Citation: Joan Mateu, Maria Giovanna Mora, Luca Rondi, Lucia Scardia, Joan Verdera. A maximum-principle approach to the minimisation of a nonlocal dislocation energy[J]. Mathematics in Engineering, 2020, 2(2): 253-263. doi: 10.3934/mine.2020012
[1] | Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini . Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 2016, 11(1): 29-47. doi: 10.3934/nhm.2016.11.29 |
[2] | Shimao Fan, Michael Herty, Benjamin Seibold . Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks and Heterogeneous Media, 2014, 9(2): 239-268. doi: 10.3934/nhm.2014.9.239 |
[3] | Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales . Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8(3): 745-772. doi: 10.3934/nhm.2013.8.745 |
[4] | Michael Burger, Simone Göttlich, Thomas Jung . Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14(2): 265-288. doi: 10.3934/nhm.2019011 |
[5] | Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565 |
[6] | Bertrand Haut, Georges Bastin . A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227 |
[7] | Michael Herty, S. Moutari, M. Rascle . Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275 |
[8] | Michael Herty, Lorenzo Pareschi, Mohammed Seaïd . Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481 |
[9] | Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351 |
[10] | Oliver Kolb, Simone Göttlich, Paola Goatin . Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12(4): 663-681. doi: 10.3934/nhm.2017027 |
[1] |
Balagué D, Carrillo JA, Laurent T, et al. (2013) Dimensionality of local minimizers of the interaction energy. Arch Ration Mech Anal 209: 1055-1088. doi: 10.1007/s00205-013-0644-6
![]() |
[2] |
Carrillo JA, Castorina D, Volzone B (2015) Ground states for diffusion dominated free energies with logarithmic interaction. SIAM J Math Anal 47: 1-25. doi: 10.1137/140951588
![]() |
[3] |
Carrillo JA, Delgadino MG, Mellet A (2016) Regularity of local minimizers of the interaction energy via obstacle problems. Commun Math Phys 343: 747-781. doi: 10.1007/s00220-016-2598-7
![]() |
[4] |
Carrillo JA, Delgadino MG, Patacchini FS (2019) Existence of ground states for aggregation-diffusion equations. Anal Appl 17: 393-423. doi: 10.1142/S0219530518500276
![]() |
[5] | Carrillo JA, Hittmeir S, Volzone B, et al. (2019) Nonlinear aggregation-diffusion equations: Radial symmetry and long time asymptotics. Invent Math 218: 889-977. |
[6] |
Carrillo JA, Huang Y (2017) Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinet Relat Mod 10: 171-192. doi: 10.3934/krm.2017007
![]() |
[7] | Carrillo JA, Mateu J, Mora MG, et al. (2019) The ellipse law: Kirchhoff meets dislocations. Commun Math Phys DOI: https://doi.org/10.1007/s00220-019-03368-w. |
[8] | Carrillo JA, Mateu J, Mora MG, et al. (2019) The equilibrium measure for an anisotropic nonlocal energy. arXiv:1907.00417. |
[9] | Duffin RJ (1961) The maximum principle and biharmonic functions. J Am Math Soc 3: 399-405. |
[10] |
Fetecau RC, Huang Y, Kolokolnikov T (2011) Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24: 2681-2716. doi: 10.1088/0951-7715/24/10/002
![]() |
[11] | Frostman O (1935) Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel Lunds Univ Mat Sem 3: 1-11. |
[12] | Kirchhoff G, (1874) Vorlesungen über Mathematische Physik, Leipzig: Teubner. |
[13] | Lamb H, (1993) Hydrodynamics, Cambridge University Press. |
[14] |
Mora MG, Rondi L, Scardia L (2019) The equilibrium measure for a nonlocal dislocation energy. Commun Pure Appl Math 72: 136-158. doi: 10.1002/cpa.21762
![]() |
[15] | Saff EB, Totik V (1997) Logarithmic Potentials with External Fields, Berlin: Springer-Verlag. |
[16] | Scagliotti A (2018) Nonlocal interaction problems in dislocation theory. Tesi di Laurea Magistrale in Matematica, Università di Pavia. |
[17] |
Simione R, Slepčev D, Topaloglu I (2015) Existence of ground states of nonlocal-interaction energies. J Stat Phys 159: 972-986. doi: 10.1007/s10955-015-1215-z
![]() |
1. | Mohamed Benyahia, Massimiliano D. Rosini, A macroscopic traffic model with phase transitions and local point constraints on the flow, 2017, 12, 1556-181X, 297, 10.3934/nhm.2017013 | |
2. | Mohamed Benyahia, Massimiliano D. Rosini, Lack of BV bounds for approximate solutions to a two‐phase transition model arising from vehicular traffic, 2020, 43, 0170-4214, 10381, 10.1002/mma.6304 | |
3. | Mohamed Benyahia, Massimiliano D. Rosini, Entropy solutions for a traffic model with phase transitions, 2016, 141, 0362546X, 167, 10.1016/j.na.2016.04.011 | |
4. | Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini, Giovanni Russo, 2018, Chapter 37, 978-3-319-91544-9, 487, 10.1007/978-3-319-91545-6_37 | |
5. | Shuai Fan, Yu Zhang, Riemann problem and wave interactions for an inhomogeneous Aw-Rascle traffic flow model with extended Chaplygin gas, 2023, 152, 00207462, 104384, 10.1016/j.ijnonlinmec.2023.104384 | |
6. | Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano D. Rosini, Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux, 2018, 116, 00217824, 309, 10.1016/j.matpur.2018.01.005 | |
7. | Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini, Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic, 2017, 14, 1551-0018, 127, 10.3934/mbe.2017009 | |
8. | M. Di Francesco, S. Fagioli, M. D. Rosini, G. Russo, 2017, Chapter 9, 978-3-319-49994-9, 333, 10.1007/978-3-319-49996-3_9 | |
9. | Mohamed Benyahia, Carlotta Donadello, Nikodem Dymski, Massimiliano D. Rosini, An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic, 2018, 25, 1021-9722, 10.1007/s00030-018-0539-1 | |
10. | Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano Daniele Rosini, 2018, Chapter 5, 978-3-030-05128-0, 103, 10.1007/978-3-030-05129-7_5 | |
11. | E. Dal Santo, M. D. Rosini, N. Dymski, M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, 2017, 40, 01704214, 6623, 10.1002/mma.4478 | |
12. | Stefano Villa, Paola Goatin, Christophe Chalons, Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, 2017, 22, 1553-524X, 3921, 10.3934/dcdsb.2017202 | |
13. | Muhammed Ali Mehmood, Hard congestion limit of the dissipative Aw-Rascle system with a polynomial offset function, 2024, 533, 0022247X, 128028, 10.1016/j.jmaa.2023.128028 | |
14. | Wenjie Zhu, Rongyong Zhao, Hao Zhang, Cuiling Li, Ping Jia, Yunlong Ma, Dong Wang, Miyuan Li, Panic-Pressure Conversion Model From Microscopic Pedestrian Movement to Macroscopic Crowd Flow, 2023, 18, 1555-1415, 10.1115/1.4063505 | |
15. | Cecile Appert-Rolland, Alethea B.T. Barbaro, 2025, 25430009, 10.1016/bs.atpp.2025.04.004 | |
16. | Nicola De Nitti, Denis Serre, Enrique Zuazua, Pointwise constraints for scalar conservation laws with positive wave velocity, 2025, 76, 0044-2275, 10.1007/s00033-025-02459-0 |