Processing math: 46%
Research article

Rapid loss of a green fluorescent plasmid in Escherichia coli O157:H7

  • Plasmids encoding green fluorescent protein (GFP) are frequently used to label bacteria, allowing the identification and differentiation from background flora during experimental studies. Because of its common use in survival studies of the foodborne pathogen Escherichia coli O157:H7, it is important to know the extent to which the plasmid is retained in this host system. Herein, the stability of a pGFPuv (Clontech Laboratories Inc) plasmid in six Escherichia coli O157:H7 isolates was assessed in an oligotrophic environment (phosphate buffered saline, PBS) without antibiotic selective pressure. The six test isolates were recovered from a variety of animal and human sources (cattle, sheep, starlings, water buffalo, and human feces). GFP labeling of the bacteria was accomplished via transfer electroporation. The stability of the GFP plasmid in the different E. coli O157:H7 isolates was variable: in one strain, GFP plasmid loss was rapid, as early as one day and complete plasmid loss was exhibited by four of the six strains within 19 days. In one of the two isolates retaining the GFP plasmid beyond 19 days, counts of GFP-labeled E. coli O157:H7 were significantly lower than the total cell population (P < 0.001). In contrast, in the other isolate after 19 days, total E. coli O157:H7 counts and GFP-labeled E. coli counts were equivalent. These results demonstrate strain-to-strain variability in plasmid stability. Consequently the use of GFP-labeled E.coli O157:H7 in prolonged survival studies may result in the underestimation of survival time due to plasmid loss.

    Citation: Anil K. Persad, Michele L. Williams, Jeffrey T. LeJeune. Rapid loss of a green fluorescent plasmid in Escherichia coli O157:H7[J]. AIMS Microbiology, 2017, 3(4): 872-884. doi: 10.3934/microbiol.2017.4.872

    Related Papers:

    [1] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
    [2] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [3] Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175
    [4] Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055
    [5] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [6] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
    [7] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
    [8] Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
    [9] J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092
    [10] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
  • Plasmids encoding green fluorescent protein (GFP) are frequently used to label bacteria, allowing the identification and differentiation from background flora during experimental studies. Because of its common use in survival studies of the foodborne pathogen Escherichia coli O157:H7, it is important to know the extent to which the plasmid is retained in this host system. Herein, the stability of a pGFPuv (Clontech Laboratories Inc) plasmid in six Escherichia coli O157:H7 isolates was assessed in an oligotrophic environment (phosphate buffered saline, PBS) without antibiotic selective pressure. The six test isolates were recovered from a variety of animal and human sources (cattle, sheep, starlings, water buffalo, and human feces). GFP labeling of the bacteria was accomplished via transfer electroporation. The stability of the GFP plasmid in the different E. coli O157:H7 isolates was variable: in one strain, GFP plasmid loss was rapid, as early as one day and complete plasmid loss was exhibited by four of the six strains within 19 days. In one of the two isolates retaining the GFP plasmid beyond 19 days, counts of GFP-labeled E. coli O157:H7 were significantly lower than the total cell population (P < 0.001). In contrast, in the other isolate after 19 days, total E. coli O157:H7 counts and GFP-labeled E. coli counts were equivalent. These results demonstrate strain-to-strain variability in plasmid stability. Consequently the use of GFP-labeled E.coli O157:H7 in prolonged survival studies may result in the underestimation of survival time due to plasmid loss.


    In last years, it was noted that several real-world phenomena cannot be modeled by partial or ordinary differential equations or classical difference equations defined using the standard integrals and derivatives. These problems required the concept of fractional calculus (fractional integrals and derivatives), where the classical calculus was insufficient. Differential equations of fractional order are considered to be interesting tools in the modeling of several problems in different fields of engineering and science, as electrochemistry, control, electromagnetic, porous media, viscoelasticity. See for example [1,2,3,4,5,6,7]. On the other hand, in the recent years impulsive differential equations have become essential as mathematical models of problems in social and physical sciences. There was a great development in impulsive theory in particular in the field of impulsive differential equations with fixed moments. For instance, see the works of Samoilenko and Perestyuk [8], Benchohra et al. [9], Lakshmikantham et al. [10], etc. Further works for differential equations at variable moments of impulse have been appeared. For example, we cite the papers of Frigon and O'Regan [11,12], Graef and Ouahab [13], Bajo and Liz [14], etc.

    It is also observed that fixed point theory is an important mathematical tool to ensure the existence and uniqueness of many problems intervening nonlinear relations. As a consequence, existence and uniqueness problems of fractional differential equations have been resolved using fixed point techniques. This theory has been developed in many directions and has several applications. Moreover, we could apply it in different types of spaces, like metric spaces, abstract spaces, and Sobolev spaces. This use of fixed point theory makes very easier the resolution of many problems modeled by fractional ordinary, partial differential and difference equations. For instance, see [15,16,17,18,19,20].

    The theory for impulsive fractional differential equations in Banach spaces have been sufficiently developed by Feckan et al. [21] by using fixed point techniques. In the real world, many phenomena are subject to transient external effects as they develop. In comparison to the entire duration of the phenomenon being observed, the durations of these external effects are incredibly brief. The logical conclusion is that these external forces are real impulses. Impulsive differential equations are now a major component of the modeling of physical real-world issues in order to study these abrupt shifts. Biological systems including heartbeat, blood flow, and impulse rate have been discussed in relation to many applications of this kind of impulsive differential equations. For more details, see, [22,23,24,25,26,27].

    On the other hand, in last years the study of Hyers-Ulam (HU) stability analysis for nonlinear fractional differential equations has attracted the attention of several researchers. Note that HU stability is considered as an exact solution near the approximate solution for these equations with minimal error. The following works [28,29,30,31,32] deal with such a stability analysis. For Hyers-Ulam (HU) stabilities, there are generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities.

    Much of the work on the topic of fractional differential equations deals with the governing equations involving Riemann-Liouville and Caputo-type fractional derivatives. Another kind of fractional derivative is the Hadamard type [33], which was introduced in 1892. This derivative differs significantly from both the Riemann-Liouville type and the Caputo type in the sense that the kernel of the integral in the definition of the Hadamard derivative contains a logarithmic function of arbitrary exponent. It seems that the abstract fractional differential equations involving Hadamard fractional derivatives and Hilfer-Hadamard fractional derivatives have not been fully explored so far. Several applications of where the Hadamard derivative and the Hadamard integral arise can be found in the papers by Butzer, Kilbas and Trujillo [34,35,36]. Other important results dealing with Hadamard fractional calculus and Hadamard differential equations can be found in [37,38]. The presence of the δ-differential operator (δ=xddx) in the definition of Hadamard fractional derivatives could make their study uninteresting and less applicable than Riemann-Liouville and Caputo fractional derivatives. Moreover, this operator appears outside the integral in the definition of the Hadamard derivatives just like the usual derivative D=ddx is located outside the integral in the case of Riemann-Liouville, which makes the fractional derivative of a constant of these two types not equal to zero in general. Hadamard [33] proposed a fractional power of the form (xddx)α. This fractional derivative is invariant with respect to dilation on the whole axis.

    The existence and HU stability of the following implicit FDEs involving Hadamard derivatives were investigated in [39] as follows:

    {HDϖz(υ)=ϕ(υ,z(υ),HDϖz(υ)), ϖ(0,1), z(1)=z1, z1R,

    where υ[1,G], G>1, HDϖ refers to the Hadamard fractional (HF) derivative of order ϖ.

    The following coupled system containing the Caputo derivative was examined in [40] for its existence, uniqueness, and several types of Hyers-Ulam stability:

    {CDϖz(υ)=ϕ(υ,s(υ),CDϖz(υ)), υU,CDθs(υ)=ψ(υ,z(υ),CDθs(υ)), υU,z(G)=z(0)=0, z(1)=ϱz(η)  ϱ,η(0,1),s(G)=s(0)=0, s(1)=ϱs(η)  ϱ,η(0,1),

    where υU=[0,1], ϖ,θ(2,3] and ϕ,ψ:U×R2R are continuous functions.

    For the following coupled system containing the Riemann-Liouville derivative, the authors of [41] demonstrated the existence, uniqueness, and several types of Hyers-Ulam stability:

    {Dϖz(υ)=ϕ(υ,s(υ),Dϖz(υ)), υU,                             Dθs(υ)=ψ(υ,z(υ),Dθs(υ)), υU,                              Dϖ2z(0+)=π1Dϖ2z(G), Dϖ2z(0+)=1Dϖ1z(G),Dϖ2s(0+)=π2Dϖ2s(G), Dϖ2s(0+)=2Dϖ1s(G),

    where υU=[0,G], G>0, ϖ,θ(1,2] and π1,π2,1,21, Dϖ,Dθ are Riemann-Liouville derivatives of fractional orders ϖ, θ respectively and ϕ,ψ:U×R2R are continuous functions.

    Inspired by the previous work, we investigate the coupled impulsive implicit FDEs (CII-FDEs) incorporating Hadamard derivatives as follows:

    {HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ)), υU, υυi, i=1,2,...k,HDθs(υ)=ψ(υ,HDθs(υ),HDϖz(υ)), υU, υυj, j=1,2,...m,Δz(υi)=Iiz(υi),  Δz(υi)=˜Iiz(υi),   i=1,2,...k,                 Δs(υj)=Ijs(υj),  Δs(υj)=˜Ijs(υj),   j=1,2,...m,               z(G)=1Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη, z(G)=B(z),               s(G)=1Γ(θ)G1ln(Gη)θ1B(η,s(η))dηη, s(G)=B(s),                 (1.1)

    where ϖ,θ(1,2], ϕ,ψ:U×R2R, B:U×C(U,R)R and B:UR are continuous functions and

    Δz(υi)=z(υ+i)z(υi), Δz(υi)=z(υ+i)z(υi),Δs(υi)=s(υ+i)s(υi), Δs(υi)=s(υ+i)s(υi).

    The derivatives HDϖ,HDθ are the Hadamard derivative operators of order ϖ and θ, respectively; z(υ+i),s(υ+i) are right limits and z(υi),s(υi) are left limits; Ii,Ij,˜Ii,˜Ij:RR are continuous functions. The system (1.1) is used to describe certain features of applied mathematics and physics such as blood flow problems, chemical engineering, thermoelasticity, underground water flow, and population dynamics. For more details, we refer the readers to see the monograph [42].

    Using the Banach contraction and Kransnoselskii FP theorems, we establish necessary and sufficient criteria for the existence and uniqueness of a positive solution for the problem (1.1). Additionally, we analyze other Hyers-Ulam (HU) stabilities such as generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities.

    In this part, we present certain key terms and lemmas that are utilized throughout the rest of this paper, for more information, see [42,43].

    Assume that PC(U,R+) equipped with the norms z=max{|z(υ)|:υU}, s=max{|s(υ)|:υU} is a Banach space (shortly, BS), then the products of these norms are also a BS under the norm (z+s)=z+s. Assume that 1 and 2 represent the piecewise continuous function spaces described as

    1=PC2ϖ,ln(U,R+)={z:UR+ so that z(υ+i),z(υ+i) and z(υi),z(υi) exist ,i=1,2,...k},2=PC2θ,ln(U,R+)={s:UR+ so that s(υ+j),s(υ+j) and s(υj),s(υj) exist ,j=1,2,...m},

    with norms

    z1=sup{|z(υ)ln(υ)2ϖ|, υU} and s2=sup{|s(υ)ln(υ)2θ|, υU},

    respectively. Clearly, the product =1×2 is a BS endowed with (z+s)=z1+s2.

    The following definitions are recalled from [44].

    Definition 2.1. For the function z(υ), the Hadamard fractional (HF) integral of order ϖ is described as

    HIϖz(υ)=1Γ(ϖ)υ1ln(υη)ϖ1z(η)dηη, υ(1,G]

    where Γ(.) is the Gamma function.

    Definition 2.2. For the function z(υ), the HF derivative of order ϖ[a1,a), aZ+ is described as

    HDϖz(υ)=1Γ(aϖ)(υddυ)aυxln(υη)aϖ+1z(η)dηη, υ(x,G].

    Lemma 2.3. [45] Assume that ϖ>0 and z is any function, then the derivative equation HDϖz(υ)=0 has solutions below:

    z(υ)=r1(lnυ)ϖ1+r2(lnυ)ϖ2+r3(lnυ)ϖ3+...+ra(lnυ)ϖa,

    and the formula

    HIϖHDϖz(υ)=z(υ)+r1(lnυ)ϖ1+r2(lnυ)ϖ2+r3(lnυ)ϖ3+...+ra(lnυ)ϖa,

    is satisfied, where riR, i=1,2,...,a and ϖ(a1,a).

    Theorem 2.4. [46] Assume that Ξ is a non-empty, convex and closed subset of a BS . Let E and ˜E be operators so that

    (1) for z,sΞ, E(z,s)+˜E(z,s)Ξ;

    (2) the operator ˜E is completely continuous;

    (3) the operator Ξ is contractive.

    Then there is a solution (z,s)Ξ for the operator equation E(z,s)+˜E(z,s)=(z,s).

    The definitions and observations below are taken from [47,48].

    Definition 3.1. The coupled problem (1.1) is called HU stable if there are Λϖ,θ=max{Λϖ,Λθ}>0 so that, for φ=max{φϖ,φθ} and for each solution (z,s) to inequalities

    {|HDϖz(υ)ϕ(υ,HDϖz(υ),HDθs(υ))|φϖ, υU,                   |Δz(υi)Iiz(υi)|φϖ, |Δz(υi)˜Iiz(υi)|φϖ, i=1,2,...k,|HDθs(υ)ϕ(υ,HDθs(υ),HDϖz(υ))|φθ, υU,                    |Δs(υj)Ijs(υj)|φθ, |Δs(υj)˜Ijs(υj)|φθ, j=1,2,...m, (3.1)

    there is a unique solution (˜z,˜s) with

    (z,s)(˜z,˜s)Λϖ,θφ, υU.

    Definition 3.2. The coupled problem (1.1) is called GHU stable if there is ΦC(R+,R+) with ξ(0)=0, so that, for any solution (z,s) of (3.1), there is a unique solution (˜z,˜s) of with of (1.1) fulfilling

    (z,s)(˜z,˜s)Φ(φ), υU.

    Set ϖ,θ=max{ϖ,θ}C(U,R) and Λϖ,θ=max{Λϖ,Λθ}>0.

    Definition 3.3. The coupled problem (1.1) is called HUR stable with respect to ϖ,θ if there is a constant Λϖ,θ so that, for any solution (z,s) for the inequalities below

    {|HDϖz(υ)ϕ(υ,HDϖz(υ),HDθs(υ))|ϖ(υ)φϖ, υU,|HDθs(υ)ϕ(υ,HDθs(υ),HDϖz(υ))|θ(υ)φθ, υU, (3.2)

    there is a unique solution (˜z,˜s) with

    (z,s)(˜z,˜s)Λϖ,θϖ,θφ, υU. (3.3)

    Definition 3.4. The coupled problem (1.1) is called GHUR stable with respect to ϖ,θ if there is a constant Λϖ,θ so that, for any a proximate solution (z,s) of (3.2), there is a unique solution (˜z,˜s) of with of (1.1) fulfilling

    (z,s)(˜z,˜s)Λϖ,θϖ,θ(υ), υU.

    Remark 3.5. If there are functions ϕ,ψC(U,R) depending upon z, s, respectively, so that

    (R1) |ϕ(υ)|φϖ, |ψ(υ)|φθ, υU;

    (R2)

    {HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ))+ϕ(υ),                   Δz(υi)=Ii(z(υi))+ϕi, Δz(υi)=˜Ii(z(υi))+ϕi,HDθs(υ)=ϕ(υ,HDθs(υ),HDϖz(υ))+ψ(υ),                    Δs(υj)=Ij(s(υj))+ψj, Δs(υj)=˜Ij(s(υj))+ψj.

    Then, (z,s) is a solution of the system of inequalities (3.1).

    In the following part, we establish requirements for the existence and uniqueness of solutions to the suggested system (1.1)

    Theorem 4.1. For the function w, the solutions of the following subsequent linear impulsive BVP

    {HDϖz(υ)=w(υ), υU, υυi, i=1,2,...k,Δz(υi)=Ii(z(υi)),  Δz(υi)=˜Ii(z(υi)),  υυi, i=1,2,...k,z(G)=1Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη, z(G)=B(z),

    takes the form

    z(υ)=GD0(ϖ)B(z)(lnυ)ϖ2+ui=1D1i(ϖ)(lnυ)ϖ2Iiz(υi)+ui=1D2i(ϖ)(lnυ)ϖ2˜Iiz(υi)+D3(ϖ)(lnυ)ϖ2Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ2Γ(ϖ1)Gυuln(Gη)ϖ2w(η)dηη+D4(ϖ)(lnυ)ϖ2Γ(ϖ)Gυuln(Gη)ϖ1w(η)dηη+ui=1D5i(ϖ)(lnυ)ϖ2Γ(ϖ)υiυi1ln(υiη)ϖ1w(η)dηη+ui=1lnυ3ϖ(logυiυ)ϖ2D5i(ϖ)(lnυ)ϖ2Γ(ϖ1)υiυi1ln(υiη)ϖ2w(η)dηη+1Γ(ϖ)υυuln(υη)ϖ1w(η)dηη, (4.1)

    where u=1,2,...,k and

    D0(ϖ)=ln(υG)ln(G)2ϖ,D1i(ϖ)=(ϖ1)(lnυϖ+2)(lnυi)3ϖ(ϖ2)(lnυ2ϖ+1)(lnυi)2ϖlnυi,D2i(ϖ)=lnυυi(3ϖ)(lnυi)2ϖ,D3(ϖ)=(ϖ1logGυϖ2)(lnυ)2ϖ,D4(ϖ)=logGυGϖ1(lnG)2ϖ,D5i(ϖ)=(lnυϖ1Gϖ2+logυi(Gυiυ2)ϖ2)(lnυi)2ϖ.

    Proof. Assume that

    HDϖz(υ)=w(υ), ϖ(1,2], υU. (4.2)

    Using Lemma 2.3, for υ(1,υ1], we have

    z(υ)=r1(lnυ)ϖ1+r2(lnυ)ϖ2+1Γ(ϖ)υ1ln(υη)ϖ1w(η)dηη,z(υ)=r1(ϖ1)υ(lnυ)ϖ2+r2(ϖ2)υ(lnυ)ϖ3+1Γ(ϖ1)υ11υln(υη)ϖ2w(η)dηη. (4.3)

    Again, applying Lemma 2.3, for υ(υ1,υ2], we get

    z(υ)=l1(lnυ)ϖ1+l2(lnυ)ϖ2+1Γ(ϖ)υυ1ln(υη)ϖ1w(η)dηη,z(υ)=l1(ϖ1)υ(lnυ)ϖ2+l2(ϖ2)υ(lnυ)ϖ3+1Γ(ϖ1)υυ11υln(υη)ϖ2w(η)dηη. (4.4)

    Using initial impulses

    l1=r1(ϖ2)(lnυ1)1ϖI1(z(υ1))+υ1(lnυ1)2ϖ˜I1(z(υ1))+(lnυ1)2ϖΓ(ϖ1)υ11ln(υ1η)ϖ2w(η)dηη(ϖ2)(lnυ1)1ϖΓ(ϖ)υ11ln(υ1η)ϖ1w(η)dηη,l2=r2+(ϖ1)(lnυ1)2ϖI1(z(υ1))υ1(lnυ1)3ϖ˜I1(z(υ1))(lnυ1)3ϖΓ(ϖ1)υ11ln(υ1η)ϖ2w(η)dηη+(ϖ1)(lnυ1)2ϖΓ(ϖ)υ11ln(υ1η)ϖ1w(η)dηη.

    From l1 and l2 on (4.4), one has

    z(υ)=r1(lnυ)ϖ1r2(lnυ)ϖ2+((ϖ1)(ϖ2)(logυ1υ))(logυ1υ)ϖ2I1(z(υ1))+υ1(lnυlnυ1)(logυ1υ)ϖ2˜I1(z(υ1))+(lnυlnυ1)(logυ1υ)ϖ2Γ(ϖ1)υ11ln(υ1η)ϖ2w(η)dηη+((ϖ1)(ϖ2)(logυ1υ))(logυ1υ)ϖ2Γ(ϖ)υ11ln(υ1η)ϖ2w(η)dηη+1Γ(ϖ)υυ1ln(υη)ϖ1w(η)dηη.

    Analogously for υ(υu,G), we have

    z(υ)=r1(lnυ)ϖ1+r2(lnυ)ϖ2+ui=1((ϖ1)(ϖ2)(logυiυ))(logυiυ)ϖ2Ii(z(υi))+ui=1υi(lnυlnυi)(logυiυ)ϖ2˜Ii(z(υi))+ui=1(lnυlnυi)(logυiυ)ϖ2Γ(ϖ1)υiυi1ln(υiη)ϖ2w(η)dηη+ui=1((ϖ1)(ϖ2)(logυiυ))(logυiυ)ϖ2Γ(ϖ)υiυi1ln(υiη)ϖ2w(η)dηη+1Γ(ϖ)υυuln(υη)ϖ1w(η)dηη, (4.5)

    and

    z(υ)=(ϖ1)r1υ(lnυ)ϖ2+(ϖ1)r2υ(lnυ)ϖ3+ui=1(ϖ1)(ϖ2)υ(logυelogeυi)(logυiυ)ϖ2Ii(z(υi))+ui=1υiυ[(ϖ1)(ϖ2)logυυi](logυiυ)ϖ2˜Ii(z(υi))+1υΓ(ϖ1)υυuln(υη)ϖ2w(η)dηη,+ui=1((ϖ1)(ϖ2)logυυi)(logυiυ)ϖ2υΓ(ϖ1)υiυi1ln(υiη)ϖ2w(η)dηη+ui=1(ϖ1)(ϖ2)(logυelogeυi)(logυiυ)ϖ2υΓ(ϖ)υiυi1ln(υiη)ϖ2w(η)dηη. (4.6)

    Applying the boundary stipulations z(G)=1Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη and z(G)=B(z), we obtain that

    r1=GB(z)ln(G)2ϖ(lnG)1ϖ(ϖ2)Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη+(lnG)1ϖΓ(ϖ)Gυuln(Gη)ϖ1w(η)dηη+ui=1(lnυϖ1iϖ2lnυi)(lnυi)2ϖIi(z(υi))(ϖ2)ui=1υi(lnυi)ϖ1˜Ii(z(υi))(ϖ2)Γ(ϖ1)ui=1(lnυi)2ϖυiυi1ln(υiη)ϖ2w(η)dηη(lnG)2ϖΓ(ϖ1)Gυuln(Gη)ϖ2w(η)dηη+1Γ(ϖ)ui=1(lnυϖ1iϖ2lnυi)(lnυi)2ϖυiυi1ln(υiη)ϖ1w(η)dηη,

    and

    r2=(lnG)2ϖΓ(ϖ1)G1ln(Gη)ϖ1B(η,z(η))dηηGB(z)ln(G)3ϖ+ui=1υi(lnυi)3ϖ˜Ii(z(υi))+(ϖ1)ui=1(lnG(ϖ2)(logυielogeυi)1)(lnυi)2ϖIi(z(υi))+(lnG)3ϖΓ(ϖ1)υυuln(Gη)ϖ2w(η)dηη+1Γ(ϖ1)ui=1(lnG(ϖ2)(logυielogeυi)1)(lnυi)2ϖυiυi1ln(υiη)ϖ1w(η)dηη+1Γ(ϖ1)ui=1(lnυi)3ϖυiυi1ln(υiη)ϖ2w(η)dηη(lnG)2ϖΓ(ϖ1)Gυiln(Gη)ϖ1w(η)dηη,

    for u=1,2,...,k. Substituting r1 and r2 in (4.5), we have (4.1).

    Corollary 4.2. Theorem 2.4 provides the following solution for our coupled problem (1.1):

    z(υ)=GD0(ϖ)B(z)(lnυ)ϖ2+ui=1D1i(ϖ)(lnυ)ϖ2Ii(zi)+ui=1D2i(ϖ)(lnυ)ϖ2˜Ii(zi)+D3(ϖ)(lnυ)ϖ2Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ2Γ(ϖ1)Gυuln(Gη)ϖ2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ2Γ(ϖ)Gυuln(Gη)ϖ1ϕ(η,HDϖz(η),HDθs(η))dηη+ui=1D5i(ϖ)(lnυ)ϖ2Γ(ϖ)υiυi1ln(υiη)ϖ1ϕ(η,HDϖz(η),HDθs(η))dηη+ui=1lnυ3ϖ(logυiυ)ϖ2D5i(ϖ)(lnυ)ϖ2Γ(ϖ1)υiυi1ln(υiη)ϖ2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)υυuln(υη)ϖ1ϕ(η,HDϖz(η),HDθs(η))dηη, (4.7)

    where u=1,2,...,k and

    s(υ)=GD0(θ)B(s)(lnυ)θ2+uj=1D1j(θ)(lnυ)θ2Ij(sj)+uj=1D2j(θ)(lnυ)θ2˜Ij(sj)+D3(θ)(lnυ)θ2Γ(θ)G1ln(Gη)θ1B(η,s(η))dηη+D0(θ)(lnυ)θ2Γ(θ1)Gυuln(Gη)θ2ψ(η,HDθs(η),HDϖz(η))dηη+D4(θ)(lnυ)θ2Γ(θ)Gυuln(Gη)θ1ψ(η,HDθs(η),HDϖz(η))dηη+uj=1D5i(θ)(lnυ)θ2Γ(θ)υjυj1ln(υjη)θ1ψ(η,HDθs(η),HDϖz(η))dηη+uj=1lnυ3θ(logυjυ)θ2D5j(θ)(lnυ)θ2Γ(θ1)υjυj1ln(υiη)θ2ψ(η,HDθs(η),HDϖz(η))dηη,+1Γ(θ)υυuln(υη)θ1ψ(η,HDθs(η),HDϖz(η))dηη, (4.8)

    where u=1,2,...,m.

    For convenience, we use the notations below:

    p(υ)=ϕ(υ,a1(υ),a2(υ))ϕ(υ,z(υ),a(υ)) and a(υ)=ψ(υ,p1(υ),p2(υ))ψ(υ,s(υ),p(υ)).

    Hence, for υU, Eqs (4.7) and (4.8) can be written as

    z(υ)=GD0(ϖ)B(z)(lnυ)ϖ2+ui=1D1i(ϖ)(lnυ)ϖ2Ii(zi)+ui=1D2i(ϖ)(lnυ)ϖ2˜Ii(zi)+D3(ϖ)(lnυ)ϖ2Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ2Γ(ϖ1)Gυuln(Gη)ϖ2p(η)dηη+D4(ϖ)(lnυ)ϖ2Γ(ϖ)Gυuln(Gη)ϖ1p(η)dηη+ui=1D5i(ϖ)(lnυ)ϖ2Γ(ϖ)υiυi1ln(υiη)ϖ1p(η)dηη+ui=1lnυ3ϖ(logυiυ)ϖ2D5i(ϖ)(lnυ)ϖ2Γ(ϖ1)υiυi1ln(υiη)ϖ2p(η)dηη+1Γ(ϖ)υυuln(υη)ϖ1p(η)dηη,

    for u=1,2,...,k and

    s(υ)=GD0(θ)B(s)(lnυ)θ2+uj=1D1j(θ)(lnυ)θ2Ij(sj)+uj=1D2j(θ)(lnυ)θ2˜Ij(sj)+D3(θ)(lnυ)θ2Γ(θ)G1ln(Gη)θ1B(η,s(η))dηη+D0(θ)(lnυ)θ2Γ(θ1)Gυuln(Gη)θ2a(η)dηη+D4(θ)(lnυ)θ2Γ(θ)Gυuln(Gη)θ1a(η)dηη+uj=1D5i(θ)(lnυ)θ2Γ(θ)υjυj1ln(υjη)θ1a(η)dηη+uj=1lnυ3θ(logυjυ)θ2D5j(θ)(lnυ)θ2Γ(θ1) intυjυj1ln(υiη)θ2a(η)dηη+1Γ(θ)υυuln(υη)θ1a(η)dηη,

    for u=1,2,...,m.

    If z and s are solutions to the CII-FDEs (1.1), then for υU, we can write

    z(υ)=GD0(ϖ)B(z)(lnυ)ϖ2+ui=1D1i(ϖ)(lnυ)ϖ2Ii(zi)+ui=1D2i(ϖ)(lnυ)ϖ2˜Ii(zi)+D3(ϖ)(lnυ)ϖ2Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ2Γ(ϖ1)Gυuln(Gη)ϖ2ϕ(η,a1(η),a2(η))dηη+D4(ϖ)(lnυ)ϖ2Γ(ϖ)Gυuln(Gη)ϖ1ϕ(η,a1(η),a2(η))dηη+ui=1D5i(ϖ)(lnυ)ϖ2Γ(ϖ)υiυi1ln(υiη)ϖ1ϕ(η,a1(η),a2(η))dηη+ui=1lnυ3ϖ(logυiυ)ϖ2D5i(ϖ)(lnυ)ϖ2Γ(ϖ1)υiυi1ln(υiη)ϖ2ϕ(η,a1(η),a2(η))dηη+1Γ(ϖ)υυuln(υη)ϖ1ϕ(η,a1(η),a2(η))dηη,

    for u=1,2,...,k and

    s(υ)=GD0(θ)B(s)(lnυ)θ2+uj=1D1j(θ)(lnυ)θ2Ij(sj)+uj=1D2j(θ)(lnυ)θ2˜Ij(sj)+D3(θ)(lnυ)θ2Γ(θ)G1ln(Gη)θ1B(η,s(η))dηη+D0(θ)(lnυ)θ2Γ(θ1)Gυuln(Gη)θ2ψ(η,p1(η),p2(η))dηη+D4(θ)(lnυ)θ2Γ(θ)Gυuln(Gη)θ1ψ(η,p1(η),p2(η))dηη+uj=1D5i(θ)(lnυ)θ2Γ(θ)υjυj1ln(υjη)θ1ψ(η,p1(η),p2(η))dηη+uj=1lnυ3θ(logυjυ)θ2D5j(θ)(lnυ)θ2Γ(θ1)υjυj1ln(υiη)θ2ψ(η,p1(η),p2(η))dηη+1Γ(θ)υυuln(υη)θ1ψ(η,p1(η),p2(η))dηη,

    for u=1,2,...,m.

    Our next step is to convert the considered system (1.1) into a FP problem. Give the definition of the operators E,˜E: as

    E(z,s)(υ)=(E1z(υ),E2z(υ)) and ˜E(z,s)(υ)=(E1(z,s)(υ),E2(s,z)(υ)),

    where

    {E1(z(υ))=GD0(ϖ)B(z)(lnυ)ϖ2+ui=1D1i(ϖ)(lnυ)ϖ2Ii(zi)+ui=1D2i(ϖ)(lnυ)ϖ2˜Ii(zi)+D3(ϖ)(lnυ)ϖ2Γ(ϖ)G1ln(Gη)ϖ1B(η,z(η))dηη,   u=1,2,...,k,E2(s(υ))=GD0(θ)B(s)(lnυ)θ2+uj=1D1j(θ)(lnυ)θ2Ij(sj)+uj=1D2j(θ)(lnυ)θ2˜Ij(sj)+D3(θ)(lnυ)θ2Γ(θ)G1ln(Gη)θ1B(η,s(η))dηη,    u=1,2,...,m, (4.9)

    and

    {E1(z,s)(υ)=D0(ϖ)(lnυ)ϖ2Γ(ϖ1)Gυuln(Gη)ϖ2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ2Γ(ϖ)Gυuln(Gη)ϖ1ϕ(η,HDϖz(η),HDθs(η))dηη+ui=1D5i(ϖ)(lnυ)ϖ2Γ(ϖ)υiυi1ln(υiη)ϖ1ϕ(η,HDϖz(η),HDθs(η))dηη+ui=1lnυ3ϖ(logυiυ)ϖ2Γ(ϖ1)υiυi1ln(υiη)ϖ2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)υυuln(υη)ϖ1ϕ(η,a1(η),a2(η))dηη,  u=1,2,...,k,E2(s,z)(υ)=D0(θ)(lnυ)θ2Γ(θ1)Gυuln(Gη)θ2ψ(η,HDθs(η),HDϖz(η))dηη+D4(θ)(lnυ)θ2Γ(θ)Gυuln(Gη)θ1ψ(η,HDθs(η),HDϖz(η))dηη+uj=1D5i(θ)(lnυ)θ2Γ(θ)υjυj1ln(υjη)θ1ψ(η,HDθs(η),HDϖz(η))dηη+uj=1lnυ3θ(logυjυ)θ2Γ(θ1)υjυj1ln(υiη)θ2ψ(η,HDθs(η),HDϖz(η))dηη+1Γ(θ)υυuln(υη)θ1ψ(η,HDθs(η),HDϖz(η))dηη, u=1,2,...,m. (4.10)

    The preceding assertions must be true in order to conduct further analysis:

    (A_{1}) For \upsilon \in U and a_{1}, a_{2}, p_{1}, p_{2}\in \mathbb{R}, there exist \ell _{0}, \ell _{1}, \ell _{2}, \rho _{0}, \rho _{1}, \rho _{2}\in C(U, \mathbb{R} _{+}), so that

    \begin{eqnarray*} \left\vert \phi \left( \upsilon ,a_{1}(\upsilon ),a_{2}(\upsilon )\right) \right\vert &\leq &\ell _{0}\left( \upsilon \right) +\ell _{1}\left( \upsilon \right) \left\vert a_{1}(\upsilon )\right\vert +\ell _{2}\left( \upsilon \right) \left\vert a_{2}(\upsilon )\right\vert , \\ \left\vert \psi \left( \upsilon ,p_{1}(\upsilon ),p_{2}(\upsilon )\right) \right\vert &\leq &\rho _{0}\left( \upsilon \right) +\rho _{1}\left( \upsilon \right) \left\vert p_{1}(\upsilon )\right\vert +\rho _{2}\left( \upsilon \right) \left\vert p_{2}(\upsilon )\right\vert , \end{eqnarray*}

    with \widetilde{\ell }_{0} = \sup_{\upsilon \in U}\ell _{0}\left(\upsilon \right), \widetilde{\ell }_{1} = \sup_{\upsilon \in U}\ell _{1}\left(\upsilon \right), \widetilde{\ell }_{2} = \sup_{\upsilon \in U}\ell _{2}\left(\upsilon \right), \widetilde{\rho }_{0} = \sup_{\upsilon \in U}\rho _{0}\left(\upsilon \right), \widetilde{\rho }_{1} = \sup_{\upsilon \in U}\rho _{1}\left(\upsilon \right), and \widetilde{\rho } _{2} = \sup_{\upsilon \in U}\rho _{2}\left(\upsilon \right) < 1.

    (A_{2}) For the continuous functions B^{\ast }, I_{u}, \widetilde{I} _{u}: \mathbb{R} \rightarrow \mathbb{R} there are positive constants

    O_{B}, O_{I}, O_{\widetilde{I}}, O_{I}^{\prime \prime }, O_{\widetilde{I}}^{\prime \prime }, \widetilde{O}_{B}, \widetilde{O} _{I}, \widetilde{O}_{\widetilde{I}}, \widetilde{O}_{I}^{\prime \prime }, \widetilde{O}_{\widetilde{I}}^{\prime \prime } so that for any (z, s)\in \Im

    \begin{eqnarray*} \left\vert B^{\ast }(z)\right\vert &\leq &O_{B^{\ast }}, \ \left\vert I_{u}(z(\upsilon ))\right\vert \leq O_{I}\left\vert z\right\vert +O_{I}^{\prime \prime }, \ \left\vert \widetilde{I}_{u}(z(\upsilon ))\right\vert \leq O_{\widetilde{I}}\left\vert z\right\vert +O_{\widetilde{I} }^{\prime \prime }, \\ \left\vert B^{\ast }(s)\right\vert &\leq &\widetilde{O}_{B^{\ast }},{ \ }\left\vert I_{u}(s(\upsilon ))\right\vert \leq \widetilde{O}_{I}\left\vert s\right\vert +\widetilde{O}_{I}^{\prime \prime }, \ \left\vert \widetilde{I}_{u}(s(\upsilon ))\right\vert \leq \widetilde{O}_{\widetilde{I} }\left\vert s\right\vert +\widetilde{O}_{\widetilde{I}}^{\prime \prime }, \end{eqnarray*}

    where u = \{0, 1, 2, ..., k\}.

    (A_{3}) For all \upsilon \in U and s, z\in \mathbb{R}, there are \varrho _{1}, \delta _{1}, \varrho _{2}, \delta _{2}\in C(U, \mathbb{R} _{+}), so that

    \begin{equation*} \left\vert B\left( \upsilon ,z(\upsilon )\right) \right\vert \leq \varrho _{1}\left( \upsilon \right) +\delta _{1}\left\vert z(\upsilon )\right\vert \text{ and }\left\vert B\left( \upsilon ,s(\upsilon )\right) \right\vert \leq \varrho _{2}\left( \upsilon \right) +\delta _{1}\left\vert s(\upsilon )\right\vert , \end{equation*}

    with \varrho _{1}^{\ast } = \sup_{\upsilon \in U}\varrho _{1}\left(\upsilon \right), \delta _{1}^{\ast } = \sup_{\upsilon \in U}\delta _{1}\left(\upsilon \right), \varrho _{2}^{\ast } = \sup_{\upsilon \in U}\varrho _{2}\left(\upsilon \right), \delta _{2}^{\ast } = \sup_{\upsilon \in U}\delta _{2}\left(\upsilon \right) < 1.

    (A_{4}) For each a_{1}, a_{2}, \widetilde{a}_{1}, \widetilde{a} _{2}, p_{1}, p_{2}, \widetilde{p}_{1}, \widetilde{p}_{2}\in \mathbb{R}, and for all \upsilon \in U, there are constants L_{\phi }, L_{\psi } > 0, and \widetilde{L}_{\phi }, \widetilde{L}_{\psi }\in (0, 1) so that

    \begin{eqnarray*} \left\vert \phi \left( \upsilon ,a_{1}(\upsilon ),a_{2}(\upsilon )\right) -\phi \left( \upsilon ,\widetilde{a}_{1}(\upsilon ),\widetilde{a} _{2}(\upsilon )\right) \right\vert &\leq &L_{\phi }\left\vert a_{1}- \widetilde{a}_{1}\right\vert +\widetilde{L}_{\phi }\left\vert a_{2}- \widetilde{a}_{2}\right\vert , \\ \left\vert \psi \left( \upsilon ,p_{1}(\upsilon ),p_{2}(\upsilon )\right) -\psi \left( \upsilon ,\widetilde{p}_{1}(\upsilon ),\widetilde{p} _{2}(\upsilon )\right) \right\vert &\leq &L_{\psi }\left\vert p_{1}- \widetilde{p}_{1}\right\vert +\widetilde{L}_{\psi }\left\vert p_{2}- \widetilde{p}_{2}\right\vert . \end{eqnarray*}

    (A_{5}) For the continuous functions I_{u}, \widetilde{I}_{u}: \mathbb{R} \rightarrow \mathbb{R}, there are positive constants L_{I}, L_{\widetilde{I}}, \widetilde{L}_{I}, \widetilde{L}_{\widetilde{I}} so for any (z, s), (\widetilde{z}, \widetilde{s})\in \Im

    \begin{equation*} \begin{array}{cc} \left\vert I_{u}(z(\upsilon ))-I_{u}(\widetilde{z}(\upsilon ))\right\vert \leq L_{I}\left\vert z-\widetilde{z}\right\vert , \ & \left\vert I_{u}(s(\upsilon ))-I_{u}(\widetilde{s}(\upsilon ))\right\vert \leq \widetilde{L}_{I}\left\vert s-\widetilde{s}\right\vert , \ \\ \left\vert \widetilde{I}_{u}(z(\upsilon ))-\widetilde{I}_{u}(\widetilde{z} (\upsilon ))\right\vert \leq L_{\widetilde{I}}\left\vert z-\widetilde{z} \right\vert & \left\vert \widetilde{I}_{u}(s(\upsilon ))-\widetilde{I}_{u}( \widetilde{s}(\upsilon ))\right\vert \leq \widetilde{L}_{\widetilde{I} }\left\vert s-\widetilde{s}\right\vert . \end{array} \end{equation*}

    (A_{6}) For each s, z, \widetilde{s}, \widetilde{z}\in \mathbb{R} and for all \upsilon \in U, there are L_{B}, L_{B^{\ast }}, \widetilde{L} _{B}, \widetilde{L}_{B^{\ast }} > 0 , so that

    \begin{eqnarray*} \left\vert B\left( \upsilon ,z(\upsilon )\right) -B\left( \upsilon , \widetilde{z}(\upsilon )\right) \right\vert &\leq &L_{B}\left\vert z- \widetilde{z}\right\vert , \ \left\vert B^{\ast }\left( z\right) -B^{\ast }\left( \widetilde{z}\right) \right\vert \leq L_{B^{\ast }}\left\vert z-\widetilde{z}\right\vert , \\ \left\vert B\left( \upsilon ,s(\upsilon )\right) -B\left( \upsilon , \widetilde{s}(\upsilon )\right) \right\vert &\leq &\widetilde{L} _{B}\left\vert s-\widetilde{s}\right\vert , \ \left\vert B^{\ast }\left( s\right) -B^{\ast }\left( \widetilde{s}\right) \right\vert \leq \widetilde{L}_{B^{\ast }}\left\vert z-\widetilde{z}\right\vert. \end{eqnarray*}

    Here, we demonstrate that the operator E+\widetilde{E} has at least one FP using Kransnoselskii's FP theorem. For this, we choose a closed ball

    \begin{equation*} \Im _{x} = \left\{ (z,s)\in \Im :\left\Vert (z,s)\right\Vert \leq y,\text{ } \left\Vert z\right\Vert \leq \frac{y}{2}\text{ and }\left\Vert s\right\Vert \leq \frac{y}{2}\right\} \subset \Im , \end{equation*}

    where

    \begin{equation*} x\geq \frac{M_{1}^{\ast }+M_{1}^{\ast \ast }+\frac{\left( \widetilde{\ell } _{0}+\widetilde{\ell }_{2}\widetilde{\rho }_{0}\right) M_{3}^{\ast }+\left( \widetilde{\rho }_{0}+\widetilde{\rho }_{2}\widetilde{\ell }_{0}\right) M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1}}{ 1-M_{2}^{\ast }-M_{2}^{\ast \ast }-\frac{Y_{1}^{\ast }M_{2}^{\ast }+Y_{2}^{\ast }M_{2}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho } _{2}-1}}. \end{equation*}

    Theorem 4.3. There exists at least one solution to the CII-FDEs (1.1) provided that the assertions (A_{1}) and (A_{2}) are true.

    Proof. For any (z, s)\in \Im _{y}, we get

    \begin{equation} \left\Vert E(z,s)\left( \upsilon \right) +\widetilde{E}(z,s)\right\Vert _{\Im }\leq \left\Vert E_{1}(z)\right\Vert _{\Im _{1}}+\left\Vert E_{2}(s)\right\Vert _{\Im _{2}}+\left\Vert \widetilde{E}_{1}(z,s)\right\Vert _{\Im _{1}}+\left\Vert \widetilde{E}_{1}(z,s)\right\Vert _{\Im _{2}}. \end{equation} (4.11)

    From (4.9), we have

    \begin{eqnarray*} \left\vert E_{1}z\left( \upsilon \right) \left( \ln \upsilon \right) ^{2-\varpi }\right\vert &\leq &G\left\vert D_{0}(\varpi )\right\vert \left\vert B^{\ast }(z)\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \left\vert I_{i}(z(\upsilon _{i}))\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \widetilde{I }_{i}(z(\upsilon _{i}))\right\vert \\ &&+\frac{\left\vert D_{3}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{1}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert B(\eta ,z(\eta ))\right\vert \frac{d\eta }{\eta }, \end{eqnarray*}

    for u = 1, 2, ..., k. This leads to

    \begin{eqnarray} \left\Vert E_{1}(z)\right\Vert _{\Im _{1}} &\leq &GO_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +u\left\vert D_{1}(\varpi )\right\vert \left( O_{I}\left\Vert z\right\Vert +O_{I}^{\prime \prime }\right) +u\left\vert D_{2}(\varpi )\right\vert \left( O_{\widetilde{I}}\left\Vert z\right\Vert +O_{\widetilde{I}}^{\prime \prime }\right) \\ &&-\frac{\left\vert D_{3}(\varpi )\right\vert \left( \varrho _{1}^{\ast }\left( \upsilon \right) +\delta _{1}^{\ast }\left\Vert z\right\Vert )\right) }{\varpi \Gamma \left( \varpi \right) }\left\vert \ln \left( G\right) ^{\varpi }\right\vert \\ & = &GO_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +uO_{I}^{\prime \prime }\left\vert D_{1}(\varpi )\right\vert +uO_{\widetilde{I}}^{\prime \prime }\left\vert D_{2}(\varpi )\right\vert +uO_{I}\left\vert D_{1}(\varpi )\right\vert \left\Vert z\right\Vert \\ &&+uO_{\widetilde{I}}\left\vert D_{2}(\varpi )\right\vert \left\Vert z\right\Vert -\frac{\left\vert D_{3}(\varpi )\right\vert \left( \varrho _{1}^{\ast }\left( \upsilon \right) +\delta _{1}^{\ast }\left\Vert z\right\Vert )\right) }{\Gamma \left( \varpi +1\right) }\left\vert \ln \left( G\right) ^{\varpi }\right\vert \\ &\leq &M_{1}^{\ast }+M_{2}^{\ast }\left\Vert z\right\Vert . \end{eqnarray} (4.12)

    Analogously, one can write

    \begin{equation} \left\Vert E_{2}(z)\right\Vert _{\Im _{2}}\leq M_{1}^{\ast \ast }+M_{2}^{\ast \ast }\left\Vert s\right\Vert , \end{equation} (4.13)

    where

    \begin{eqnarray*} M_{1}^{\ast } & = &GO_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +uO_{I}^{\prime \prime }\left\vert D_{1}(\varpi )\right\vert +uO_{\widetilde{ I}}^{\prime \prime }\left\vert D_{2}(\varpi )\right\vert \\&&-\frac{\left\vert D_{3}(\varpi )\right\vert \varrho _{1}^{\ast }\left( \upsilon \right) }{ \Gamma \left( \varpi +1\right) }\left\vert \ln \left( G\right) ^{\varpi }\right\vert ,\text{ }u = 1,2,...,k, \\ M_{2}^{\ast } & = &uO_{I}\left\vert D_{1}(\varpi )\right\vert +uO_{\widetilde{I }}\left\vert D_{2}(\varpi )\right\vert \\&&-\frac{\delta _{1}^{\ast }\left\vert D_{3}(\varpi )\right\vert }{\Gamma \left( \varpi +1\right) }\left\vert \ln \left( G\right) ^{\varpi }\right\vert , \ u = 1,2,...,k, \\ M_{1}^{\ast \ast } & = &G\widetilde{O}_{B^{\ast }}\left\vert D_{0}(\theta )\right\vert +u\widetilde{O}_{I}^{\prime \prime }\left\vert D_{1}(\theta )\right\vert \\&&+u\widetilde{O}_{\widetilde{I}}^{\prime \prime }\left\vert D_{2}(\theta )\right\vert -\frac{\left\vert D_{3}(\theta )\right\vert \varrho _{2}^{\ast }\left( \upsilon \right) }{\Gamma \left( \theta +1\right) }\left\vert \ln \left( G\right) ^{\theta }\right\vert ,\text{ }u = 1,2,...,m, \\ M_{2}^{\ast \ast } & = &u\widetilde{O}_{I}\left\vert D_{1}(\theta )\right\vert +u\widetilde{O}_{\widetilde{I}}\left\vert D_{2}(\theta )\right\vert \\&&-\frac{ \delta _{2}^{\ast }\left\vert D_{3}(\theta )\right\vert }{\Gamma \left( \theta +1\right) }\left\vert \ln \left( G\right) ^{\theta }\right\vert , \ u = 1,2,...,m. \end{eqnarray*}

    Further, we obtain for u = 1, 2, ..., k, that

    \begin{eqnarray} &&\left\vert \widetilde{E}_{1}\left( z,s\right) (\upsilon )\left( \ln \upsilon \right) ^{2-\varpi }\right\vert \\ &\leq &\frac{\left\vert D_{0}(\varpi )\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\right\vert \left\vert p(\eta )\right\vert \frac{d\eta }{ \eta }+\frac{\left\vert D_{4}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta } \right) ^{\varpi -1}\right\vert \left\vert p(\eta )\right\vert \frac{d\eta }{ \eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert D_{5i}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\right\vert \left\vert p(\eta )\right\vert \frac{d\eta }{\eta }+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert }{\Gamma \left( \varpi \right) } \int_{\upsilon _{u}}^{\upsilon }\left\vert \ln \left( \frac{\upsilon }{\eta } \right) ^{\varpi -1}\right\vert \left\vert p(\eta )\right\vert \frac{d\eta }{ \eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{i}\right) ^{2-\varpi }\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -2}\left\vert p(\eta )\right\vert \frac{d\eta }{ \eta }. \end{eqnarray} (4.14)

    From assertion (A_{1}), we can write

    \begin{eqnarray*} \left\vert p(\upsilon )\right\vert & = &\left\vert \phi \left( \upsilon ,a_{1}(\upsilon ),a_{2}(\upsilon )\right) \right\vert \leq \phi \left( \upsilon ,z(\upsilon ),a(\upsilon )\right) \leq \\ &&\ell _{0}\left( \upsilon \right) +\ell _{1}\left( \upsilon \right) \left\vert z(\upsilon )\right\vert +\ell _{2}\left( \upsilon \right) \left\vert a(\upsilon )\right\vert \\ & = &\ell _{0}\left( \upsilon \right) +\ell _{1}\left( \upsilon \right) \left\vert z(\upsilon )\right\vert +\ell _{2}\left( \upsilon \right) \left\vert \psi \left( \upsilon ,p_{1}(\upsilon ),p_{2}(\upsilon )\right) \right\vert \\ &\leq &\ell _{0}\left( \upsilon \right) +\ell _{1}\left( \upsilon \right) \left\vert z(\upsilon )\right\vert +\ell _{2}\left( \upsilon \right) \left\vert \psi \left( \upsilon ,s(\upsilon ),p(\upsilon )\right) \right\vert \\ &\leq &\ell _{0}\left( \upsilon \right) +\ell _{1}\left( \upsilon \right) \left\vert z(\upsilon )\right\vert +\ell _{2}\left( \upsilon \right) \left[ \rho _{0}\left( \upsilon \right) +\rho _{1}\left( \upsilon \right) \left\vert s(\upsilon )\right\vert +\rho _{2}\left( \upsilon \right) \left\vert p(\upsilon )\right\vert \right] \\ &\leq &\frac{\ell _{0}\left( \upsilon \right) +\ell _{2}\left( \upsilon \right) \rho _{0}\left( \upsilon \right) }{1-\ell _{2}\left( \upsilon \right) \rho _{2}\left( \upsilon \right) }+\frac{\ell _{1}\left( \upsilon \right) \left\vert z(\upsilon )\right\vert +\ell _{2}\left( \upsilon \right) \rho _{1}\left( \upsilon \right) \left\vert s(\upsilon )\right\vert }{1-\ell _{2}\left( \upsilon \right) \rho _{2}\left( \upsilon \right) }, \end{eqnarray*}

    which implies that

    \begin{equation} \left\Vert p\right\Vert \leq \frac{\widetilde{\ell }_{0}+\widetilde{\ell } _{2}\widetilde{\rho }_{0}}{1-\widetilde{\ell }_{2}\widetilde{\rho }_{2}}+ \frac{\widetilde{\ell }_{1}\left\Vert z\right\Vert +\widetilde{\ell }_{2} \widetilde{\rho }_{1}\left\Vert s\right\Vert }{1-\widetilde{\ell }_{2} \widetilde{\rho }_{2}}. \end{equation} (4.15)

    Taking \sup_{\upsilon \in U} on (4.14) and using (4.15), one has

    \begin{array}{l}\left\Vert \widetilde{E}_{1}\left( z,s\right) \right\Vert _{\Im _{1}} \leq \left( \frac{\widetilde{\ell }_{0}+\widetilde{\ell }_{2}\widetilde{\rho } _{0}}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1}+\frac{\widetilde{\ell } _{1}\left\Vert z\right\Vert +\widetilde{\ell }_{2}\widetilde{\rho } _{1}\left\Vert s\right\Vert }{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} \right) \\ \times \left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{ \Gamma \left( \varpi +1\right) }+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{i}}{\upsilon _{i-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ \left. +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{i}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{i}}{\upsilon _{i-1}} \right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }\right) \\ \leq \frac{\left( \widetilde{\ell }_{0}+\widetilde{\ell }_{2}\widetilde{ \rho }_{0}\right) M_{3}^{\ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1 }+\frac{\left( \widetilde{\ell }_{1}\left\Vert z\right\Vert +\widetilde{\ell }_{2}\widetilde{\rho }_{1}\left\Vert s\right\Vert \right) M_{3}^{\ast }}{ \widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} \\ \leq \frac{\left( \widetilde{\ell }_{0}+\widetilde{\ell }_{2}\widetilde{ \rho }_{0}\right) M_{3}^{\ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1 }+\frac{Y_{1}^{\ast }M_{3}^{\ast }}{\widetilde{\ell }_{2}\widetilde{\rho } _{2}-1}\left\Vert \left( z,s\right) \right\Vert . \end{array} (4.16)

    In the same scenario, we get

    \begin{equation} \left\Vert \widetilde{E}_{2}\left( z,s\right) \right\Vert _{\Im _{2}}\leq \frac{\left( \widetilde{\rho }_{0}+\widetilde{\rho }_{2}\widetilde{\ell } _{0}\right) M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} +\frac{Y_{2}^{\ast }M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1}\left\Vert \left( z,s\right) \right\Vert , \end{equation} (4.17)

    where

    \begin{eqnarray*} M_{3}^{\ast } & = &\left( \begin{array}{c} \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{ \upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{ \upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{ \upsilon _{i}}{\upsilon _{i-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) } \\ +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{i}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{i}}{\upsilon _{i-1}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) } \end{array} \right) ,\text{ }u = 1,2,...,k, \\ M_{3}^{\ast \ast } & = &\left( \begin{array}{c} \frac{\left\vert D_{0}(\theta )\right\vert \left\vert \ln \left( \frac{G}{ \upsilon _{u}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }+\frac{\left\vert D_{4}(\theta )\right\vert \left\vert \ln \left( \frac{G}{ \upsilon _{u}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }+\frac{u\left\vert D_{5}(\theta )\right\vert \left\vert \left( \ln \frac{ \upsilon _{i}}{\upsilon _{i-1}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) } \\ +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\theta }\left( \ln \upsilon _{i}\right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon _{i}}{\upsilon _{i-1}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) } \end{array} \right) ,\text{ }u = 1,2,...,m, \\ Y_{1}^{\ast } & = &\max \left\{ \widetilde{\ell }_{1},\widetilde{\ell }_{2} \widetilde{\rho }_{1}\right\} ,{ \ \ \ \ \ \ \ \ \ \ \ \ \ }Y_{2}^{\ast } = \max \left\{ \widetilde{\rho }_{2}\widetilde{\ell }_{1},\widetilde{\rho } _{1}\right\} . \end{eqnarray*}

    Applying (4.12), (4.13), (4.16) and (4.17) in (4.11), we have

    \begin{eqnarray*} \left\Vert E(z,s)+\widetilde{E}(z,s)\right\Vert _{\Im } &\leq &M_{1}^{\ast }+M_{1}^{\ast \ast }+\frac{\left( \widetilde{\ell }_{0}+\widetilde{\ell }_{2} \widetilde{\rho }_{0}\right) M_{3}^{\ast }+\left( \widetilde{\rho }_{0}+ \widetilde{\rho }_{2}\widetilde{\ell }_{0}\right) M_{3}^{\ast \ast }}{ \widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} \\ &&+\frac{Y_{1}^{\ast }M_{3}^{\ast }+Y_{2}^{\ast }M_{3}^{\ast \ast }}{ \widetilde{\ell }_{2}\widetilde{\rho }_{2}-1}\left\Vert \left( z,s\right) \right\Vert +M_{2}^{\ast }\left\Vert z\right\Vert +M_{2}^{\ast \ast }\left\Vert s\right\Vert \\ &\leq &M_{1}^{\ast }+M_{1}^{\ast \ast }+\frac{\left( \widetilde{\ell }_{0}+ \widetilde{\ell }_{2}\widetilde{\rho }_{0}\right) M_{3}^{\ast }+\left( \widetilde{\rho }_{0}+\widetilde{\rho }_{2}\widetilde{\ell }_{0}\right) M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} \\ &&+\left( M_{2}^{\ast }+M_{2}^{\ast \ast }+\frac{Y_{1}^{\ast }M_{3}^{\ast }+Y_{2}^{\ast }M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho } _{2}-1}\right) \left\Vert \left( z,s\right) \right\Vert \\ &\leq &x, \end{eqnarray*}

    which implies that E(z, s)\left(\upsilon \right) +\widetilde{E}(z, s)\in \Im _{x}. After that, for any \upsilon \in U and s, z, \widetilde{s}, \widetilde{z}\in \Im, one writes

    \begin{eqnarray*} &&\left\Vert E(z,s)-E(\widetilde{z},\widetilde{s})\right\Vert _{\Im } \\ &\leq &\left\Vert E_{1}(z)-E_{1}(\widetilde{z})\right\Vert _{\Im _{1}}+\left\Vert E_{2}(s)-E_{2}(\widetilde{s})\right\Vert _{\Im _{2}} \\ &\leq &G\left\vert D_{0}(\varpi )\right\vert \left\vert B^{\ast }(z)-B^{\ast }(\widetilde{z})\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \\ &&\left\vert I_{i}(z_{i})-I_{i}(\widetilde{z}_{i})\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \widetilde{I }_{i}(z_{i})-\widetilde{I}_{i}(\widetilde{z}_{i})\right\vert \\ &&+\frac{\left\vert D_{3}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{1}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert B(\eta ,z(\eta ))-B(\eta ,\widetilde{z}(\eta ))\right\vert \frac{d\eta }{\eta } \\ &&+G\left\vert D_{0}(\theta )\right\vert \left\vert B^{\ast }(s)-B^{\ast }( \widetilde{s})\right\vert \\ &&+\sum\limits_{j = 1}^{u}D_{1j}(\theta )\left\vert I_{j}(s_{j})-I_{j}(\widetilde{s}_{j})\right\vert +\sum\limits_{j = 1}^{u}D_{2j}(\theta )\left\vert \widetilde{I}_{j}(s_{j})- \widetilde{I}_{j}(\widetilde{s}_{j})\right\vert \\ &&+\frac{\left\vert D_{3}(\theta )\right\vert }{\Gamma \left( \theta \right) }\int_{1}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\theta -1}\right\vert \left\vert B(\eta ,s(\eta ))-B(\eta ,\widetilde{s}(\eta ))\right\vert \frac{d\eta }{\eta }. \end{eqnarray*}

    Applying (A_{5}) and (A_{6}), one has

    \begin{eqnarray*} &&\left\Vert E(z,s)-E(\widetilde{z},\widetilde{s})\right\Vert _{\Im } \\ &\leq &\left[ GL_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +uL_{I}\left\vert D_{1}(\varpi )\right\vert +uL_{\widetilde{I}}\left\vert D_{2}(\varpi )\right\vert -\frac{L_{B}\left\vert D_{3}(\varpi )\right\vert \left\vert \left( \ln G\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right] \left\Vert z-\widetilde{z}\right\Vert \\ &&+\left[ G\widetilde{L}_{B^{\ast }}\left\vert D_{0}(\theta )\right\vert +u \widetilde{L}_{I}\left\vert D_{1}(\theta )\right\vert +u\widetilde{L}_{ \widetilde{I}}\left\vert D_{2}(\theta )\right\vert -\frac{\widetilde{L} _{B}\left\vert D_{3}(\theta )\right\vert \left\vert \left( \ln G\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }\right] \left\Vert s- \widetilde{s}\right\Vert \\ &\leq &L\left( \Delta _{1}+\Delta _{2}\right) \left\Vert \left( z-\widetilde{ z},s-\widetilde{s}\right) \right\Vert , \end{eqnarray*}

    where

    L = \max \left\{ L_{B^{\ast }},L_{I},L_{\widetilde{I}},\widetilde{L}_{B^{\ast }},\widetilde{L}_{I},\widetilde{L}_{\widetilde{I}},L_{B},\widetilde{L} _{B}\right\} ,

    and

    \begin{eqnarray*} \Delta _{1} & = &G\left\vert D_{0}(\varpi )\right\vert +u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert -\frac{ \left\vert D_{3}(\varpi )\right\vert \left\vert \left( \ln G\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) },\text{ }u = 1,2,...,k, \\ \Delta _{2} & = &G\left\vert D_{0}(\theta )\right\vert +u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert -\frac{ \left\vert D_{3}(\theta )\right\vert \left\vert \left( \ln G\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) },\text{ }u = 1,2,...,m. \end{eqnarray*}

    Hence, E is a contraction mapping. Now, we claim that \widetilde{E} is continuous and compact. For this, we build a sequence G_{n} = (z_{n}, s_{n}) in \Im so that \lim_{n\rightarrow \infty }(z_{n}, s_{n}) = (z, s)\in \Im _{x}. Hence, we obtain

    \begin{equation} \left\Vert \widetilde{E}(z,s)-\widetilde{E}(z_{n},s_{n})\right\Vert _{\Im }\leq \left\Vert \widetilde{E}_{1}(z_{n},s_{n})-\widetilde{E} _{1}(z,s)\right\Vert _{\Im _{1}}+\left\Vert \widetilde{E}_{2}(z_{n},s_{n})- \widetilde{E}_{2}(z,s)\right\Vert _{\Im _{2}}. \end{equation} (4.18)

    Since

    \begin{eqnarray} &&\left\Vert \widetilde{E}_{1}(z_{n},s_{n})-\widetilde{E}_{1}(z,s)\right\Vert _{\Im _{1}} \\ &\leq &\left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{ \Gamma \left( \varpi +1\right) }\right. \\ &&\left.+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&\left. +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{u}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}} \right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }\right) \\ &&\left( \frac{L_{\phi }\left\Vert z_{n}-z\right\Vert +\widetilde{L}_{\phi }L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L}_{\phi }\widetilde{L} _{\psi }-1}\right) \\ &\leq &M_{3}^{\ast }\left( \frac{L_{\phi }\left\Vert z_{n}-z\right\Vert + \widetilde{L}_{\phi }L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L} _{\phi }\widetilde{L}_{\psi }-1}\right) , \end{eqnarray} (4.19)

    and

    \begin{eqnarray} &&\left\Vert \widetilde{E}_{2}(z_{n},s_{n})-\widetilde{E}_{2}(z,s)\right\Vert _{\Im _{2}} \\ &\leq &\left( \frac{\left\vert D_{0}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }+\frac{\left\vert D_{4}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta }\right\vert }{ \Gamma \left( \theta +1\right) }+\frac{u\left\vert D_{5}(\theta )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }\right. \\ &&\left. +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\theta }\left( \ln \upsilon _{u}\right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{i-1}} \right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }\right) \\&& \left( \frac{L_{\phi }\widetilde{L}_{\psi }\left\Vert z_{n}-z\right\Vert +L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L}_{\phi }\widetilde{L} _{\psi }-1}\right) \\ &\leq &M_{3}^{\ast \ast }\left( \frac{L_{\phi }\widetilde{L}_{\psi }\left\Vert z_{n}-z\right\Vert +L_{\psi }\left\Vert s_{n}-s\right\Vert }{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) . \end{eqnarray} (4.20)

    Applying (4.19) and (4.20) in (4.18), we conclude that

    \left\Vert \widetilde{E}(z,s)-\widetilde{E}(z_{n},s_{n})\right\Vert _{\Im }\leq M_{3}^{\ast }\left( \frac{L_{\phi }\left\Vert z_{n}-z\right\Vert + \widetilde{L}_{\phi }L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L} _{\phi }\widetilde{L}_{\psi }-1}\right) +M_{3}^{\ast \ast }\left( \frac{ L_{\phi }\widetilde{L}_{\psi }\left\Vert z_{n}-z\right\Vert +L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1 }\right) ,

    which yields \left\Vert \widetilde{E}(z, s)-\widetilde{E}(z_{n}, s_{n})\right\Vert _{\Im }\rightarrow 0 as n\rightarrow \infty, this proves the continuity of \widetilde{E}. Next, using (4.16) and (4.17), we get

    \begin{eqnarray*} \left\Vert \widetilde{E}\left( z,s\right) \left( \upsilon \right) \right\Vert _{\Im } &\leq &\left\Vert \widetilde{E_{1}}\left( z,s\right) \left( \upsilon \right) \right\Vert _{\Im _{1}}+\left\Vert \widetilde{E} _{2}\left( z,s\right) \right\Vert _{\Im _{2}} \\ &\leq &\frac{\left( \widetilde{\ell }_{0}+\widetilde{\ell }_{2}\widetilde{ \rho }_{0}\right) M_{3}^{\ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1 }+\frac{\left( \widetilde{\rho }_{0}+\widetilde{\rho }_{2}\widetilde{\ell } _{0}\right) M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} \\ && +\left( \frac{Y_{1}^{\ast }M_{3}^{\ast }}{\widetilde{\ell }_{2}\widetilde{ \rho }_{2}-1}+\frac{Y_{2}^{\ast }M_{3}^{\ast \ast }}{\widetilde{\ell }_{2} \widetilde{\rho }_{2}-1}\right) \left\Vert \left( z,s\right) \right\Vert \\ &\leq &x. \end{eqnarray*}

    Therefore, \widetilde{E} is uniformly bounded on \Im _{x}. Finally, we show that \widetilde{E} is equicontinuous. To get this result, take \upsilon _{1}, \upsilon _{2}\in U with \upsilon _{1} < \upsilon _{2} and for any (z, s)\in \Im _{x}\subset \Im (clearly \Im _{x} is bounded), we obtain

    \begin{eqnarray*} &&\left\Vert \widetilde{E}_{1}(z,s)\left( \upsilon _{1}\right) -\widetilde{E} _{1}(z,s)\left( \upsilon _{2}\right) \right\Vert _{\Im _{1}} \\ & = &\max \left\{ \left\vert \left[ \widetilde{E}_{1}(z,s)\left( \upsilon _{1}\right) -\widetilde{E}_{1}(z,s)\left( \upsilon _{2}\right) \right] \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \right\} \\ &\leq &\left[ \left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{ \Gamma \left( \varpi +1\right) }+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right) \right. \\ &&\times \left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \upsilon _{1}\right) ^{\varpi -2}-\left( \ln \upsilon _{2}\right) ^{\varpi -2}\right\vert \\ &&+\left. \frac{u\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert \left\vert \ln \upsilon _{1}^{3-\varpi }\left( \log _{\upsilon _{u}}\upsilon _{1}\right) ^{\varpi -2}-\ln \upsilon _{2}^{3-\varpi }\left( \log _{\upsilon _{u}}\upsilon _{2}\right) ^{\varpi -2}\right\vert }{\Gamma \left( \varpi \right) }\right] \\ &&\times \left( \frac{\widetilde{\ell }_{0}+\widetilde{\ell }_{2}\widetilde{ \rho }_{0}}{1-\widetilde{\ell }_{2}\widetilde{\rho }_{2}}+\frac{\widetilde{ \ell }_{1}\left\Vert z\right\Vert +\widetilde{\ell }_{2}\widetilde{\rho } _{1}\left\Vert s\right\Vert }{1-\widetilde{\ell }_{2}\widetilde{\rho }_{2}} \right) +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert }{\Gamma \left( \varpi \right) }\\ &&\left\vert \int_{\upsilon _{u}}^{\upsilon _{1}}\ln \left( \frac{\upsilon _{1}}{\eta }\right) ^{\varpi -1}\phi \left( \upsilon ,^{H}D^{\varpi }z(\upsilon ),^{H}D^{\theta }s(\upsilon )\right) \frac{d\eta }{\eta }\right. \\ &&-\left. \int_{\upsilon _{u}}^{\upsilon _{2}}\ln \left( \frac{\upsilon _{2} }{\eta }\right) ^{\varpi -1}\phi \left( \upsilon ,^{H}D^{\varpi }z(\upsilon ),^{H}D^{\theta }s(\upsilon )\right) \frac{d\eta }{\eta }\right\vert , \end{eqnarray*}

    which yields that

    \left\Vert \widetilde{E}_{1}(z,s)\left( \upsilon _{1}\right) -\widetilde{E} _{1}(z,s)\left( \upsilon _{2}\right) \right\Vert _{\Im _{1}}\rightarrow 0, \text{ as }\upsilon _{1}\rightarrow \upsilon _{2}.

    Similarly, we get

    \left\Vert \widetilde{E}_{2}(z,s)\left( \upsilon _{1}\right) -\widetilde{E} _{2}(z,s)\left( \upsilon _{2}\right) \right\Vert _{\Im _{2}}\rightarrow 0, \text{ as }\upsilon _{1}\rightarrow \upsilon _{2}.

    Hence

    \left\Vert \widetilde{E}(z,s)\left( \upsilon _{1}\right) -\widetilde{E} (z,s)\left( \upsilon _{2}\right) \right\Vert _{\Im }\rightarrow 0,\text{ as } \upsilon _{1}\rightarrow \upsilon _{2}.

    Therefore \widetilde{E} is a relatively compact on \Im _{x}. Thanks to the theorem of Arzelà-Ascoli, \widetilde{E} is compact. Thus, it is completely continuous. So, the CII-FDEs (1.1) admits at least one solution. This finishes the proof.

    Theorem 4.4. Assume that (A_{4}) (A_{6}) are fulfilled with

    \begin{equation} \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+\widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\phi }\widetilde{L}_{\psi }+L_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} < 1, \end{equation} (4.21)

    then the CII-FDEs (1.1) possesses a unique solution.

    Proof. Let \aleph = (\aleph _{1}, \aleph _{1}):\Im \rightarrow \Im be an operator defined by \aleph (z, s)\left(\upsilon \right) = \left(\aleph _{1}(z, s), \aleph _{2}(z, s)\right) \left(\upsilon \right), where

    \begin{eqnarray*} \aleph _{1}(z,s) & = &GD_{0}(\varpi )B^{\ast }(z)\left( \ln \upsilon \right) ^{\varpi -2}+\sum\limits_{i = 1}^{u}D_{1i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}I_{i}(z(\upsilon _{i})) \\ &&+\sum\limits_{i = 1}^{u}D_{2i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2} \widetilde{I}_{i}(z(\upsilon _{i}))\\ &&+\frac{D_{3}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\varpi -1}B(\eta ,z(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{D_{0}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\\ &&\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta } \\ &&+\frac{D_{4}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -1}\\ &&\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{D_{5i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\\ &&\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\ln \upsilon ^{3-\varpi }(\log _{\upsilon _{i}}\upsilon )^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -2}\\ &&\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta } \\ &&+\frac{1}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta }, \end{eqnarray*}

    for u = 1, 2, ..., k and

    \begin{eqnarray*} \aleph _{2}(z,s) & = &GD_{0}(\theta )B^{\ast }(s)\left( \ln \upsilon \right) ^{\theta -2}+\sum\limits_{j = 1}^{u}D_{1j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}I_{j}(s_{j})+\sum\limits_{j = 1}^{u}D_{2j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}\widetilde{I}_{j}(s_{j}) \\ &&+\frac{D_{3}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\theta -1}B(\eta ,s(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{D_{0}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -2}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{ d\eta }{\eta } \\ &&+\frac{D_{4}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -1}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{ d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{D_{5i}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{j}}{\eta }\right) ^{\theta -1}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{\ln \upsilon ^{3-\theta }(\log _{\upsilon _{j}}\upsilon )^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\theta -2}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{d\eta }{ \eta } \\ &&+\frac{1}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\theta -1}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{d\eta }{\eta }, \end{eqnarray*}

    for u = 1, 2, ..., m. In light of Theorem 4.3, one can obtain

    \begin{eqnarray*} &&\left\vert \left( \aleph _{1}(z,s)-\aleph _{1}(\widetilde{z},\widetilde{s} )\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}\right) \right\vert \\ &\leq &\left[ GL_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +uL_{I}\left\vert D_{1}(\varpi )\right\vert +uL_{\widetilde{I}}\left\vert D_{2}(\varpi )\right\vert \right. \\ &&\left.-\frac{L_{B}\left\vert D_{3}(\varpi )\right\vert \left\vert \left( \ln G\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&+\left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&\left.+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&+\left. \left. \frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{u}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}} \right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }\right) \\ \left( \frac{L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \right] \left\vert z-\widetilde{z}\right\vert \\ &&+\left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&\left.+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&\left. +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{u}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}} \right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }\right) \\ && \left( \frac{\widetilde{L}_{\phi }L_{\psi }\left\vert s-\widetilde{s} \right\vert }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) , \end{eqnarray*}

    for u = 1, 2, ..., k. Passing \sup_{\upsilon \in U}, we have

    \left\Vert \aleph _{1}(z,s)-\aleph _{1}(\widetilde{z},\widetilde{s} )\right\Vert _{\Im _{1}}\leq \left( \mho _{1}+\frac{\mho _{2}\left( L_{\phi }+\widetilde{L}_{\phi }L_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L} _{\psi }-1}\right) \left\Vert (z,s)-(\widetilde{z},\widetilde{s})\right\Vert ,\text{ }u = 1,2,...,k,

    where

    \begin{eqnarray*} \mho _{1} & = &GL_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +uL_{I}\left\vert D_{1}(\varpi )\right\vert +uL_{\widetilde{I}}\left\vert D_{2}(\varpi )\right\vert -\frac{L_{B}\left\vert D_{3}(\varpi )\right\vert \left\vert \left( \ln G\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }, \\ \mho _{2} & = &\frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{ \Gamma \left( \varpi +1\right) }+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{u}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }. \end{eqnarray*}

    Analogously,

    \left\Vert \aleph _{2}(z,s)-\aleph _{2}(\widetilde{z},\widetilde{s} )\right\Vert _{\Im _{2}}\leq \left( \mho _{3}+\frac{\mho _{4}\left( L_{\psi }+L_{\phi }\widetilde{L}_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L} _{\psi }-1}\right) \left\Vert (z,s)-(\widetilde{z},\widetilde{s})\right\Vert ,\text{ }u = 1,2,...,m,

    where

    \begin{eqnarray*} \mho _{3} & = &G\widetilde{L}_{B^{\ast }}\left\vert D_{0}(\theta )\right\vert +u\widetilde{L}_{I}\left\vert D_{1}(\theta )\right\vert +u\widetilde{L}_{ \widetilde{I}}\left\vert D_{2}(\theta )\right\vert -\frac{\widetilde{L} _{B}\left\vert D_{3}(\theta )\right\vert \left\vert \left( \ln G\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }, \\ \mho _{4} & = &\frac{\left\vert D_{0}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }+\frac{\left\vert D_{4}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta }\right\vert }{ \Gamma \left( \theta +1\right) }+\frac{u\left\vert D_{5}(\theta )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\theta }\left( \ln \upsilon _{u}\right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }. \end{eqnarray*}

    Hence

    \left\Vert \aleph (z,s)-\aleph (\widetilde{z},\widetilde{s})\right\Vert _{\Im }\leq \left( \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+ \widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\psi }+L_{\phi } \widetilde{L}_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left\Vert (z,s)-(\widetilde{z},\widetilde{s})\right\Vert .

    This suggests that \aleph is a contraction. Consequently, the CII-FDEs (1.1) has a unique solution.

    In this section, we examine various stability types for the suggested system, including the HU, GHU, HUR, and GHUR stability.

    Theorem 5.1. If the assertions (A_{1}) (A_{3}) and the condition (4.21) are true and

    \begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0, \end{equation*}

    then the unique solution of CII-FDEs (1.1) is HU stable and as a result, GHU stable.

    Proof. Take into account that (z, s)\in \Im is an approximate solution of (3.1) and consider (\widehat{z}, \widehat{s})\in \Im is a solution of the coupled problem shown below

    \begin{equation} \left\{ \begin{array}{c} ^{H}D^{\varpi }\widehat{z}(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\varpi } \widehat{z}(\upsilon ),^{H}D^{\theta }\widehat{s}(\upsilon )\right) ,\text{ } \upsilon \in U,\text{ }\upsilon \neq \upsilon _{i},\text{ }i = 1,2,...k, \\ ^{H}D^{\theta }\widehat{s}(\upsilon ) = \psi \left( \upsilon ,^{H}D^{\theta } \widehat{s}(\upsilon ),^{H}D^{\varpi }\widehat{z}(\upsilon )\right) ,\text{ } \upsilon \in U,\text{ }\upsilon \neq \upsilon _{j},\text{ }j = 1,2,...m, \\ \Delta z(\widehat{\upsilon }_{i}) = I_{i}\widehat{z}(\upsilon _{i}),{ \ \ }\Delta \widehat{z}^{\prime }(\upsilon _{i}) = \widetilde{I}_{i}\widehat{z} (\upsilon _{i}), \ \ \ i = 1,2,...k,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \Delta \widehat{s}(\upsilon _{j}) = I_{j}\widehat{s}(\upsilon _{j}),{ \ \ }\Delta \widehat{s}^{\prime }(\upsilon _{j}) = \widetilde{I}_{j}\widehat{s} (\upsilon _{j}), \ \ \ j = 1,2,...m,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \widehat{z}(G) = \frac{1}{\Gamma (\varpi )}\int_{1}^{G}\ln \left( \frac{G}{ \eta }\right) ^{\varpi -1}B(\eta ,\widehat{z}(\eta ))\frac{d\eta }{\eta }, \text{ }\widehat{z}^{\prime }(G) = B^{\ast }(\widehat{z}),{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \widehat{s}(G) = \frac{1}{\Gamma (\theta )}\int_{1}^{G}\ln \left( \frac{G}{ \eta }\right) ^{\theta -1}B(\eta ,\widehat{s}(\eta ))\frac{d\eta }{\eta }, \text{ }\widehat{s}^{\prime }(G) = B^{\ast }(\widehat{s}).{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \end{array} \right. \end{equation} (5.1)

    From Remark 3.5, we get

    \begin{equation} \left\{ \begin{array}{c} ^{H}D^{\varpi }z(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\varpi }z(\upsilon ),^{H}D^{\theta }s(\upsilon )\right) +\Re _{\phi }\left( \upsilon \right) , \text{ }\upsilon \in U,\text{ }\upsilon \neq \upsilon _{i},\text{ } i = 1,2,...k, \\ \Delta z(\upsilon _{i}) = I_{i}\left( z(\upsilon _{i})\right) +\Re _{\phi _{i}}, \ \Delta z^{\prime }(\upsilon _{i}) = \widetilde{I}_{i}\left( z(\upsilon _{i})\right) +\Re _{\phi _{i}},\text{ }i = 1,2,...k, \\ ^{H}D^{\theta }s(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) , \text{ }\upsilon \in U,\text{ }\upsilon \neq \upsilon _{j},\text{ } j = 1,2,...m, \\ \Delta s(\upsilon _{j}) = I_{j}\left( s(\upsilon _{j})\right) +\Re _{\psi _{j}}, \ \Delta s^{\prime }(\upsilon _{j}) = \widetilde{I}_{j}\left( s(\upsilon _{j})\right) +\Re _{\psi _{j}},\text{ }j = 1,2,...,m. \end{array} \right. \end{equation} (5.2)

    It follows from Corollary 4.2 that the solution of system (5.2) is

    \begin{eqnarray} z(\upsilon ) & = &GD_{0}(\varpi )B^{\ast }(z)\left( \ln \upsilon \right) ^{\varpi -2}+\sum\limits_{i = 1}^{u}D_{1i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}\left( I_{i}(z_{i})+\Re _{\phi _{i}}\right) \\ &&+\sum\limits_{i = 1}^{u}D_{2i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}\left( \widetilde{I}_{i}(z_{i})+\Re _{\phi _{i}}\right) \\ &&+\frac{D_{0}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{4}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{D_{5i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\ln \upsilon ^{3-\varpi }(\log _{\upsilon _{i}}\upsilon )^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -2}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{ \eta } \\ &&+\frac{D_{3}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\varpi -1}B(\eta ,z(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{1}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta }, \end{eqnarray} (5.3)

    for u = 1, 2, ..., k and

    \begin{eqnarray} s(\upsilon ) & = &GD_{0}(\theta )B^{\ast }(s)\left( \ln \upsilon \right) ^{\theta -2}+\sum\limits_{j = 1}^{u}D_{1j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}\left( I_{j}(s_{j})+\Re _{\psi _{j}}\right) \\ &&+\sum\limits_{j = 1}^{u}D_{2j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}\left( I_{j}(z_{j})+\Re _{\psi _{j}}\right) \\ &&+\frac{D_{0}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -2}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{4}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{D_{5i}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{j}}{\eta }\right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{\ln \upsilon ^{3-\theta }(\log _{\upsilon _{j}}\upsilon )^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\theta -2}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{3}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\theta -1}B(\eta ,s(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{1}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta }, \end{eqnarray} (5.4)

    for u = 1, 2, ..., m. Consider

    \begin{eqnarray*} &&\left\vert \left( z\left( \upsilon \right) -\widehat{z}\left( \upsilon \right) \right) \left( \ln \upsilon \right) ^{2-\theta }\right\vert \\ &\leq &G\left\vert D_{0}(\varpi )\right\vert \left\vert B^{\ast }(z)-B^{\ast }(\widehat{z})\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \left\vert I_{i}(z_{i})-I_{i}(\widehat{z}_{i})\right\vert \\ &&+\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \widetilde{I} _{i}(z_{i})-\widetilde{I}_{i}(\widehat{z}_{i})\right\vert \\ &&+\frac{\left\vert D_{0}(\varpi )\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\right\vert \\ &&\left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi } \widehat{z}(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{4}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \\ &&\left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z }(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{ \eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert D_{5i}(\varpi \right\vert )}{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\right\vert\\ && \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{s} (\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert \ln \upsilon ^{3-\varpi }\right\vert \left\vert (\ln \upsilon _{i})^{\varpi -2}\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{ \upsilon _{i}}{\eta }\right) ^{\varpi -2}\right\vert \\ &&\times \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert }{ \Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\left\vert \ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\right\vert\\ && \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{ s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{3}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{1}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert B(\eta ,z(\eta ))-B(\eta ,\widehat{z}(\eta ))\right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \Re _{\phi _{i}}\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \left\vert \Re _{\phi _{i}}\right\vert \\ &&+\frac{\left\vert D_{0}(\varpi )\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -2}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{4}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta }\\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert D_{5i}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{\upsilon _{i}}{\eta } \right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert \ln \upsilon ^{3-\varpi }\right\vert \left\vert (\ln \upsilon _{i})^{\varpi -2}\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{ \upsilon _{i}}{\eta }\right) ^{\varpi -2}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert }{ \Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\left\vert \ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta }. \end{eqnarray*}

    As in Theorem 4.4, one has

    \begin{eqnarray} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} &\leq &\left( \mho _{1}+ \frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left( \ln \upsilon \right) ^{2-\varpi }\left\Vert z-\widehat{z} \right\Vert _{\Im _{1}}+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\left( \ln \upsilon \right) ^{2-\varpi }\left\Vert s-\widehat{s}\right\Vert _{\Im _{1}} \\ &&+\left( \mho _{2}+u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert \right) \varphi _{\varpi }, \end{eqnarray} (5.5)

    for u = 1, 2, ..., k and

    \begin{eqnarray} \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} &\leq &\left( \frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }\left\Vert z-\widehat{z} \right\Vert _{\Im _{2}}+\left( \mho _{3}+\frac{\mho _{4}L_{\psi }}{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }\left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} \\ &&+\left( \mho _{4}+u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert \right) \varphi _{\theta }. \end{eqnarray} (5.6)

    Arranging (5.5) and (5.6), we get

    \begin{equation} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}}-\frac{\mho _{2}\widetilde{L} _{\phi }L_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\left\Vert s-\widehat{s}\right\Vert _{\Im _{1}}\leq \frac{\left( \mho _{2}+u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert \right) }{1-\left( \mho _{1}+\frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\varpi }}\varphi _{\varpi }, \end{equation} (5.7)

    and

    \begin{equation} \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}}-\frac{\mho _{4}L_{\phi } \widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\left\Vert z-\widehat{z}\right\Vert _{\Im _{2}}\leq \frac{\left( \mho _{4}+u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert \right) }{1-\left( \mho _{3}+\frac{\mho _{4}L_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }}\varphi _{\theta }, \end{equation} (5.8)

    respectively. Assume that \Game _{\varpi } = 1-\left(\mho _{1}+\frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left(\ln \upsilon \right) ^{2-\varpi } and \Game _{\theta } = 1-\left(\mho _{3}+ \frac{\mho _{4}L_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left(\ln \upsilon \right) ^{2-\theta }. Then (5.7) and (5.8) can be written as

    \begin{equation*} \left[ \begin{array}{cc} 1 & -\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{\left( \widetilde{L} _{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }} \\ -\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi } \widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }} & 1 \end{array} \right] \\\left[ \begin{array}{c} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} \\ \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{1}} \end{array} \right] \leq \left[ \begin{array}{c} \Game _{\varpi }\varphi _{\varpi } \\ \\ \Game _{\theta }\varphi _{\theta } \end{array} \right] . \end{equation*}

    Hence

    \begin{equation} \left[ \begin{array}{c} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} \\ \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} \end{array} \right] \leq \\ \left[ \begin{array}{cc} \frac{1}{\beth } & \frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{ \beth } \\ \frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi } \widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth } & \frac{1}{\beth } \end{array} \right] \\ \left[ \begin{array}{c} \Game _{\varpi }\varphi _{\varpi } \\ \\ \Game _{\theta }\varphi _{\theta } \end{array} \right] , \end{equation} (5.9)

    where

    \begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0. \end{equation*}

    From system (5.9), we observe that

    \begin{eqnarray*} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} & = &\frac{\Game _{\varpi }\varphi _{\varpi }}{\beth }+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }\Game _{\theta }\varphi _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L }_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{\beth }, \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} & = &\frac{\mho _{4}L_{\phi } \widetilde{L}_{\psi }\Game _{\varpi }\varphi _{\varpi }}{\left( \widetilde{L} _{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth }+\frac{ \Game _{\theta }\varphi _{\theta }}{\beth }, \end{eqnarray*}

    which yields that

    \begin{array}{l} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}}+\left\Vert s-\widehat{s} \right\Vert _{\Im _{2}} &\leq &\frac{\Game _{\varpi }\varphi _{\varpi }}{ \beth } +\frac{\Game _{\theta }\varphi _{\theta }}{\beth }\\&&+\frac{\mho _{2} \widetilde{L}_{\phi }L_{\psi }\Game _{\theta }\varphi _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{ \beth } \\ &&+\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }\Game _{\varpi }\varphi _{\varpi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth }. \end{array}

    Let us consider \varphi = \max \{\varphi _{\theta }, \varphi _{\varpi }\} and

    \begin{eqnarray*} \Game _{\varpi ,\theta } & = &\frac{\Game _{\varpi }}{\beth }+\frac{\Game _{\theta }}{\beth }+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }\Game _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{\beth } \\ &&+\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }\Game _{\varpi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{ \beth }. \end{eqnarray*}

    Then, we can write

    \begin{equation*} \left\Vert (z,s)-(\widehat{z},\widehat{s})\right\Vert _{\Im }\leq \Game _{\varpi ,\theta }\varphi , \end{equation*}

    which leads to the supposed coupled problem (1.1) is HU stable. Further, if

    \begin{equation*} \left\Vert (z,s)-(\widehat{z},\widehat{s})\right\Vert _{\Im }\leq \Game _{\varpi ,\theta }\Phi (\varphi ),\text{ }\Phi (0) = 0. \end{equation*}

    Then the suggested coupled problem (1.1) is GHU stable.

    For the final result, we suppose the following assertion:

    (A_{7}) There are nondecreasing functions \gimel _{\varpi }, \gimel _{\theta }\in C(U, \mathbb{R} _{+}) so that

    \begin{equation*} ^{H}D^{\varpi }\gimel _{\varpi }\left( \upsilon \right) \leq L_{\varpi }\gimel _{\varpi }\left( \upsilon \right) \text{ and }^{H}D^{\theta }\gimel _{\theta }\left( \upsilon \right) \leq L_{\theta }\gimel _{\theta }\left( \upsilon \right) ,\text{ for }L_{\varpi },L_{\theta } > 0. \end{equation*}

    Theorem 5.2. If the assertions (A_{1}) (A_{3}) and (A_{7}) and the condition (4.21) are fulfilled and

    \begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0, \end{equation*}

    then the unique solution of CII-FDEs (1.1) is HUR stable and consequently GHUR stable.

    Proof. According to Definitions 3.3 and 3.4, we can get our conclusion by following the same procedures as in Theorem 5.1.

    Example 6.1. Consider

    \begin{equation} \left\{ \begin{array}{c} ^{H}D^{\frac{6}{5}}z(\upsilon ) = \frac{2+^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )}{70e^{20+\upsilon }\left( 1+^{H}D^{\frac{6 }{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )\right) },\text{ }\upsilon \neq 1.5,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ ^{H}D^{\frac{5}{4}}s(\upsilon ) = \frac{1}{50}\left( \upsilon \cos z(\upsilon )-s(\upsilon )\sin (\upsilon )\right) +\frac{^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )}{25+^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{ \frac{5}{4}}s(\upsilon )},\text{ }\upsilon \neq 1.5,{ \ \ \ \ \ \ \ } \\ \Delta z(1.5) = I_{1}z(1.5) = \frac{\left\vert z(1.5)\right\vert }{2+\left\vert z(1.5)\right\vert }, \ \ \Delta z^{\prime }(1.5) = \widetilde{I} _{1}z(1.5) = \frac{\left\vert z(1.5)\right\vert }{25+\left\vert z(1.5)\right\vert },{ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \Delta s(1.5) = I_{1}s(1.5) = \frac{\left\vert s(1.5)\right\vert }{2+\left\vert s(1.5)\right\vert }, \ \ \Delta s^{\prime }(1.5) = \widetilde{I} _{1}s(1.5) = \frac{\left\vert s(1.5)\right\vert }{25+\left\vert s(1.5)\right\vert },\text{ }\upsilon _{1} = 1.5, \\ z(e) = \frac{1}{\Gamma (\frac{6}{5})}\int_{1}^{e}\ln \left( \frac{e}{\eta } \right) ^{\frac{1}{5}}\frac{\eta ^{2}+z(\eta )}{60}\frac{d\eta }{\eta }, { \ \ }z^{\prime }(e) = \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }}\left\vert z(\zeta _{u})\right\vert ,{ \ \ \ }1 < \zeta _{u} < 2B_{u}^{\ast }, \\ s(e) = \frac{1}{\Gamma (\frac{6}{5})}\int_{1}^{e}\ln \left( \frac{e}{\eta } \right) ^{\frac{1}{5}}\frac{\eta ^{2}+s(\eta )}{60}\frac{d\eta }{\eta }, { \ \ }s^{\prime }(e) = \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }}\left\vert s(\zeta _{u})\right\vert ,{ \ \ \ }1 < \zeta _{u} < 2B_{u}^{\ast }, \end{array} \right. \end{equation} (6.1)

    where \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }} < 0.5 for \upsilon \in \lbrack 1, e]. In view of problem (6.1), we observe that \varpi = \frac{6}{5 }, \theta = \frac{5}{4}, G = e, k = 1 and \upsilon _{1} = 1.5. Further, it's simple to locate L_{B^{\ast }} = \widetilde{L}_{B^{\ast }} = 0.5, L_{B} = \widetilde{L}_{B} = \frac{1}{60}, L_{I} = L_{\widetilde{I}} = 0.5, \widetilde{L }_{I} = \widetilde{L}_{\widetilde{I}} = 0.04, L_{\phi } = \widetilde{L}_{\phi } = \frac{1}{70e^{20}} and L_{\psi } = \widetilde{L}_{\psi } = 0.04. Based on Theorem 4.4, we find that

    \begin{equation*} \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+\widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\phi }\widetilde{L}_{\psi }+L_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\simeq 0.537. \end{equation*}

    Therefore problem (6.1) has a unique solution. Further

    \begin{array}{l} \beth = 1- \\ \frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } \\ = 0.023 > 0. \end{array}

    Therefore, according to Theorem 5.1, the coupled system (6.1) is HU stable and consequently GHU stable. Similarly, we can confirm that Theorems 4.3 and 5.2 are true.

    In this manuscript, we used fixed point results of Banach and Kransnoselskii to give necessary and sufficient conditions for the existence of a unique positive solution for a system of impulsive fractional differential equations intervening a fractional derivative of the Hadamard type. We also studied some Hyers-Ulam (HU) stabilities such as generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities. At the end, we provided a concrete example making effective the obtained results.

    The authors thank the Basque Government for Grant IT1555-22. This work was supported in part by the Basque Government under Grant IT1555-22.

    The authors declare that they have no competing interests.

    [1] Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365: 1073–1086.
    [2] Karch H, Leopold SR, Kossow A, et al. (2015) Enterohemorrhagic E. coli (EHEC): Environmental-Vehicle-Human Interface, In: Zoonoses-Infections Affecting Humans and Animals, Springer, 235–248.
    [3] Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59: 223–239. doi: 10.1002/jcp.1030590302
    [4] Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339–342. doi: 10.1038/35002131
    [5] Ma L, Zhang G, Doyle MP (2011) Green fluorescent protein labeling of Listeria, Salmonella, and Escherichia coli O157:H7 for safety-related studies. PloS One 2011: e18083.
    [6] Bloemberg GV, O'Toole GA, Lugtenberg BJ, et al. (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microb 63: 4543–4551.
    [7] Wu VC (2008) A review of microbial injury and recovery methods in food. Food Microbiol 25: 735–744. doi: 10.1016/j.fm.2008.04.011
    [8] Trevors JT (1986) Plasmid curing in bacteria. FEMS Microbiol Lett 32: 149–157. doi: 10.1111/j.1574-6968.1986.tb01189.x
    [9] Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2Eds., Cold Spring Harbor: Cold Spring Harbor Laboratory.
    [10] Dorn CR, Angrick EJ (1991) Serotype O157:H7 Escherichia coli from bovine and meat sources. J Clin Microbiol 29: 1225–1231.
    [11] Cernicchiaro N, Pearl DL, McEwen SA, et al. (2010) A randomized controlled trial to assess the impact of dietary energy sources, feed supplements, and the presence of super-shedders on the detection of Escherichia coli O157:H7 in feedlot cattle using different diagnostic procedures. Foodborne Pathog Dis 7: 1071–1081. doi: 10.1089/fpd.2009.0531
    [12] Food and Drug Administration, FDA and states closer to identifying source of E. coli contamination associated with illnesses at Taco John's restaurants: Food and Drug Administration, 2007. Available from: http://www.fda. gov/bbs/topics/NEWS/2007/NEW015 46.html.
    [13] Lengacher B, Kline TR, Harpster L, et al. (2010) Low prevalence of Escherichia coli O157:H7 in horses in Ohio, USA. J Food Protect 73: 2089–2092.
    [14] Williams ML, Pearl DL, Lejeune JT (2011) Multiple-locus variable-nucleotide tandem repeat subtype analysis implicates European starlings as biological vectors for Escherichia coli O157:H7 in Ohio, USA. J Appl Microbiol 111: 982–988. doi: 10.1111/j.1365-2672.2011.05102.x
    [15] Kotewicz ML, Mammel MK, LeClerc JE, et al. (2008) Optical mapping and 454 sequencing of Escherichia coli O157 : H7 isolates linked to the US 2006 spinach-associated outbreak. Microbiology 154: 3518–3528. doi: 10.1099/mic.0.2008/019026-0
    [16] Zwietering MH, Jongenburger I, Rombouts FM, et al. (1990) Modeling of the bacterial growth curve. Appl Environ Microb 56: 1875–1881.
    [17] Vialette M, Jandos-Rudnik AM, Guyard C, et al. (2004) Validating the use of green fluorescent-marked Escherichia coli O157:H7 for assessing the organism behaviour in foods. J Appl Microbiol 96: 1097–1104.
    [18] Fratamico PM, Deng MY, Strobaugh TP (1997) Construction and characterization of Escherichia coli O157:H7 strains expressing firefly luciferase and green fluorescent protein and their use in survival studies. J Food Protect 60: 1167–1173.
    [19] Fremaux B, Delignette-Muller ML, Prigent-Combaret C, et al. (2007) Growth and survival of non-O157:H7 Shiga-toxin-producing Escherichia coli in cow manure. J Appl Microbiol 102: 89–99. doi: 10.1111/j.1365-2672.2006.03059.x
    [20] Jiang X, Morgan J, Doyle MP (2002) Fate of Escherichia coli O157:H7 in manure-amended soil. Appl Environ Microb 68: 2605–2609.
    [21] Jiang X, Morgan J, Doyle MP (2003) Fate of Escherichia coli O157:H7 during composting of bovine manure in a laboratory-scale bioreactor. J Food Protect 66: 25–30.
    [22] Himathongkham S, Bahari S, Riemann H, et al. (1999) Survival of Escherichia coli O157:H7 and Salmonella typhimurium in cow manure and cow manure slurry. FEMS Microbiol Lett 178: 251–257. doi: 10.1111/j.1574-6968.1999.tb08684.x
    [23] Summers D (1991) The kinetics of plasmid loss. Trends Biotechnol 9: 273–278.
    [24] Allison DG, Sattenstall MA (2007) The influence of green fluorescent protein incorporation on bacterial physiology: a note of caution. J Appl Microbiol 103: 318–324.
    [25] Navarro LJM, Tormo A, Martinez-Garcia E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34: 476–495.
    [26] Skillman LC, Sutherland IW, Jones MV, et al. (1998) Green fluorescent protein as a novel species-specific marker in enteric dual-species biofilms. Microbiology 144: 2095–2101. doi: 10.1099/00221287-144-8-2095
    [27] Smith MA, Bidochka MJ (1998) Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can J Microbiol 44: 351–355.
    [28] Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng Biot 86: 47–82.
    [29] Wehrli W (1983) Rifampin: Mechanisms of action and resistance. Rev Infect Dis 5: S407–S411. doi: 10.1093/clinids/5.Supplement_3.S407
  • This article has been cited by:

    1. Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators, 2023, 8, 2473-6988, 11325, 10.3934/math.2023574
    2. Hasanen A Hammad, Hassen Aydi, Doha A Kattan, Integro-differential equations implicated with Caputo-Hadamard derivatives under nonlocal boundary constraints, 2024, 99, 0031-8949, 025207, 10.1088/1402-4896/ad185b
    3. Hasanen A. Hammad, Manuel De la Sen, Existence of a mild solution and approximate controllability for fractional random integro-differential inclusions with non-instantaneous impulses, 2025, 111, 11100168, 306, 10.1016/j.aej.2024.10.017
    4. Feryal Aladsani, Ahmed Gamal Ibrahim, Existence and Stability of Solutions for p-Proportional ω-Weighted κ-Hilfer Fractional Differential Inclusions in the Presence of Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 475, 10.3390/fractalfract8080475
    5. Kaihong Zhao, Juqing Liu, Xiaojun Lv, A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory, 2024, 8, 2504-3110, 111, 10.3390/fractalfract8020111
    6. Hasanen A. Hammad, Najla M. Aloraini, Mahmoud Abdel-Aty, Existence and stability results for delay fractional deferential equations with applications, 2024, 92, 11100168, 185, 10.1016/j.aej.2024.02.060
    7. Hasanen A. Hammad, Maryam G. Alshehri, Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives, 2024, 182, 09600779, 114775, 10.1016/j.chaos.2024.114775
    8. Doha A. Kattan, Hasanen A. Hammad, Solving fractional integro-differential equations with delay and relaxation impulsive terms by fixed point techniques, 2024, 2024, 1687-2770, 10.1186/s13661-024-01957-w
    9. Hasanen A. Hammad, Saleh Fahad Aljurbua, Solving Fractional Random Differential Equations by Using Fixed Point Methodologies under Mild Boundary Conditions, 2024, 8, 2504-3110, 384, 10.3390/fractalfract8070384
    10. Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen, Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions, 2024, 9, 2473-6988, 15505, 10.3934/math.2024750
    11. Hasanen A. Hammad, Hassen Aydi, Mohra Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, 2023, 2023, 1029-242X, 10.1186/s13660-023-03018-9
    12. Maryam G. Alshehri, Hassen Aydi, Hasanen A. Hammad, Solving delay integro-differential inclusions with applications, 2024, 9, 2473-6988, 16313, 10.3934/math.2024790
    13. Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen, Involvement of three successive fractional derivatives in a system of pantograph equations and studying the existence solution and MLU stability, 2024, 57, 2391-4661, 10.1515/dema-2024-0035
    14. Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, Refined stability of the additive, quartic and sextic functional equations with counter-examples, 2023, 8, 2473-6988, 14399, 10.3934/math.2023736
    15. Hasanen A. Hammad, Montasir Qasymeh, Mahmoud Abdel-Aty, Existence and stability results for a Langevin system with Caputo–Hadamard fractional operators, 2024, 21, 0219-8878, 10.1142/S0219887824502189
    16. Muath Awadalla, Manigandan Murugesan, Manikandan Kannan, Jihan Alahmadi, Feryal AlAdsani, Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems, 2024, 9, 2473-6988, 14130, 10.3934/math.2024687
    17. Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Analysis of Neutral Implicit Stochastic Hilfer Fractional Differential Equation Involving Lévy Noise with Retarded and Advanced Arguments, 2024, 12, 2227-7390, 3406, 10.3390/math12213406
    18. Hasanen A. Hammad, Mohammed E. Dafaalla, Kottakkaran Sooppy Nisar, A Grammian matrix and controllability study of fractional delay integro-differential Langevin systems, 2024, 9, 2473-6988, 15469, 10.3934/math.2024748
    19. Hasanen A. Hammad, Hassen Aydi, Doha A. Kattan, Hybrid interpolative mappings for solving fractional Navier–Stokes and functional differential equations, 2023, 2023, 1687-2770, 10.1186/s13661-023-01807-1
    20. Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri, Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases, 2024, 9, 2473-6988, 14574, 10.3934/math.2024709
    21. Doha A. Kattan, Hasanen A. Hammad, Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays, 2023, 7, 2504-3110, 644, 10.3390/fractalfract7090644
    22. Doha A. Kattan, Hasanen A. Hammad, Advanced fixed point techniques for solving fractional p−Laplacian boundary value problems with impulsive effects, 2025, 16, 20904479, 103254, 10.1016/j.asej.2024.103254
    23. Wedad Albalawi, Muhammad Imran Liaqat, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty, Qualitative study of Caputo Erdélyi-Kober stochastic fractional delay differential equations, 2025, 10, 2473-6988, 8277, 10.3934/math.2025381
    24. Gunaseelan Mani, Vasu Lakshmanan, Abdul Razak Kachu Mohideen, Homan Emadifar, Patricia J. Y. Wong, Existence and Uniqueness Results for the Coupled Pantograph System With Caputo Fractional Operator and Hadamard Integral, 2025, 2025, 1687-9643, 10.1155/ijde/1202608
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5916) PDF downloads(923) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog