2

∫
QR

(|Duk|
2 + |Du|2)

p
2 dz

+ cτ
−

2−p
p

2

∫
QR

(|Duk|
2 + |Du|2)

p−2
2 |Duk − Du|2 dz

6 c
(
τ2 + τ1τ

−
2−p

p

2
) ∫

QR

[
|Duk|

p + |Du|p
]
dz

+ cτ
− 1

p−1

1 τ
−

2−p
p

2

∫
QR

||Fk|
p−2Fk − |F|p−2F|

p
p−1 dz

and then by taking sufficiently small τ1, τ2 > 0 and (3.19),∫
QR

|Duk|
p dz 6 c

∫
QR

|F|p + |Du|p dz.

Eventually, for any p > 2n
n+2 , we obtain that∫

QR

|Duk|
p dz 6 c

∫
QR

|F|p + |Du|p dz < ∞ for all k = 1, 2, 3, . . . . (3.23)

Moreover, from (3.18) we see∫
QR

||Fk|
p−2Fk − |F|p−2F|

p
p−1 dz→ 0 as k → ∞.

Then taking into account (3.22) with (3.23),

lim sup
k→∞

∫
QR

(|Duk|
2 + |Du|2)

p−2
2 |Duk − Du|2 dz 6 cτ1

∫
QR

|F|p + |Du|p dz.

Since τ1 ∈ (0, 1) is arbitrary, we have that∫
QR

(|Duk|
2 + |Du|2)

p−2
2 |Duk − Du|2 dz→ 0 as k → ∞.

Now, if 2n
n+2 < p < 2, the Hölder inequality yields∫

QR

|Duk − Du|p dz =

∫
QR

(|Duk|
2 + |Du|2)

p(2−p)
4 (|Duk|

2 + |Du|2)
p(p−2)

4 |Duk − Du|p dz

6
( ∫

QR

(|Duk|
2 + |Du|2)

p
2 dz

) 2−p
2
( ∫

QR

(|Duk|
2 + |Du|2)

p−2
2 |Duk − Du|2 dz

) p
2
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and therefore by virtue of (3.23), we obtain∫
QR

|Duk − Du|p dz→ 0 as k → ∞.

This also holds in case p > 2 from (3.22), because∫
QR

|Duk − Du|p dz 6
∫

QR

(|Duk|
2 + |Du|2)

p−2
2 |Duk − Du|2 dz.

In turn, we obtain that for every p > 2n
n+2

Duk −→ Du in Lp(QR,R
n) ⊂ Lp(Q2r,R

n) as k → ∞.

In particular, we also have that Duk −→ Du a.e. in Lp(Q2r,R
n) as k → ∞, up to subsequence.

Finally by passing k → ∞ from (3.21) and applying the above convergence results for Fk and Duk

with Fatou’s lemma, we obtain(
1

w(Qr)

∫
Qr

|Du|pqw dz
) 1

q

6 lim inf
k→∞

(
1

w(Qr)

∫
Qr

|Duk|
pqw dz

) 1
q

6 lim inf
k→∞

[
c
(?

Q2r

[|Duk|
p + |Fk|

p + 1] dz
)d

+ c
(

1
w(Q2r)

∫
Q2r

|Fk|
pqw dz

) 1
q ]

= c
(?

Q2r

[|Du|p + |F|p + 1] dz
)d

+ c
(

1
w(Q2r)

∫
Q2r

|F|pqw dz
) 1

q

.

Therefore, we complete the proof. �
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