
Citation: Daniele Agostinelli, Roberto Cerbino, Juan C. Del Alamo, Antonio DeSimone, Stephanie Höhn, Cristian Micheletti, Giovanni Noselli, Eran Sharon, Julia Yeomans. MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales[J]. Mathematics in Engineering, 2020, 2(2): 230-252. doi: 10.3934/mine.2020011
[1] | Muhammad Asim Khan, Norma Alias, Umair Ali . A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697 |
[2] | Mubashara Wali, Sadia Arshad, Sayed M Eldin, Imran Siddique . Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations. AIMS Mathematics, 2023, 8(7): 15129-15147. doi: 10.3934/math.2023772 |
[3] | Junying Cao, Zhongqing Wang, Ziqiang Wang . Stability and convergence analysis for a uniform temporal high accuracy of the time-fractional diffusion equation with 1D and 2D spatial compact finite difference method. AIMS Mathematics, 2024, 9(6): 14697-14730. doi: 10.3934/math.2024715 |
[4] | Ajmal Ali, Tayyaba Akram, Azhar Iqbal, Poom Kumam, Thana Sutthibutpong . A numerical approach for 2D time-fractional diffusion damped wave model. AIMS Mathematics, 2023, 8(4): 8249-8273. doi: 10.3934/math.2023416 |
[5] | Zeshan Qiu . Fourth-order high-precision algorithms for one-sided tempered fractional diffusion equations. AIMS Mathematics, 2024, 9(10): 27102-27121. doi: 10.3934/math.20241318 |
[6] | Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112 |
[7] | Yanjie Zhou, Xianxiang Leng, Yuejie Li, Qiuxiang Deng, Zhendong Luo . A novel two-grid Crank-Nicolson mixed finite element method for nonlinear fourth-order sin-Gordon equation. AIMS Mathematics, 2024, 9(11): 31470-31494. doi: 10.3934/math.20241515 |
[8] | Krunal B. Kachhia, Jyotindra C. Prajapati . Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator. AIMS Mathematics, 2020, 5(4): 2888-2898. doi: 10.3934/math.2020186 |
[9] | Abdul-Majeed Ayebire, Saroj Sahani, Priyanka, Shelly Arora . Numerical study of soliton behavior of generalised Kuramoto-Sivashinsky type equations with Hermite splines. AIMS Mathematics, 2025, 10(2): 2098-2130. doi: 10.3934/math.2025099 |
[10] | Lei Ren . High order compact difference scheme for solving the time multi-term fractional sub-diffusion equations. AIMS Mathematics, 2022, 7(5): 9172-9188. doi: 10.3934/math.2022508 |
Fractional partial differential equations (FPDEs) have attracted considerable attention in various fields. Though research shows that many phenomena can be described by FPDEs such as physics [1], engineering [2], and other sciences [3,4]. However, finding the exact solutions of FPDEs by using current analytical methods such as Laplace transform, Green's function, and Fourier-Laplace transform (see [5,6] for examples) are often difficult to achieve[7]. Thus, proposing numerical methods to find approximate solutions of these equations has practical importance. Due to this fact, in recent years a large number of numerical methods have been proposed for solving FPDEs, for instances see [8,9,10,11,12] and the references therein.
The time fractional diffusion-wave equation is obtained from the classical diffusion-wave equation by replacing the second order time derivative term with a fractional derivative of order α, 1<α<2, and it can describe the intermediate process between parabolic diffusion equations and hyperbolic wave equations. Many of the universal mechanical, acoustic and electromagnetic responses can be accurately described by the time fractional diffusion-wave equation, see [13,14] for examples. The fourth order space derivative arises in the wave propagation in beams and modeling formation of grooves on a flat surface, thus considerable attention has been devoted to fourth order fractional diffusion-wave equation and its applications, see [15]. In this paper, the following nonlinear time fractional diffusion-wave equation with fourth order derivative in space and homogeneous initial boundary conditions will be considered
∂2u(x,t)∂t2+C0Dαtu(x,t)+Kc∂4u(x,t)∂x4=∂2u(x,t)∂x2+g(u)+f(x,t), | (1.1) |
where 1<α<2, f(x,t) is a known function, g(u) is a nonlinear function of u with g(0)=0 and satisfies the Lipschitz condition, and C0Dαtu(x,t) denotes the temporal Caputo derivative with order α defined as
C0Dαtu(x,t)=1Γ(2−α)∫t0(t−s)1−α∂2u(x,s)∂s2ds. |
Recently, there exist many works on numerical methods for time fractional diffusion-wave equations (TFDWEs), see [16,17,18,19,20,21,22] and the references therein. Chen et al. [17] proposed the method of separation of variables with constructing the implicit difference scheme for fractional diffusion-wave equation with damping. Heydari et al. [19] have proposed Legendre wavelets (LWs) for solving TFDWEs where fractional operational matrix of integration for LWs was derived. Bhrawy et al. [16] have proposed Jacobi tau spectral procedure combined with the Jacobi operational matrix for solving TFDWEs. Ebadian et al. [18] have proposed triangular function (TFs) methods for solving a class of nonlinear TFDWEs where fractional operational matrix of integration for the TFs was derived. Mohammed et al. [21] have proposed shifted Legengre collocation scheme and sinc function for solving TFDWEs with variable coefficients. Zhou et al. [22] have applied Chebyshev wavelets collocation for solving a class of TFDWEs where fractional integral formula of a single Chebyshev wavelets in the Riemann-Liouville sense was derived. Khalid et al. [20] have proposed the third degree modified extended B-spline functions for solving TFDWEs with reaction and damping terms. Some other numerical methods were presented for solving time fractional diffusion equations, one can see [23,24,25,26] and the references therein.
To the best of our knowledge, there is no existing numerical method which can be used to solve Eq (1.1) neither directly nor by transferring Eq (1.1) into an equivalent integro-differential equation. Thus, the aim of this study is devoted to constructing the high order numerical schemes to solve Eq (1.1), and carrying out the corresponding numerical analysis for the proposed schemes. Herein, we firstly transform Eq (1.1) into the equivalent partial integro-differential equations by using the integral operator. Secondly, the Crank-Nicolson technique is applied to deal with the temporal direction. Then, we use the midpoint formula to discretize the first order derivative, use the weighted and shifted Gr¨unwald difference formula to discretize the Caputo derivative, and apply the second order convolution quadrature formula to approximate the first order integral. The classical central difference formula, the fourth order Stephenson scheme, and the fourth order compact difference formula are applied for spatial approximations.
The rest of this paper is organized as follows. In Section 2, some preparations and useful lemmas are provided and discussed. In Section 3, the finite difference scheme is constructed and analyzed. In Section 4, the compact finite difference scheme is deduced, and the convergence and the unconditional stability are strictly proved. Numerical experiments are provided to support the theoretical results in Section 5. Finally, some concluding remarks are given.
Lemma 2.1. (see Lemma 6.2 in [27]) Eq (1.1) is equivalent to the following partial integro-differential equation,
∂u(x,t)∂t+C0Dα−1tu(x,t)+Kc⋅0Jt∂4u(x,t)∂x4=0Jt∂2u(x,t)∂x2+0Jtg(u)+F(x,t), | (2.1) |
where F(x,t)=0Jtf(x,t) and 0Jt is first order integral operator, i.e., 0Jtu(⋅,t)=∫t0u(⋅,s)ds.
To discretize Eq (2.1), we introduce the temporal step size τ=T/N with a positive integer N, tn=nτ, and tn+1/2=(n+1/2)τ. Similarly, define the spatial step size h=L/M with a positive integer M, and denote xi=ih. Then, define a grid function space Θh={vni| 0≤n≤N,0≤i≤M,vn0=vnM=0}, and introduce the following notations, inner product, and norm, i.e., for un,vn∈Θh, we define
Δxuni=12h(uni+1−uni−1),δ2xuni=1h2(uni−1−2uni+uni+1),⟨un,vn⟩=hM−1∑i=1univni,||un||2=⟨un,un⟩, |
Huni={(1+h212δ2x)uni=112(uni−1+10uni+uni+1), 1≤i≤M−1,uni, i=0 or M. |
Lemma 2.2. (see Lemmas 2.2 and 2.3 in [28]) If u(⋅,t)∈C2([0,T]) and 0<γ<1, then it holds
0Jtu(⋅,tn+1/2)=12[0Jtu(⋅,tn+1)+0Jtu(⋅,tn)]+O(τ2). |
Furthermore, if u(⋅,t)∈C3([0,T]), then we have
ut(⋅,tn+1/2)=u(⋅,tn+1)−u(⋅,tn)τ+O(τ2)=δtu(⋅,tn+1/2)+O(τ2) |
and
C0Dγtu(⋅,tn+1/2)=12(C0Dγtu(⋅,tn+1)+C0Dγtu(⋅,tn))+O(τ2). |
Lemma 2.3. (see Theorem 4.1 in [29]) Let {ωk} be the weights from generating function (3/2−2z+z2/2)−1, i.e., ωk=1−3−(k+1). If u(⋅,t)∈C2([0,T]) and u(⋅,0)=ut(⋅,0)=0, then we have
0Jtn+1u(⋅,t)−τn+1∑k=0ωn+1−ku(⋅,tk)=O(τ2). |
Lemma 2.4. (see Theorem 2.4 in [30]) For u(⋅,t)∈L1(R), RL−∞Dγ+2tu(⋅,t) and its Fourier transform belong to L1(R), if we use the weighted and shifted Gr¨unwald difference operator to approximate the Riemann-Liouville derivative, then it holds
RL0Dγ0u(⋅,tk+1)=τ−γk+1∑j=0σ(γ)ju(⋅,tk+1−j)+O(τ2),0<γ<1, |
where
σ(γ)0=2+γ2c(γ)0,σ(γ)j=2+γ2c(γ)j−γ2c(γ)j−1,j≥1, |
and c(γ)j=(−1)j(γj) for j≥0.
Lemma 2.5. (see Lemma 1.2 in [31]) Suppose u(x,⋅)∈C4([xi−1,xi+1]), let ζ(s)=u(4)(xi+sh,⋅)+u(4)(xi−sh,⋅), then
δ2xu(xi,⋅)=u(xi−1,⋅)−2u(xi,⋅)+u(xi+1,⋅)h2=uxx(xi,⋅)+h224∫10ζ(s)(1−s)3ds. |
Lemma 2.6. (see Page 6 of [32]) Assume that u(x,⋅)∈C8([0,L]) with u(0,⋅)=u(L,⋅)=ux(0,⋅)=ux(L,⋅)=0, and define the operator δ4x by
δ4xuni=12h2(Δxvni−δ2xuni), |
where vni is a compact approximation of ux(xi,tn), i.e.,
16vni−1+23vni+16vni+1=Δxuni. |
Then, we have the following approximation
δ4xuni=∂4u(xi,tn)∂x4+O(h4). |
Furthermore, let un=(un1,un2,⋯,unM−1)T, then the matrix representation of the operator δ4x is
Sun=6h4(3KP−1K+2D)un, |
where
K=(01−101⋱⋱⋱−101−10)(M−1)×(M−1), P=(41141⋱⋱⋱14114)(M−1)×(M−1), |
and D=6I−P with the identity matrix I.
Lemma 2.7. (see Lemma 3.3 in [32]) The matrix S defined in Lemma 2.6 is symmetric positive definite.
It follows from Lemma 2.7, there is an invertible matrix B such that, S=BTB. Then for wn,vn∈Θh, we have
⟨Swn,vn⟩=⟨BTBwn,vn⟩=⟨Bwn,Bvn⟩. | (2.2) |
The following lemma is required when we use compact operator H to increase the spatial accuracy.
Lemma 2.8. (see Lemma 1.2 in [31]) Suppose u(x,⋅)∈C6([xi−1,xi+1]), 1≤i≤M−1, and ζ(s)=5(1−s)3−3(1−s)5. Then it holds that
112[uxx(xi−1,⋅)+10uxx(xi,⋅)+uxx(xi+1,⋅)]−1h2[u(xi−1,⋅)−2u(xi,⋅)+u(xi+1,⋅)]=h4360∫10[u(6)(xi−sh,⋅)+u(6)(xi+sh,⋅)]ζ(s)ds. |
In order to linearize the nonlinear function g(u), we can easily get the following lemma by Taylor expansions.
Lemma 2.9. Assume that u(⋅,t)∈C1([0,T])∩C2((0,T]), then the following approximation holds
u(⋅,tn+1)=2u(⋅,tn)−u(⋅,tn−1)+O(τ2). |
In this subsection, a finite difference scheme with the accuracy O(τ2+h2) for nonlinear Problem (2.1) is constructed.
Assume that u(x,t)∈C8,3x,t([0,L]×[0,T]), and u(⋅,0)=ut(⋅,0)=0. Consider Eq (2.1) at the point u(xi,tn+1/2), we have
∂u(xi,t)∂t|t=tn+1/2=−C0Dα−1tn+1/2u(xi,t)−Kc⋅0Jtn+1/2∂4u(xi,t)∂x4+0Jtn+1/2∂2u(xi,t)∂x2+0Jtn+1/2g(u(xi,t))+F(xi,tn+1/2). |
The Crank-Nicolson technique and Lemma 2.2 for the above equation yield
u(xi,tn+1)−u(xi,tn)τ=−12[C0Dα−1tn+1u(xi,t)+C0Dα−1tnu(xi,t)]−Kc2[0Jtn+1∂4u(xi,t)∂x4+0Jtn∂4u(xi,t)∂x4]+12[0Jtn+1∂2u(xi,t)∂x2+0Jtn∂2u(xi,t)∂x2]+12[0Jtn+1g(xi,t)+0Jtng(xi,t)]+F(xi,tn+1/2)+O(τ2). | (3.1) |
Let u(xi,tn)=uni. Since the initial values are 0, thus the Riemann−liouville derivative is equivalent to Caputo derivative. We apply Lemmas 2.3 and 2.4 to discretize the first order integral operator and Caputo derivative in Eq (3.1) respectively, apply Lemma 2.6 to discretize ∂4u(xi,t)∂x4, and Lemma 2.5 to discretize ∂2u(xi,t)∂x2, then we get
un+1i−uniτ=−τ1−α2[n+1∑k=0σ(α−1)kun+1−ki+n∑k=0σ(α−1)kun−ki]−Kcτ2[n+1∑k=0ωkδ4xun+1−ki+n∑k=0ωkδ4xun−ki]+τ2[n+1∑k=0ωkδ2xun+1−ki+n∑k=0ωkδ2xun−ki]+τ2[n+1∑k=0ωkg(un+1−ki)+n∑k=0ωkg(un−ki)]+Fn+12i+(R1)n+1i, | (3.2) |
where (R1)n+1i=O(τ2+h2+h4)=O(τ2+h2).
It is clear that Eq (3.2) is a nonlinear system with respect to the unknown un+1i. To linearly solve Eq (3.2), we use u1i=u0i+τ(ut)0i+O(τ2) and Lemma 2.9 to linearize Eq (3.2) for n=0 and 1≤n≤N−1, respectively, and then multiply Eq (3.2) by τ, i.e.,
u1i−u0i=−τ2−α2[1∑k=0σ(α−1)ku1−ki+σ(α−1)0u0i]−Kcτ22[1∑k=0ωkδ4xu1−ki+ω0δ4xu0i]+τ22[1∑k=0ωkδ2xu1−ki+ω0δ2xu0i]+τ22[ω0g(u0i+τ(ut)0i)+ω1g(u0i)+ω0g(u0i)]+τFn+12i+O(τ3+τh2) | (3.3) |
and
un+1i−uni=−τ2−α2[n+1∑k=0σ(α−1)kun+1−ki+n∑k=0σ(α−1)kun−ki]−Kcτ22[n+1∑k=0ωkδ4xun+1−ki+n∑k=0ωkδ4xun−ki]+τ22[n+1∑k=0ωkδ2xun+1−ki+n∑k=0ωkδ2xun−ki]+τ22[n+1∑k=1ωkg(un+1−ki)+n∑k=0ωkg(un−ki)]+τ2ω02g(2uni−un−1i)+τFn+12i+O(τ3+τh2), for 1≤n≤N−1. | (3.4) |
Noting (ut)0i=0, neglecting the truncation error term O(τ3+τh2) in both above equations, and replacing the uni with its numerical solution Uni, we deduce the following finite difference scheme for Problem (2.1)
U1i−U0i=−τ2−α2[1∑k=0σ(α−1)kU1−ki+σ(α−1)0U0i]−Kcτ22[1∑k=0ωkδ4xU1−ki+ω0δ4xU0i]+τ22[1∑k=0ωkδ2xU1−ki+ω0δ2xU0i]+τ22[ω0g(U0i)+ω1g(U0i)+ω0g(U0i)]+τFn+12i | (3.5) |
and
Un+1i−Uni=−τ2−α2[n+1∑k=0σ(α−1)kUn+1−ki+n∑k=0σ(α−1)kUn−ki]−Kcτ22[n+1∑k=0ωkδ4xUn+1−ki+n∑k=0ωkδ4xUn−ki]+τ22[n+1∑k=0ωkδ2xUn+1−ki+n∑k=0ωkδ2xUn−ki]+τ22[n+1∑k=1ωkg(Un+1−ki)+n∑k=0ωkg(Un−ki)]+τ2ω02g(2Uni−Un−1i)+τFn+12i, for 1≤n≤N−1. | (3.6) |
Remark 3.1. In case of g(u)=f(x,t)=0, the only solution of the finite difference Scheme (3.5) and (3.6) is zero solution.
In this subsection, the convergence and stability of the finite difference Scheme (3.5) and (3.6) will be discussed. For convenience, let C be a generic constant, whose value is independent of discretization parameters and may be different from one line to another. To begin, we provide two lemmas that will be used in our convergence and stability analysis.
Lemma 3.2. (see Proposition 5.2 in [33] and Lemma 3.2 in [34]) Let {ωk} and {σ(α−1)k} be the weights defined in Lemmas 2.3 and 2.4, respectively. Then for any positive integer K and real vector (V1,V2,⋯,VK)T, the inequalities
K−1∑n=0(n∑j=0ωjVn+1−j)Vn+1≥0 |
and
K−1∑n=0(n∑j=0σ(α−1)jVn+1−j)Vn+1≥0 |
hold.
Lemma 3.3. (see Lemma 4.2.2 in [35]) For any grid function wn,vn∈Θh, it holds
⟨δ2xwn,vn⟩=−⟨δxwn,δxvn⟩. |
Theorem 3.4. Assume u(x,t)∈C8,3x,t([0,L]×[0,T]) and u(⋅,0)=ut(⋅,0)=0, and let u(x,t) be the exact solution of Eq (2.1) and {Uni|0≤i≤M,1≤n≤N} be the numerical solution for Scheme (3.7) and (3.8). Then, for 1≤n≤N, it holds that
‖un−Un‖≤C(τ2+h2). |
Proof. Let us start by analyzing the error of (3.6). Subtracting Eq (3.6) from Eq (3.4), we have
en+1i−eni=−τ2−α2[n+1∑k=0σ(α−1)ken+1−ki+n∑k=0σ(α−1)ken−ki]−Kcτ22[n+1∑k=0ωkδ4xen+1−ki+n∑k=0ωkδ4xen−ki]+τ22[n+1∑k=0ωkδ2xen+1−ki+n∑k=0ωkδ2xen−ki]+τ22n∑k=0(ωk+1+ωk)[g(un−ki)−g(Un−ki)]+τ2ω02[g(2uni−un−1i)−g(2Uni−Un−1i)]+O(τ3+τh2), |
where eni=uni−Uni. Since e0i=0, the above equation becomes
en+1i−eni=−τ2−α2[n∑k=0σ(α−1)k(en+1−ki+en−ki)]−Kcτ22[n∑k=0ωkδ4x(en+1−ki+en−ki)]+τ22[n∑k=0ωkδ2x(en+1−ki+en−ki)]+τ22n∑k=0(ωk+1+ωk)[g(un−ki)−g(Un−ki)]+τ2ω02[g(2uni−un−1i)−g(2Uni−Un−1i)]+O(τ3+τh2). |
Multiplying the both sides of the above equation by h(en+1i+eni) and summing over 1≤i≤M−1. Then using Lemmas 3.3, 2.6, and Eq (2.2), we have
‖en+1‖2−‖en‖2=−τ2−α2n∑k=0σ(α−1)k⟨en+1−k+en−k,en+1+en⟩−Kcτ22n∑k=0ωk⟨B(en+1−k+en−k),B(en+1+en)⟩−τ22n∑k=0ωk⟨δx(en+1−k+en−k),δx(en+1+en)⟩+τ22n∑k=0(ωk+1+ωk)⟨g(un−k)−g(Un−k),en+1+en⟩+τ2ω02⟨g(2un−un−1)−g(2Un−Un−1),en+1+en⟩+⟨O(τ3+τh2),en+1+en⟩. |
Summing the above equation over n from 1 to J−1 leads to
‖eJ‖2−‖e1‖2=−τ2−α2J−1∑n=1n∑k=0σ(α−1)k⟨en+1−k+en−k,en+1+en⟩−Kcτ22J−1∑n=1n∑k=0ωk⟨B(en+1−k+en−k),B(en+1+en)⟩−τ22J−1∑n=1n∑k=0ωk⟨δx(en+1−k+en−k),δx(en+1+en)⟩+τ22J−1∑n=1n∑k=0(ωk+1+ωk)⟨g(un−k)−g(Un−k),en+1+en⟩+τ2ω02J−1∑n=1⟨g(2un−un−1)−g(2Un−Un−1),en+1+en⟩+J−1∑n=1⟨O(τ3+τh2),en+1+en⟩. | (3.7) |
Now, we turn to analyze ‖e1‖. Subtracting Eq (3.5) from Eq (3.3), and by the similar deductions as above, we can derive that
‖e1‖2=−τ2−α2σ(α−1)0⟨e1+e0,e1+e0⟩−Kcτ22ω0⟨B(e1+e0),B(e1+e0)⟩−τ22ω0⟨δx(e1+e0),δx(e1+e0)⟩+τ2ω0⟨g(u0)−g(U0),e1+e0⟩+τ2ω12⟨g(u0)−g(U0),e1+e0⟩+⟨O(τ3+τh2),e1+e0⟩. | (3.8) |
Sum up Eq (3.7) and Eq (3.8), and apply Lemma 3.2, it deduces that
‖eJ‖2≤τ22J−1∑n=1n∑k=0(ωk+1+ωk)⟨g(un−k)−g(Un−k),en+1+en⟩+τ2ω02J−1∑n=1⟨g(2un−un−1)−g(2Un−Un−1),en+1+en⟩+τ2ω0⟨g(u0)−g(U0),e1+e0⟩+τ2ω12⟨g(u0)−g(U0),e1+e0⟩+CJ−1∑n=1⟨τ3+τh2,en+1+en⟩. | (3.9) |
Using the Lipschitz condition of g and exchanging the order of two summations in the above inequality, we have
‖eJ‖2≤Cτ2J−1∑k=0J−1∑n=k(ωn+1−k+ωn−k)‖ek‖‖en+1+en‖+Cτ2J−1∑n=1‖en‖‖en+1+en‖+CJ−1∑n=1(τ3+τh2)‖en+1+en‖. | (3.10) |
Assuming ‖eP‖=max0≤p≤N‖ep‖. Since τN∑n=k(ωn+1−k+ωn−k) is bounded (see [29]), then the above inequality yields
‖eP‖≤CτP−1∑k=0‖ek‖+C(τ2+h2). | (3.11) |
Once the discrete Gronwall inequality has been applied to Inequality (3.11), we arrive at the estimate
‖eP‖≤C(τ2+h2), |
thus the proof is completed.
Theorem 3.5. Let {Uni|0≤i≤M,0≤n≤N} be the numerical solution of Scheme (3.5) and (3.6) for Problem (2.1). Then for 1≤K≤N, it holds
‖UK‖≤C(max0≤n≤N‖g(Un)‖+max0≤n≤N−1‖Fn+12‖). | (3.12) |
Proof. Multiplying (3.6) by h(Un+1i+Uni) and summing up for i from 1 to M−1, we have
‖Un+1‖2−‖Un‖2=−τ2−α2n∑k=0σ(α−1)k⟨Un+1−k+Un−k,Un+1+Un⟩−Kcτ22n∑k=0ωk⟨δ4x(Un+1−k+Un−k),Un+1+Un⟩+τ22n∑k=0ωk⟨δ2x(Un+1−k+Un−k),Un+1+Un⟩+τ22n∑k=0(ωk+1+ωk)⟨g(Un−k),Un+1+Un⟩+τ2ω02⟨g(2Un−Un−1),Un+1+Un⟩−Kcτ22ωn+1⟨δ4xU0,Un+1+Un⟩−τ2−α2σ(α−1)n+1⟨U0,Un+1+Un⟩+τ22ωn+1⟨δ2xU0,Un+1+Un⟩+τ⟨Fn+12,Un+1+Un⟩. |
Note that Eq (1.1) is equipped with the homogeneous initial conditions, thus it deduces
‖Un+1‖2−‖Un‖2=−τ2−α2n∑k=0σ(α−1)k⟨Un+1−k+Un−k,Un+1+Un⟩−Kcτ22n∑k=0ωk⟨δ4x(Un+1−k+Un−k),Un+1+Un⟩+τ22n∑k=0ωk⟨δ2x(Un+1−k+Un−k),Un+1+Un⟩+τ22n∑k=0(ωk+1+ωk)⟨g(Un−k),Un+1+Un⟩+τ2ω02⟨g(2Un−Un−1),Un+1+Un⟩+τ⟨Fn+12,Un+1+Un⟩. |
Applying the similar deductions to get Eq (3.9), it achieves that
‖UJ‖2≤CτJ−1∑k=0‖g(Uk)‖(‖Un+1‖+‖Un‖)+τ22ω0J−1∑n=1‖g(2Un−Un−1)‖(‖Un+1‖+‖Un‖)+CτJ−1∑n=1‖Fn+12‖(‖Un+1‖+‖Un‖). | (3.13) |
One can estimate ‖g(2Un−Un−1)‖ as the following
‖g(2Un−Un−1)‖=‖g(2Un−Un−1)−g(Un)+g(Un)‖,≤‖g(2Un−Un−1)−g(Un)‖+‖g(Un)‖,≤C(‖Un‖+‖Un−1‖)+‖g(Un)‖. | (3.14) |
Substituting Eq (3.14) into Eq (3.13) and using Young's inequality, then we have
‖UJ‖2≤CτJ−1∑n=0‖Un‖2+Cmax0≤n≤N‖g(Un)‖2+Cmax0≤n≤N−1‖Fn+12‖2. | (3.15) |
By applying the Gronwall inequality to (3.15), it becomes
‖UJ‖2≤C(max0≤n≤N‖g(Un)‖2+max0≤n≤N−1‖Fn+12‖2), |
and this completes the proof.
In this subsection, a compact finite difference scheme with accuracy O(τ2+h4) for nonlinear Problem (2.1) is presented.
Now let us act on both sides of Eq (3.1) with the compact operator H. Then, by using Lemma 2.8, we obtain
H[u(xi,tn+1)−u(xi,tn)τ]=−12H[C0Dα−1tn+1u(xi,t)+C0Dα−1tnu(xi,t)]−Kc2H[0Jtn+1∂4u(xi,t)∂x4+0Jtn∂4u(xi,t)∂x4]+12[0Jtn+1δ2xu(xi,t)+0Jtnδ2xu(xi,t)]+12H[0Jtn+1g(xi,t)+0Jtng(xi,t)]+HFn+12i+O(τ2+h4). | (4.1) |
Apply the similar deductions to get Eqs (3.3) and (3.4), it achieves
H[u1i−u0i]=−τ2−α2H[1∑k=0σ(α−1)ku1−ki+σ(α−1)0u0i]−Kcτ22H[1∑k=0ωkδ4xu1−ki+ω0δ4xu0i]+τ22[1∑k=0ωkδ2xu1−ki+ω0δ2xu0i]+τ22H[ω0g(u0i)+ω1g(u0i)+ω0g(u0i)]+τHFn+12i+O(τ3+τh4) | (4.2) |
and
H[un+1i−uni]=−τ2−α2H[n+1∑k=0σ(α−1)kun+1−ki+n∑k=0σ(α−1)kun−ki]−Kcτ22H[n+1∑k=0ωkδ4xun+1−ki+n∑k=0ωkδ4xun−ki]+τ22[n+1∑k=0ωkδ2xun+1−ki+n∑k=0ωkδ2xun−ki]+τ22H[n+1∑k=1ωkg(un+1−ki)+n∑k=0ωkg(un−ki)]+τ2ω02Hg(2uni−un−1i)+τHFn+12i+O(τ3+τh4), for 1≤n≤N−1. | (4.3) |
Neglecting the truncation error term O(τ3+τh4) in both above equations, and replacing the uni with its numerical solution Uni, we deduce the following compact finite difference scheme for Problem (2.1)
H[U1i−U0i]=−τ2−α2H[1∑k=0σ(α−1)kU1−ki+σ(α−1)0U0i]−Kcτ22H[1∑k=0ωkδ4xU1−ki+ω0δ4xU0i]+τ22[1∑k=0ωkδ2xU1−ki+ω0δ2xU0i]+τ22H[ω0g(U0i)+ω1g(U0i)+ω0g(U0i)]+τHFn+12i | (4.4) |
and
H[Un+1i−Uni]=−τ2−α2H[n+1∑k=0σ(α−1)kUn+1−ki+n∑k=0σ(α−1)kUn−ki]−Kcτ22H[n+1∑k=0ωkδ4xUn+1−ki+n∑k=0ωkδ4xUn−ki]+τ22[n+1∑k=0ωkδ2xUn+1−ki+n∑k=0ωkδ2xUn−ki]+τ22H[n+1∑k=1ωkg(Un+1−ki)+n∑k=0ωkg(Un−ki)]+τ2ω02Hg(2Uni−Un−1i)+τHFn+12i, for 1≤n≤N−1. | (4.5) |
Remark 4.1. In case of g(u)=f(x,t)=0, the only solution of the compact finite difference Scheme (4.4) and (4.5) is zero solution.
In this subsection, we turn to analyze the convergence and stability of the compact finite difference Scheme (4.4) and (4.5). Firstly, we provide the following lemmas, which will be used in our convergence and stability analysis.
Lemma 4.2. (see Lemma 5 in [36]) Let {σ(α−1)k} be the weighted coefficients defined in Lemma 2.4, then for any positive integer n and wn∈Θh, it holds that
n∑m=0m∑k=0σ(α−1)k⟨Hwm−k,wm⟩≥0. |
Lemma 4.3. (see Lemma 4.2 in [37]) For any grid function wn∈Θh, we have
23‖wn‖2≤⟨Hwn,wn⟩≤‖wn‖2. |
Theorem 4.4. Assume u(x,t)∈C8,3x,t([0,L]×[0,T]) and u(⋅,0)=ut(⋅,0)=0, and let u(x,t) be the exact solution of Eq (2.1) and {Uni|0≤i≤M,1≤n≤N} be the numerical solution for Scheme (4.4) and (4.5). Then, for 1≤n≤N, it holds that
‖un−Un‖≤C(τ2+h4). |
Proof. Let us start by analyzing the error of (4.5). Subtracting Eq (3.5) from Eq (4.3), we have
H[en+1i−eni]=−τ2−α2H[n+1∑k=0σ(α−1)ken+1−ki+n∑k=0σ(α−1)ken−ki]−Kcτ22H[n+1∑k=0ωkδ4xen+1−ki+n∑k=0ωkδ4xen−ki]+τ22[n+1∑k=0ωkδ2xen+1−ki+n∑k=0ωkδ2xen−ki]+τ22Hn∑k=0(ωk+1+ωk)[g(un−ki)−g(Un−ki)]+τ2ω02H[g(2uni−un−1i)−g(2Uni−Un−1i)]+O(τ3+τh4), |
where eni=uni−Uni. Since e0i=0, the above equation becomes
H[en+1i−eni]=−τ2−α2[n∑k=0σ(α−1)kH(en+1−ki+en−ki)]−Kcτ22[n∑k=0ωkHδ4x(en+1−ki+en−ki)]+τ22[n∑k=0ωkδ2x(en+1−ki+en−ki)]+τ22n∑k=0(ωk+1+ωk)H[g(un−ki)−g(Un−ki)]+τ2ω02H[g(2uni−un−1i)−g(2Uni−Un−1i)]+O(τ3+τh4). |
Multiplying the both sides of the above equation by h(en+1i+eni) and summing over 1≤i≤M−1. Then using Lemmas 2.6, 3.2, 4.2, and Eq (2.2), we have
‖en+1‖2−‖en‖2≤−τ2−α2n∑k=0σ(α−1)k⟨H(en+1−k+en−k),en+1+en⟩−Kcτ22n∑k=0ωk⟨HB(en+1−k+en−k),B(en+1+en)⟩−τ22n∑k=0ωk⟨δx(en+1−k+en−k),δx(en+1+en)⟩+τ22n∑k=0(ωk+1+ωk)⟨H(g(un−k)−g(Un−k)),en+1+en⟩+τ2ω02⟨H(g(2un−un−1)−g(2Un−Un−1)),en+1+en⟩+C⟨τ3+τh4,en+1+en⟩. |
Summing the above inequality over n from 1 to J−1 leads to
‖eJ‖2−‖e1‖2≤−τ2−α2J−1∑n=1n∑k=0σ(α−1)k⟨H(en+1−k+en−k),en+1+en⟩−Kcτ22J−1∑n=1n∑k=0ωk⟨HB(en+1−k+en−k),B(en+1+en)⟩−τ22J−1∑n=1n∑k=0ωk⟨δx(en+1−k+en−k),δx(en+1+en)⟩+τ22J−1∑n=1n∑k=0(ωk+1+ωk)⟨H(g(un−k)−g(Un−k)),en+1+en⟩+τ2ω02J−1∑n=1⟨H(g(2un−un−1)−g(2Un−Un−1)),en+1+en⟩+CJ−1∑n=1⟨τ3+τh4,en+1+en⟩. | (4.6) |
Now, we turn to analyze ‖e1‖. From Eqs (4.4), (4.2), and by the similar deductions as above, we can derive that
‖e1‖2≤−τ2−α2σ(α−1)0⟨H(e1+e0),e1+e0⟩−Kcτ22ω0⟨HB(e1+e0),B(e1+e0)⟩−τ22ω0⟨δx(e1+e0),δx(e1+e0)⟩+τ2ω12⟨H(g(u0)−g(U0)),e1+e0⟩+τ2ω0⟨H(g(u0)−g(U0)),e1+e0⟩+C⟨τ3+τh4,e1+e0⟩. | (4.7) |
Sum up Eqs (4.6) and (4.7), and apply Lemmas 3.2 and 4.2, it deduces that
‖eJ‖2≤τ22J−1∑n=1n∑k=0(ωk+1+ωk)⟨H(g(un−k)−g(Un−k)),en+1+en⟩+τ2ω02J−1∑n=1⟨H(g(2un−un−1)−g(2Un−Un−1)),en+1+en⟩+τ2ω12⟨H(g(u0)−g(U0)),en+1+en⟩+τ2ω0⟨H(g(u0)−g(U0)),en+1+en⟩+CJ−1∑n=1⟨τ3+τh4,en+1+en⟩. |
According to the same technique as for dealing with (3.9), we can achieve
‖eP‖≤C(τ2+h4), |
thus completes the proof.
Theorem 4.5. Let {Uni|0≤i≤M,0≤n≤N} be the numerical solution of Scheme (4.4) and (4.5) for Problem (2.1). Then for 1≤K≤N, it holds
‖UK‖≤C(max0≤n≤N‖g(Un)‖+max0≤n≤N−1‖Fn+12‖). |
In this section, we carry out numerical experiments to verify the theoretical results and demonstrate the performance of our new schemes. All of the computations are performed by using a MATLAB on a computer with Intel(R) Core(TM) i5-8265U CPU 1.60GHz 1.80GHz and 8G RAM.
Example 5.1. Consider the following problem with exact solution u(x,t)=t2+αsin2(πx)
∂2u(x,t)∂t2+C0Dαtu(x,t)+∂4u(x,t)∂x4=∂2u(x,t)∂x2+f(x,t)+g(u), |
where T=1, 0<x<1, 0<t≤T, and 1<α<2. The nonlinear function g(u)=u2 and f(x,t) is
f(x,t)=(2+α)(1+α)tαsin2(πx)+Γ(3+α)2t2sin2(πx)−8π4t2+αcos(2πx)−2π2t2+αcos(2πx)−t2(2+α)sin4(πx). |
It is clear that u(x,t) satisfies all smoothness conditions required by Theorems 3.4 and 4.4, so that both of our schemes can be applied in this example. In Figures 1 and 2, we compare the exact solution with the numerical solution of finite difference Scheme (3.5) and (3.6) and compact finite difference Scheme (4.4) and (4.5). We easily see that the exact solution can be well approximated by the numerical solutions of our schemes.
First, we in Tables 1, 2 and 3 show that the errors, time and space convergence order ≈2 and CPU times (second) of the finite difference Scheme (3.5) and (3.6) for α=1.25,1.5,1.75. The average CPU time, expressed as the mean time (mean) for α=1.25,1.5,1.75. Specifically, Table 1 tests the case that when τ=h. In Table 2, we set h=0.001, a value small enough such that the spatial discretization errors are negligible as compared with the temporal errors, and choose different time step size. In Table 3, we set τ=0.001, a value small enough such that the temporal discretization errors are negligible as compared with the spatial errors, and choose different space step size. From all scenarios above, we conclude that the temporal and spatial convergence order is 2. It verifies Theorem 3.4.
τ=h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 6.6627×10−2 | 7.8031×10−2 | 8.9815×10−2 | 0.0896 | |||
1/10 | 1.8412×10−2 | 1.8555 | 2.1839×10−2 | 1.8371 | 2.5456×10−2 | 1.8190 | 0.0973 |
1/20 | 4.8132×10−3 | 1.9355 | 5.7273×10−3 | 1.9310 | 6.6917×10−3 | 1.9275 | 0.0994 |
1/40 | 1.2137×10−3 | 1.9876 | 1.4621×10−3 | 1.9698 | 1.7210×10−3 | 1.9591 | 0.1359 |
τ | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 7.0844×10−2 | 8.2130×10−2 | 9.3783×10−2 | 0.5852 | |||
1/10 | 1.9012×10−2 | 1.8977 | 2.2432×10−2 | 1.8724 | 2.6040×10−2 | 1.8486 | 1.0501 |
1/20 | 4.9405×10−3 | 1.9442 | 5.8537×10−3 | 1.9381 | 6.8169×10−3 | 1.9335 | 2.4071 |
1/40 | 1.2435×10−3 | 1.9903 | 1.4917×10−3 | 1.9724 | 1.7504×10−3 | 1.9615 | 6.7799 |
h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 4.7813×10−3 | 4.7510×10−3 | 4.7111×10−3 | 2.2382 | |||
1/10 | 6.1943×10−4 | 2.9484 | 6.1518×10−4 | 2.9492 | 6.0963×10−4 | 2.9501 | 2.2952 |
1/20 | 1.2773×10−4 | 2.2778 | 1.2654×10−4 | 2.2815 | 1.2503×10−4 | 2.2857 | 2.5410 |
1/40 | 2.8950×10−5 | 2.1415 | 2.8363×10−5 | 2.1575 | 2.7665×10−5 | 2.1761 | 3.4293 |
On the other hand, we check the numerical convergence orders and CPU times (second) in time and space of the compact finite difference Scheme (4.4) and (4.5) for α=1.25,1.5,1.75 in Tables 4 and 5, respectively. The average CPU time, expressed as the mean time (mean) for α=1.25,1.5,1.75. As expected, the numerical results reflect that the compact finite difference has a convergence order of 2 and 4 in time and space, respectively, which verifies our Theorem 4.4.
τ | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 7.0844×10−2 | 8.2129×10−2 | 9.3783×10−2 | 0.9501 | |||
1/10 | 1.9012×10−2 | 1.8978 | 2.2432×10−2 | 1.8724 | 2.6040×10−2 | 1.8486 | 2.3622 |
1/20 | 4.9407×10−3 | 1.9441 | 5.8538×10−3 | 1.9381 | 6.8169×10−3 | 1.9335 | 7.6793 |
1/40 | 1.2436×10−3 | 1.9901 | 1.4919×10−3 | 1.9723 | 1.7506×10−3 | 1.9612 | 28.9326 |
h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 3.8110×10−3 | 3.7871×10−3 | 3.7555×10−3 | 12.5566 | |||
1/10 | 2.5308×10−4 | 3.9125 | 2.5141×10−4 | 3.9130 | 2.4922×10−4 | 3.9135 | 14.0490 |
1/20 | 2.2087×10−5 | 3.5183 | 2.1851×10−5 | 3.5243 | 2.1557×10−5 | 3.5312 | 18.1726 |
1/40 | 1.8261×10−6 | 3.5964 | 1.7163×10−6 | 3.6703 | 1.5904×10−6 | 3.7607 | 43.9104 |
We in this paper constructed two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with the space fourth-order derivative. The equations were transformed into equivalent partial integro-differential equations. Then, the Crank-Nicolson technique, the midpoint formula, the weighted and shifted Gr¨unwald difference formula, the second order convolution formula, the classical central difference formula, the fourth-order approximation and the compact difference technique were applied to construct the two proposed schemes. The finite difference Scheme (3.5) and (3.6) has the accuracy O(τ2+h2). The compact finite difference Scheme (4.4) and (4.5) has the accuracy O(τ2+h4). It should be mentioned that our schemes require the exact solution u(⋅,t)∈C3([0,T]), while it requires u(⋅,t)∈C4([0,T]) if one discretizes Eq (1.1) directly to get the second order accuracy in time. Theoretically, the convergence and the unconditional stability of the two proposed schemes are proved and discussed. All of the numerical experiments can support our theoretical results.
This research is supported by Natural Science Foundation of Jiangsu Province of China (Grant No. BK20201427), and by National Natural Science Foundation of China (Grant Nos. 11701502 and 11871065).
The authors declare that they have no competing interests.
[1] |
Agostinelli D, Alouges F, DeSimone A (2018) Peristaltic waves as optimal gaits in metameric bio-inspired robots. Front in Robot AI 5: 99. doi: 10.3389/frobt.2018.00099
![]() |
[2] | Agostinelli D, Lucantonio A, Noselli G, et al. (2019) Nutations in growing plant shoots: The role of elastic deformations due to gravity loading. J Mech Phys Solids 2019: 103702. DOI: 10.1016/j.jmps.2019.103702. |
[3] |
Agostiniani V, DeSimone A, Lucantonio A, et al. (2018) Foldable structures made of hydrogel bilayers. Mathematics in Engineering 1: 204-223. doi: 10.3934/Mine.2018.1.204
![]() |
[4] |
Aguilar J, Zhang T, Qian F, et al. (2016) A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems. Rep Prog Phys 79: 110001. doi: 10.1088/0034-4885/79/11/110001
![]() |
[5] | Alberts B, Watson J, Lewis J, et al. (2014) Molecular Biology of the Cell, New York: Garland Science. |
[6] |
Alouges F, DeSimone A, Giraldi L, et al. (2019) Energy-optimal strokes for multi-link microswimmers: Purcell's loops and Taylor's waves reconciled. New J Phys 21: 043050. doi: 10.1088/1367-2630/ab1142
![]() |
[7] |
Alouges F, DeSimone A, Lefebvre A (2008) Optimal strokes for low reynolds number swimmers: An example. J Nonlinear Sci 18: 277-302. doi: 10.1007/s00332-007-9013-7
![]() |
[8] |
Armon S, Efrati E, Kupferman R, et al. (2011) Geometry and mechanics in the opening of chiral seed pods. Science 333: 1726-1730. doi: 10.1126/science.1203874
![]() |
[9] |
Armon S, Yanai O, Ori N, et al. (2014) Quantitative phenotyping of leaf margins in three dimensions, demonstrated on knotted and tcp trangenics in arabidopsis. J Exp Bot 65: 2071-2077. doi: 10.1093/jxb/eru062
![]() |
[10] |
Arsuaga J, Vazquez M, McGuirk P, et al. (2005) Dna knots reveal a chiral organization of dna in phage capsids. P Natl Acad Sci 102: 9165-9169. doi: 10.1073/pnas.0409323102
![]() |
[11] | Aydin YO, Rieser JM, Hubicki CM, et al. (2019) 6-physics approaches to natural locomotion: Every robot is an experiment, In: Walsh S.M. and Stran M.S., Robotic Systems and Autonomous Platforms, Woodhead Publishing in Materials, 109-127. |
[12] |
Bertinetti L, Fischer FD, Fratzl P (2013) Physicochemical basis for water-actuated movement and stress generation in nonliving plant tissues. Phys Rev Lett 111: 238001. doi: 10.1103/PhysRevLett.111.238001
![]() |
[13] |
Buskermolen AB, Suresh H, Shishvan SS, et al. (2019) Entropic forces drive cellular contact guidance. Biophys J 116: 1994-2008. doi: 10.1016/j.bpj.2019.04.003
![]() |
[14] |
Bustamante C (2017) Molecular machines one molecule at a time. Protein Sci 26: 1245-1248. doi: 10.1002/pro.3205
![]() |
[15] |
Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Accounts Chem Res 34: 412-420. doi: 10.1021/ar0001719
![]() |
[16] |
Cavagna A, Giardina I, Grigera TS (2018) The physics of flocking: Correlation as a compass from experiments to theory. Phys Rep 728: 1-62. doi: 10.1016/j.physrep.2017.11.003
![]() |
[17] | Charras G, Paluch E (2008) Blebs lead the way: How to migrate without lamellipodia. Nat Rev Mol cell bio 9: 730-736. |
[18] |
Chauvet H, Moulia B, Legué V, et al. (2019) Revealing the hierarchy of processes and time-scales that control the tropic response of shoots to gravi-stimulations. J Exp Bot 70: 1955-1967. doi: 10.1093/jxb/erz027
![]() |
[19] |
Cheung KJ, Gabrielson E, Werb Z, et al. (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155: 1639-1651. doi: 10.1016/j.cell.2013.11.029
![]() |
[20] |
Cicconofri G, DeSimone A (2015) A study of snake-like locomotion through the analysis of a flexible robot model. P Roy Soc A Math Phys Eng Sci 471: 20150054. doi: 10.1098/rspa.2015.0054
![]() |
[21] |
Cicconofri G, DeSimone A (2019) Modelling biological and bio-inspired swimming at microscopic scales: Recent results and perspectives. Comput Fluids 179: 799-805. doi: 10.1016/j.compfluid.2018.07.020
![]() |
[22] |
Danson CM, Pocha SM, Bloomberg GB, et al. (2007) Phosphorylation of wave2 by map kinases regulates persistent cell migration and polarity. J Cell Sci 120: 4144-4154. doi: 10.1242/jcs.013714
![]() |
[23] | Darwin C (1880) The Power of Movement in Plants, London: John Murray. |
[24] |
Del Alamo JC, Meili R, Alonso-Latorre B, et al. (2007) Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. P Natl Acad Sci 104: 13343-13348. doi: 10.1073/pnas.0705815104
![]() |
[25] |
Doostmohammadi A, Ignes-Mullol J, Yeomans JM et al. (2018) Active nematics. Nat Commun 9: 3246. doi: 10.1038/s41467-018-05666-8
![]() |
[26] |
Efrati E, Sharon E, Kupferman R (2009) Buckling transition and boundary layer in non-euclidean plates. Phys Rev E 80: 016602. doi: 10.1103/PhysRevE.80.016602
![]() |
[27] |
Efrati E, Sharon E, Kupferman R (2009) Elastic theory of unconstrained non-euclidean plates. J Mech Phys Solids 57: 762-775. doi: 10.1016/j.jmps.2008.12.004
![]() |
[28] |
Frangipane G, Dell'Arciprete D, Petracchini S, et al. (2018) Dynamic density shaping of photokinetic E. coli. Elife 7: e36608. doi: 10.7554/eLife.36608
![]() |
[29] |
Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462: 442-448. doi: 10.1038/nature08603
![]() |
[30] |
Geyer VF, Sartori P, Friedrich BM, et al. (2016) Independent control of the static and dynamic components of the chlamydomonas flagellar beat. Curr Biol 26: 1098-1103. doi: 10.1016/j.cub.2016.02.053
![]() |
[31] |
Giavazzi F, Malinverno C, Corallino S, et al. (2017) Giant fluctuations and structural effects in a flocking epithelium. J Phys D Appl Phys 50: 384003. doi: 10.1088/1361-6463/aa7f8e
![]() |
[32] |
Giavazzi F, Paoluzzi M, Macchi M, et al. (2018) Flocking transitions in confluent tissues. Soft matter 14: 3471-3477. doi: 10.1039/C8SM00126J
![]() |
[33] |
Giedroc DP, Cornish PV (2009) Frameshifting rna pseudoknots: Structure and mechanism. Virus Res 139: 193-208. doi: 10.1016/j.virusres.2008.06.008
![]() |
[34] |
Giomi L, Bowick MJ, Ma X, et al. (2013) Defect annihilation and proliferation in active nematics. Phys Rev Lett 110: 228101. doi: 10.1103/PhysRevLett.110.228101
![]() |
[35] |
Giomi L, Bowick MJ, Mishra P, et al. (2014) Defect dynamics in active nematics. Philos T Roy Soc A 372: 20130365. doi: 10.1098/rsta.2013.0365
![]() |
[36] |
Gladman AS, Matsumoto EA, Nuzzo RG, et al. (2016) Biomimetic 4d printing. Nat Mater 15: 413-418. doi: 10.1038/nmat4544
![]() |
[37] |
Goldstein RE, van de Meent JW (2015) A physical perspective on cytoplasmic streaming. Interface Focus 5: 20150030. doi: 10.1098/rsfs.2015.0030
![]() |
[38] |
Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic microorganisms. Annu Rev Fluid Mech 44: 373-400. doi: 10.1146/annurev-fluid-120710-101156
![]() |
[39] |
Haas PA, Höhn SS, Honerkamp-Smith AR, et al. (2018) The noisy basis of morphogenesis: Mechanisms and mechanics of cell sheet folding inferred from developmental variability. PLoS Biol 16: e2005536. doi: 10.1371/journal.pbio.2005536
![]() |
[40] |
Hakim V, Silberzan P (2017) Collective cell migration: A physics perspective. Rep Prog Phys 80: 076601. doi: 10.1088/1361-6633/aa65ef
![]() |
[41] |
Hofhuis H, Moulton D, Lessinnes T, et al. (2016) Morphomechanical innovation drives explosive seed dispersal. Cell 166: 222-233. doi: 10.1016/j.cell.2016.05.002
![]() |
[42] |
Höhn S, Hallmann A (2011) There is more than one way to turn a spherical cellular monolayer inside out: Type B embryo inversion in volvox globator. BMC biol 9: 89. doi: 10.1186/1741-7007-9-89
![]() |
[43] |
Höhn S, Hallmann A (2016) Distinct shape-shifting regimes of bowl-shaped cell sheets-embryonic inversion in the multicellular green alga pleodorina. BMC Dev Biol 16: 35. doi: 10.1186/s12861-016-0134-9
![]() |
[44] |
Höhn S, Honerkamp-Smith AR, Haas PA, et al. (2015) Dynamics of a volvox embryo turning itself inside out. Phys Rev Lett 114: 178101. doi: 10.1103/PhysRevLett.114.178101
![]() |
[45] |
Hosoi A, Goldman DI (2015) Beneath our feet: Strategies for locomotion in granular media. Annu Rev Fluid Mech 47: 431-453. doi: 10.1146/annurev-fluid-010313-141324
![]() |
[46] |
Huss JC, Spaeker O, Gierlinger N, et al. (2018) Temperature-induced self-sealing capability of banksia follicles. J R Soc Interface 15: 20180190. doi: 10.1098/rsif.2018.0190
![]() |
[47] |
Ilievski F, Mazzeo AD, Shepherd RF, et al. (2011) Soft robotics for chemists. Angew Chem Int Edit 50: 1890-1895. doi: 10.1002/anie.201006464
![]() |
[48] |
Ishimoto K, Gadêlha H, Gaffney EA, et al. (2017) Coarse-graining the fluid flow around a human sperm. Phys Rev Lett 118: 124501. doi: 10.1103/PhysRevLett.118.124501
![]() |
[49] | Kawaguchi K, Kageyama R, Sano M (2009) Topological defects control collective dynamics in neural progenitor cell cultures. Nature 545: 327-331. |
[50] |
Keller D, Bustamante C (2000) The mechanochemistry of molecular motors. Biophys J 78: 541-556. doi: 10.1016/S0006-3495(00)76615-X
![]() |
[51] |
Keller R, Davidson LA, Shook DR (2003) How we are shaped: The biomechanics of gastrulation. Differentiation 71: 171-205. doi: 10.1046/j.1432-0436.2003.710301.x
![]() |
[52] |
Khalil AA, Ilina O, Gritsenko PG, et al. (2017) Collective invasion in ductal and lobular breast cancer associates with distant metastasis. Clin Exp Metastas 34: 421-429. doi: 10.1007/s10585-017-9858-6
![]() |
[53] |
Kim J, Hanna JA, Hayward RC, et al. (2012) Thermally responsive rolling of thin gel strips with discrete variations in swelling. Soft Matter 8: 2375-2381. doi: 10.1039/c2sm06681e
![]() |
[54] |
Kim J, Hanna JA, Byun M, et al. (2012) Designing responsive buckled surfaces by halftone gel lithography. Science 335: 1201-1205. doi: 10.1126/science.1215309
![]() |
[55] |
Kim S, Laschi C, Trimmer B (2013) Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol 31: 287-294. doi: 10.1016/j.tibtech.2013.03.002
![]() |
[56] |
Klein Y, Efrati E, Sharon E (2007) Shaping of elastic sheets by prescription of non-euclidean metrics. Science 315: 1116-1120. doi: 10.1126/science.1135994
![]() |
[57] |
Klein Y, Venkataramani S, Sharon E (2011) Experimental study of shape transitions and energy scaling in thin non-euclidean plates. Phys Rev Lett 106: 118303. doi: 10.1103/PhysRevLett.106.118303
![]() |
[58] | Laschi C, Mazzolai B (2016) Lessons from animals and plants: The symbiosis of morphological computation and soft robotics. IEEE Robot Autom Mag 23: 107-114. |
[59] |
Latorre E, Kale S, Casares L, et al. (2018) Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563: 203-208. doi: 10.1038/s41586-018-0671-4
![]() |
[60] |
Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72: 096601. doi: 10.1088/0034-4885/72/9/096601
![]() |
[61] |
Lewis OL, Zhang S, Guy RD, et al. (2015) Coordination of contractility, adhesion and flow in migrating physarum amoebae. J R Soc Interface 12: 20141359. doi: 10.1098/rsif.2014.1359
![]() |
[62] |
Malinverno C, Corallino S, Giavazzi F, et al. (2017) Endocytic reawakening of motility in jammed epithelia. Nat Mater 16: 587-596. doi: 10.1038/nmat4848
![]() |
[63] |
Marchetti MC, Joanny JF, Ramaswamy S, et al. (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85: 1143-1189. doi: 10.1103/RevModPhys.85.1143
![]() |
[64] |
Marenduzzo D, Micheletti C, Orlandini E, et al. (2013) Topological friction strongly affects viral dna ejection. P Natl Acad Sci 110: 20081-20086. doi: 10.1073/pnas.1306601110
![]() |
[65] |
Matt G, Umen J (2016) Volvox: A simple algal model for embryogenesis, morphogenesis and cellular differentiation. Dev Biol 419: 99-113. doi: 10.1016/j.ydbio.2016.07.014
![]() |
[66] |
Michor F, Liphardt J, Ferrari M, et al. (2011) What does physics have to do with cancer? Nat Rev Cancer 11: 657-670. doi: 10.1038/nrc3092
![]() |
[67] |
Moshe M, Sharon E, Kupferman R (2013) Pattern selection and multiscale behaviour in metrically discontinuous non-euclidean plates. Nonlinearity 26: 3247. doi: 10.1088/0951-7715/26/12/3247
![]() |
[68] |
Mueller R, Yeomans JM, Doostmohammadi A (2019) Emergence of active nematic behavior in monolayers of isotropic cells. Phys Rev Lett 122: 048004. doi: 10.1103/PhysRevLett.122.048004
![]() |
[69] |
Noselli G, Arroyo M, DeSimone A (2019) Smart helical structures inspired by the pellicle of euglenids. J Mech Phys Solids 123: 234-246. doi: 10.1016/j.jmps.2018.09.036
![]() |
[70] |
Noselli G, Beran A, Arroyo M, et al. (2019) Swimming euglena respond to confinement with a behavioural change enabling effective crawling. Nat Phys 15: 496-502. doi: 10.1038/s41567-019-0425-8
![]() |
[71] |
Olavarrieta L, Hernandez P, Krimer DB, et al (2002) Dna knotting caused by head-on collision of transcription and replication. J Mol biol 322: 1-6. doi: 10.1016/S0022-2836(02)00740-4
![]() |
[72] |
Palamidessi A, Malinverno C, Frittoli E, et al. (2019) Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nat Mater 18: 1252-1263. doi: 10.1038/s41563-019-0425-1
![]() |
[73] |
Park JA, Kim JH, Bi D, et al. (2015) Unjamming and cell shape in the asthmatic airway epithelium. Nature Mater 14: 1040-1048. doi: 10.1038/nmat4357
![]() |
[74] |
Peng C, Turiv T, Guo Y, et al. (2016) Command of active matter by topological defects and patterns. Science 354: 882-885. doi: 10.1126/science.aah6936
![]() |
[75] |
Plesa C, Verschueren D, Pud S, et al. (2016) Direct observation of dna knots using a solid-state nanopore. Nature Nanotechnol 11: 1093-1097. doi: 10.1038/nnano.2016.153
![]() |
[76] |
Radszuweit M, Alonso S, Engel H, et al. (2013) Intracellular mechanochemical waves in an active poroelastic model. Phys Rev Lett 110: 138102. doi: 10.1103/PhysRevLett.110.138102
![]() |
[77] |
Renkawitz J, Kopf A, Stopp J, et al. (2019) Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature 569: 546-550. doi: 10.1038/s41586-019-1193-4
![]() |
[78] |
Rosa A, Di Ventra M, Micheletti C (2012) Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore. Phys Rev Lett 109: 118301. doi: 10.1103/PhysRevLett.109.118301
![]() |
[79] |
Rossi M, Cicconofri G, Beran A, et al. (2017) Kinematics of flagellar swimming in euglena gracilis: Helical trajectories and flagellar shapes. P Natl Acady Sci 114: 13085-13090. doi: 10.1073/pnas.1708064114
![]() |
[80] |
Sahaf M, Sharon E (2016) The rheology of a growing leaf: Stress-induced changes in the mechanical properties of leaves. J Exp Bot 67: 5509-5515. doi: 10.1093/jxb/erw316
![]() |
[81] |
Sanchez T, Chen DT, DeCamp SJ, et al. (2012) Spontaneous motion in hierarchically assembled active matter. Nature 491: 431-434. doi: 10.1038/nature11591
![]() |
[82] |
Sartori P, Geyer VF, Howard J, et al. (2016) Curvature regulation of the ciliary beat through axonemal twist. Phys Rev E 94: 042426. doi: 10.1103/PhysRevE.94.042426
![]() |
[83] |
Sartori P, Geyer VF, Scholich A, et al. (2016) Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella. eLife 5: e13258. doi: 10.7554/eLife.13258
![]() |
[84] |
Saw TB, Doostmohammadi A, Nier V, et al. (2017) Topological defects in epithelia govern cell death and extrusion. Nature 544: 212-216. doi: 10.1038/nature21718
![]() |
[85] | Sharon E, Roman B, Marder M, et al. (2002) Mechanics: Buckling cascades in free sheets. Nature 419: 579. |
[86] |
Shishvan SS, Vigliotti A, Deshpande VS (2018) The homeostatic ensemble for cells. Biomech Model Mechan 17: 1631-1662. doi: 10.1007/s10237-018-1048-1
![]() |
[87] |
Steinbock L, Radenovic A (2015) The emergence of nanopores in next-generation sequencing. Nanotechnology 26: 074003. doi: 10.1088/0957-4484/26/7/074003
![]() |
[88] |
Suma A, Micheletti C (2017) Pore translocation of knotted dna rings. P Natl Acad Sci 114: E2991-E2997. doi: 10.1073/pnas.1701321114
![]() |
[89] |
Suma A, Rosa A, Micheletti C (2015) Pore translocation of knotted polymer chains: How friction depends on knot complexity. ACS Macro Lett 4: 1420-1424. doi: 10.1021/acsmacrolett.5b00747
![]() |
[90] |
Tada M, Heisenberg CP (2012) Convergent extension: Using collective cell migration and cell intercalation to shape embryos. Development 139: 3897-3904. doi: 10.1242/dev.073007
![]() |
[91] |
Thampi SP, Golestanian R, Yeomans JM (2013) Velocity correlations in an active nematic. Phys Rev Lett 111: 118101. doi: 10.1103/PhysRevLett.111.118101
![]() |
[92] |
Thampi SP, Yeomans JM (2016) Active turbulence in active nematics. Eur Phys J Spec Top 225: 651-662. doi: 10.1140/epjst/e2015-50324-3
![]() |
[93] |
Tovo A, Suweis S, Formentin M, et al. (2017) Upscaling species richness and abundances in tropical forests. Sci Adv 3: e1701438. doi: 10.1126/sciadv.1701438
![]() |
[94] |
Vizsnyiczai G, Frangipane G, Maggi C, et al. (2017) Light controlled 3D micromotors powered by bacteria. Nat Commun 8: 15974. doi: 10.1038/ncomms15974
![]() |
[95] |
Wolf K, Mazo I, Leung H, et al. (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267-277. doi: 10.1083/jcb.200209006
![]() |
[96] |
Yeh YT, Serrano R, François J, et al. (2018) Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. P Natl Acad Sci 115: 133-138. doi: 10.1073/pnas.1717489115
![]() |
[97] |
Zhang AT, Montgomery MG, Leslie AGW, et al. (2019) The structure of the catalytic domain of the atp synthase from mycobacterium smegmatis is a target for developing antitubercular drugs. P Natl Acad Sci 116: 4206-4211. doi: 10.1073/pnas.1817615116
![]() |
[98] |
Zhang S, Guy RD, Lasheras JC, et al. (2017) Self-organized mechano-chemical dynamics in amoeboid locomotion of physarum fragments. J Phys D Appl Phys 50: 204004. doi: 10.1088/1361-6463/aa68be
![]() |
[99] |
Zhang S, Skinner D, Joshi P, et al. (2019) Quantifying the mechanics of locomotion of the schistosome pathogen with respect to changes in its physical environment. J R Soc Interface 16: 20180675. doi: 10.1098/rsif.2018.0675
![]() |
1. | Emadidin Gahalla Mohmed Elmahdi, Jianfei Huang, A linearized finite difference scheme for time–space fractional nonlinear diffusion-wave equations with initial singularity, 2022, 0, 1565-1339, 10.1515/ijnsns-2021-0388 | |
2. | Emadidin Gahalla Mohmed Elmahdi, Jianfei Huang, EFFICIENT NUMERICAL SOLUTION OF TWO-DIMENSIONAL TIME-SPACE FRACTIONAL NONLINEAR DIFFUSION-WAVE EQUATIONS WITH INITIAL SINGULARITY, 2022, 12, 2156-907X, 831, 10.11948/20210444 | |
3. | Chaeyoung Lee, Seokjun Ham, Youngjin Hwang, Soobin Kwak, Junseok Kim, An explicit fourth-order accurate compact method for the Allen-Cahn equation, 2024, 9, 2473-6988, 735, 10.3934/math.2024038 | |
4. | Emadidin Gahalla Mohmed Elmahdi, Yang Yi, Jianfei Huang, Two linearized difference schemes on graded meshes for the time-space fractional nonlinear diffusion-wave equation with an initial singularity, 2025, 100, 0031-8949, 015215, 10.1088/1402-4896/ad95c4 |
τ=h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 6.6627×10−2 | 7.8031×10−2 | 8.9815×10−2 | 0.0896 | |||
1/10 | 1.8412×10−2 | 1.8555 | 2.1839×10−2 | 1.8371 | 2.5456×10−2 | 1.8190 | 0.0973 |
1/20 | 4.8132×10−3 | 1.9355 | 5.7273×10−3 | 1.9310 | 6.6917×10−3 | 1.9275 | 0.0994 |
1/40 | 1.2137×10−3 | 1.9876 | 1.4621×10−3 | 1.9698 | 1.7210×10−3 | 1.9591 | 0.1359 |
τ | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 7.0844×10−2 | 8.2130×10−2 | 9.3783×10−2 | 0.5852 | |||
1/10 | 1.9012×10−2 | 1.8977 | 2.2432×10−2 | 1.8724 | 2.6040×10−2 | 1.8486 | 1.0501 |
1/20 | 4.9405×10−3 | 1.9442 | 5.8537×10−3 | 1.9381 | 6.8169×10−3 | 1.9335 | 2.4071 |
1/40 | 1.2435×10−3 | 1.9903 | 1.4917×10−3 | 1.9724 | 1.7504×10−3 | 1.9615 | 6.7799 |
h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 4.7813×10−3 | 4.7510×10−3 | 4.7111×10−3 | 2.2382 | |||
1/10 | 6.1943×10−4 | 2.9484 | 6.1518×10−4 | 2.9492 | 6.0963×10−4 | 2.9501 | 2.2952 |
1/20 | 1.2773×10−4 | 2.2778 | 1.2654×10−4 | 2.2815 | 1.2503×10−4 | 2.2857 | 2.5410 |
1/40 | 2.8950×10−5 | 2.1415 | 2.8363×10−5 | 2.1575 | 2.7665×10−5 | 2.1761 | 3.4293 |
τ | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 7.0844×10−2 | 8.2129×10−2 | 9.3783×10−2 | 0.9501 | |||
1/10 | 1.9012×10−2 | 1.8978 | 2.2432×10−2 | 1.8724 | 2.6040×10−2 | 1.8486 | 2.3622 |
1/20 | 4.9407×10−3 | 1.9441 | 5.8538×10−3 | 1.9381 | 6.8169×10−3 | 1.9335 | 7.6793 |
1/40 | 1.2436×10−3 | 1.9901 | 1.4919×10−3 | 1.9723 | 1.7506×10−3 | 1.9612 | 28.9326 |
h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 3.8110×10−3 | 3.7871×10−3 | 3.7555×10−3 | 12.5566 | |||
1/10 | 2.5308×10−4 | 3.9125 | 2.5141×10−4 | 3.9130 | 2.4922×10−4 | 3.9135 | 14.0490 |
1/20 | 2.2087×10−5 | 3.5183 | 2.1851×10−5 | 3.5243 | 2.1557×10−5 | 3.5312 | 18.1726 |
1/40 | 1.8261×10−6 | 3.5964 | 1.7163×10−6 | 3.6703 | 1.5904×10−6 | 3.7607 | 43.9104 |
τ=h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 6.6627×10−2 | 7.8031×10−2 | 8.9815×10−2 | 0.0896 | |||
1/10 | 1.8412×10−2 | 1.8555 | 2.1839×10−2 | 1.8371 | 2.5456×10−2 | 1.8190 | 0.0973 |
1/20 | 4.8132×10−3 | 1.9355 | 5.7273×10−3 | 1.9310 | 6.6917×10−3 | 1.9275 | 0.0994 |
1/40 | 1.2137×10−3 | 1.9876 | 1.4621×10−3 | 1.9698 | 1.7210×10−3 | 1.9591 | 0.1359 |
τ | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 7.0844×10−2 | 8.2130×10−2 | 9.3783×10−2 | 0.5852 | |||
1/10 | 1.9012×10−2 | 1.8977 | 2.2432×10−2 | 1.8724 | 2.6040×10−2 | 1.8486 | 1.0501 |
1/20 | 4.9405×10−3 | 1.9442 | 5.8537×10−3 | 1.9381 | 6.8169×10−3 | 1.9335 | 2.4071 |
1/40 | 1.2435×10−3 | 1.9903 | 1.4917×10−3 | 1.9724 | 1.7504×10−3 | 1.9615 | 6.7799 |
h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 4.7813×10−3 | 4.7510×10−3 | 4.7111×10−3 | 2.2382 | |||
1/10 | 6.1943×10−4 | 2.9484 | 6.1518×10−4 | 2.9492 | 6.0963×10−4 | 2.9501 | 2.2952 |
1/20 | 1.2773×10−4 | 2.2778 | 1.2654×10−4 | 2.2815 | 1.2503×10−4 | 2.2857 | 2.5410 |
1/40 | 2.8950×10−5 | 2.1415 | 2.8363×10−5 | 2.1575 | 2.7665×10−5 | 2.1761 | 3.4293 |
τ | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 7.0844×10−2 | 8.2129×10−2 | 9.3783×10−2 | 0.9501 | |||
1/10 | 1.9012×10−2 | 1.8978 | 2.2432×10−2 | 1.8724 | 2.6040×10−2 | 1.8486 | 2.3622 |
1/20 | 4.9407×10−3 | 1.9441 | 5.8538×10−3 | 1.9381 | 6.8169×10−3 | 1.9335 | 7.6793 |
1/40 | 1.2436×10−3 | 1.9901 | 1.4919×10−3 | 1.9723 | 1.7506×10−3 | 1.9612 | 28.9326 |
h | α=1.25 | α=1.5 | α=1.75 | CPU time | |||
error | order | error | order | error | order | mean | |
1/5 | 3.8110×10−3 | 3.7871×10−3 | 3.7555×10−3 | 12.5566 | |||
1/10 | 2.5308×10−4 | 3.9125 | 2.5141×10−4 | 3.9130 | 2.4922×10−4 | 3.9135 | 14.0490 |
1/20 | 2.2087×10−5 | 3.5183 | 2.1851×10−5 | 3.5243 | 2.1557×10−5 | 3.5312 | 18.1726 |
1/40 | 1.8261×10−6 | 3.5964 | 1.7163×10−6 | 3.6703 | 1.5904×10−6 | 3.7607 | 43.9104 |