Research article Special Issues

A maximum-principle approach to the minimisation of a nonlocal dislocation energy

  • Received: 05 September 2019 Accepted: 13 December 2019 Published: 05 February 2020
  • In this paper we use an approach based on the maximum principle to characterise the minimiser of a family of nonlocal and anisotropic energies Iα defined on probability measures in R2. The purely nonlocal term in Iα is of convolution type, and is isotropic for α = 0 and anisotropic otherwise. The cases α = 0 and α = 1 are special: The first corresponds to Coulombic interactions, and the latter to dislocations. The minimisers of Iα have been characterised by the same authors in an earlier paper, by exploiting some formal similarities with the Euler equation, and by means of complex-analysis techniques. We here propose a different approach, that we believe can be applied to more general energies.

    Citation: Joan Mateu, Maria Giovanna Mora, Luca Rondi, Lucia Scardia, Joan Verdera. A maximum-principle approach to the minimisation of a nonlocal dislocation energy[J]. Mathematics in Engineering, 2020, 2(2): 253-263. doi: 10.3934/mine.2020012

    Related Papers:

    [1] Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini . Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 2016, 11(1): 29-47. doi: 10.3934/nhm.2016.11.29
    [2] Shimao Fan, Michael Herty, Benjamin Seibold . Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks and Heterogeneous Media, 2014, 9(2): 239-268. doi: 10.3934/nhm.2014.9.239
    [3] Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales . Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8(3): 745-772. doi: 10.3934/nhm.2013.8.745
    [4] Michael Burger, Simone Göttlich, Thomas Jung . Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14(2): 265-288. doi: 10.3934/nhm.2019011
    [5] Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565
    [6] Bertrand Haut, Georges Bastin . A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227
    [7] Michael Herty, S. Moutari, M. Rascle . Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275
    [8] Michael Herty, Lorenzo Pareschi, Mohammed Seaïd . Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481
    [9] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [10] Oliver Kolb, Simone Göttlich, Paola Goatin . Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12(4): 663-681. doi: 10.3934/nhm.2017027
  • In this paper we use an approach based on the maximum principle to characterise the minimiser of a family of nonlocal and anisotropic energies Iα defined on probability measures in R2. The purely nonlocal term in Iα is of convolution type, and is isotropic for α = 0 and anisotropic otherwise. The cases α = 0 and α = 1 are special: The first corresponds to Coulombic interactions, and the latter to dislocations. The minimisers of Iα have been characterised by the same authors in an earlier paper, by exploiting some formal similarities with the Euler equation, and by means of complex-analysis techniques. We here propose a different approach, that we believe can be applied to more general energies.




    [1] Balagué D, Carrillo JA, Laurent T, et al. (2013) Dimensionality of local minimizers of the interaction energy. Arch Ration Mech Anal 209: 1055-1088. doi: 10.1007/s00205-013-0644-6
    [2] Carrillo JA, Castorina D, Volzone B (2015) Ground states for diffusion dominated free energies with logarithmic interaction. SIAM J Math Anal 47: 1-25. doi: 10.1137/140951588
    [3] Carrillo JA, Delgadino MG, Mellet A (2016) Regularity of local minimizers of the interaction energy via obstacle problems. Commun Math Phys 343: 747-781. doi: 10.1007/s00220-016-2598-7
    [4] Carrillo JA, Delgadino MG, Patacchini FS (2019) Existence of ground states for aggregation-diffusion equations. Anal Appl 17: 393-423. doi: 10.1142/S0219530518500276
    [5] Carrillo JA, Hittmeir S, Volzone B, et al. (2019) Nonlinear aggregation-diffusion equations: Radial symmetry and long time asymptotics. Invent Math 218: 889-977.
    [6] Carrillo JA, Huang Y (2017) Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinet Relat Mod 10: 171-192. doi: 10.3934/krm.2017007
    [7] Carrillo JA, Mateu J, Mora MG, et al. (2019) The ellipse law: Kirchhoff meets dislocations. Commun Math Phys DOI: https://doi.org/10.1007/s00220-019-03368-w.
    [8] Carrillo JA, Mateu J, Mora MG, et al. (2019) The equilibrium measure for an anisotropic nonlocal energy. arXiv:1907.00417.
    [9] Duffin RJ (1961) The maximum principle and biharmonic functions. J Am Math Soc 3: 399-405.
    [10] Fetecau RC, Huang Y, Kolokolnikov T (2011) Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24: 2681-2716. doi: 10.1088/0951-7715/24/10/002
    [11] Frostman O (1935) Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel Lunds Univ Mat Sem 3: 1-11.
    [12] Kirchhoff G, (1874) Vorlesungen über Mathematische Physik, Leipzig: Teubner.
    [13] Lamb H, (1993) Hydrodynamics, Cambridge University Press.
    [14] Mora MG, Rondi L, Scardia L (2019) The equilibrium measure for a nonlocal dislocation energy. Commun Pure Appl Math 72: 136-158. doi: 10.1002/cpa.21762
    [15] Saff EB, Totik V (1997) Logarithmic Potentials with External Fields, Berlin: Springer-Verlag.
    [16] Scagliotti A (2018) Nonlocal interaction problems in dislocation theory. Tesi di Laurea Magistrale in Matematica, Università di Pavia.
    [17] Simione R, Slepčev D, Topaloglu I (2015) Existence of ground states of nonlocal-interaction energies. J Stat Phys 159: 972-986. doi: 10.1007/s10955-015-1215-z
  • This article has been cited by:

    1. Mohamed Benyahia, Massimiliano D. Rosini, A macroscopic traffic model with phase transitions and local point constraints on the flow, 2017, 12, 1556-181X, 297, 10.3934/nhm.2017013
    2. Mohamed Benyahia, Massimiliano D. Rosini, Lack of BV bounds for approximate solutions to a two‐phase transition model arising from vehicular traffic, 2020, 43, 0170-4214, 10381, 10.1002/mma.6304
    3. Mohamed Benyahia, Massimiliano D. Rosini, Entropy solutions for a traffic model with phase transitions, 2016, 141, 0362546X, 167, 10.1016/j.na.2016.04.011
    4. Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini, Giovanni Russo, 2018, Chapter 37, 978-3-319-91544-9, 487, 10.1007/978-3-319-91545-6_37
    5. Shuai Fan, Yu Zhang, Riemann problem and wave interactions for an inhomogeneous Aw-Rascle traffic flow model with extended Chaplygin gas, 2023, 152, 00207462, 104384, 10.1016/j.ijnonlinmec.2023.104384
    6. Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano D. Rosini, Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux, 2018, 116, 00217824, 309, 10.1016/j.matpur.2018.01.005
    7. Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini, Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic, 2017, 14, 1551-0018, 127, 10.3934/mbe.2017009
    8. M. Di Francesco, S. Fagioli, M. D. Rosini, G. Russo, 2017, Chapter 9, 978-3-319-49994-9, 333, 10.1007/978-3-319-49996-3_9
    9. Mohamed Benyahia, Carlotta Donadello, Nikodem Dymski, Massimiliano D. Rosini, An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic, 2018, 25, 1021-9722, 10.1007/s00030-018-0539-1
    10. Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano Daniele Rosini, 2018, Chapter 5, 978-3-030-05128-0, 103, 10.1007/978-3-030-05129-7_5
    11. E. Dal Santo, M. D. Rosini, N. Dymski, M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, 2017, 40, 01704214, 6623, 10.1002/mma.4478
    12. Stefano Villa, Paola Goatin, Christophe Chalons, Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, 2017, 22, 1553-524X, 3921, 10.3934/dcdsb.2017202
    13. Muhammed Ali Mehmood, Hard congestion limit of the dissipative Aw-Rascle system with a polynomial offset function, 2024, 533, 0022247X, 128028, 10.1016/j.jmaa.2023.128028
    14. Wenjie Zhu, Rongyong Zhao, Hao Zhang, Cuiling Li, Ping Jia, Yunlong Ma, Dong Wang, Miyuan Li, Panic-Pressure Conversion Model From Microscopic Pedestrian Movement to Macroscopic Crowd Flow, 2023, 18, 1555-1415, 10.1115/1.4063505
    15. Cecile Appert-Rolland, Alethea B.T. Barbaro, 2025, 25430009, 10.1016/bs.atpp.2025.04.004
    16. Nicola De Nitti, Denis Serre, Enrique Zuazua, Pointwise constraints for scalar conservation laws with positive wave velocity, 2025, 76, 0044-2275, 10.1007/s00033-025-02459-0
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4292) PDF downloads(372) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog