Citation: Fulya Kolsal, Zeynep Akbal, Fakhra Liaqat, Oğuzhan Gök, Delia Teresa Sponza, Rengin Eltem. Hydrocarbon degradation abilities of psychrotolerant Bacillus strains[J]. AIMS Microbiology, 2017, 3(3): 467-482. doi: 10.3934/microbiol.2017.3.467
[1] | Ehsan Movahednia, Choonkil Park, Dong Yun Shin . Approximation of involution in multi-Banach algebras: Fixed point technique. AIMS Mathematics, 2021, 6(6): 5851-5868. doi: 10.3934/math.2021346 |
[2] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
[3] | Ehsan Movahednia, Young Cho, Choonkil Park, Siriluk Paokanta . On approximate solution of lattice functional equations in Banach f-algebras. AIMS Mathematics, 2020, 5(6): 5458-5469. doi: 10.3934/math.2020350 |
[4] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[5] | Tae Hun Kim, Ha Nuel Ju, Hong Nyeong Kim, Seong Yoon Jo, Choonkil Park . Bihomomorphisms and biderivations in Lie Banach algebras. AIMS Mathematics, 2020, 5(3): 2196-2210. doi: 10.3934/math.2020145 |
[6] | Araya Kheawborisut, Siriluk Paokanta, Jedsada Senasukh, Choonkil Park . Ulam stability of hom-ders in fuzzy Banach algebras. AIMS Mathematics, 2022, 7(9): 16556-16568. doi: 10.3934/math.2022907 |
[7] | Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar, Silvestre Paredes . New results on complex conformable integral. AIMS Mathematics, 2020, 5(6): 7695-7710. doi: 10.3934/math.2020492 |
[8] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[9] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[10] | Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938 |
Hyers [1] made a response to the question of Ulam in the context of Banach spaces in relation to additive mappings and was a considerable step towards further solutions in this area. Note the concept of stability is a major property in the qualitative theory of differential equations. Over the last few years, results have been presented on numerous types of differential equations. The approach proposed by Hyers [1] which provides the additive function is named a direct technique. This technique is a significant and helpful tool used to investigate the stability of different functional equations. In recent years, a number of research monographs and articles have been studied on diverse applications and generalizations of the HUS, like k-additive mappings, differential equations, Navier–Stokes equations, ODEs, and PDEs (see [2,3,4]). Also in recent years, the stability of different (integral and differential, others functional) equations and other subjects (such as C∗-ternary algebras, groups, flows and Banach algebras) have been investigated. Fixed–point methods are useful when examining stability and fixed point theory proposes vital tools for solving problems arising in different fields of functional analysis, like equilibrium problems, differential equations, and dynamical systems.
Assume Banach algebras Q and Q′′. Suppose (Q′,Δ) is a probability measure space and suppose (Q,BQ) and (Q′′,BQ′′) are Borel measurable spaces. Then a map f:Q′×Q→Q′′ is a operator if {℘:f(℘,α)∈ν}∈Δ for each α in Q and ν∈BQ′′. Assume ℧=(℧1,…,℧m) and Ω=(Ω1,…,Ωm),m∈N. Then we have
℧⪯Ω⟺℧ı≤Ωı,ı=1,⋯,m; |
and also
℧→0⟺℧ı→0,ı=1,⋯,m. |
Definition 1.1 ([5]). Let ∇≠∅ is a set and d:∇2→[0,+∞]m,m∈N, is a given mapping. If the following conditions are satisfied, then we say d is a generalized metric on ∇:
(1) For each (g,g′)∈∇×∇, we get
d(g,g′)=(0,⋯,0)⏟m⟺g=g′; |
(2) For each (g,g′)∈∇×∇, we get
d(g′,g)=d(g,g′)⟺g=g′; |
(3) For each g,g′,g′′∈∇, we get
d(g,g′′)+d(g′′,g′)⪰d(g′,g). |
Theorem 1.2 ([5]). Assume the following assumptions:
(1) d:∇2→[0,+∞]m,m∈N, and (∇,d) is a complete generalized metric space.
(2) L:∇→∇ is a strictly contractive mappingwith Lipschitz constant Z<1.
Then for each g∈∇, either
d(Lng,Ln+1g)=m⏞(+∞,⋯,+∞) |
for each n∈N∪{0} or there is a n0∈N such that
(1) d(Lng,Ln+1g)⪯m⏞(+∞,⋯,+∞),∀n≥n0;
(2) The sequence {Lng} converges to a fixed point (g′)∗ of L;
(3) (g′)∗ is the unique fixed point of L in the set ∁={g′∈∇∣d(Ln0g,g′)⪯m⏞(+∞,⋯,+∞)};
(4) d(g′,(g′)∗)⪯11−Zd(g′,Lg′) for each g′∈∁.
We use fixed-point way to study the multi-stability of antiderivations associated with the following inequality:
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς))‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς))‖]n×n⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖,…,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖]n×n | (1.1) |
for each ε,ζ,ς∈Q, Λ∈Q′ with |θ1|,…,|θn|<1.
For this section we refer the reader [6,7]. Assume ℜ(ν) denotes the real part of ν if ν∈C. Also, let
(1) Z+ be the set of the positive integers;
(2) Z− be the negative integer numbers;
(3) R− be the negative real numbers;
(4) R+ be the positive real numbers.
We begin by defining various functions which will be needed later. The gamma function is given by
Γ(X)=∫∞0e−YYX−1dY,ℜ(X)>0,X∈C. |
Euler's functional equation is given by
Γ(X+1)=XΓ(X),ℜ(X)>0,X∈C. |
Theorem 2.1 ([6]).If X∈N∪{0}, then
Γ(X+1)=X!. |
Theorem 2.2 ([6]). Γ(0.5)=π0.5.
The Pochhammer symbol is
(∁)ȷ=ȷ∏ı=1(∁+ı−1)=Γ(∁+ȷ)Γ(∁)={1ȷ=0∁(∁+1)⋯(∁+ȷ−1)ȷ∈N∪{0} |
where ∁∈C and ȷ,ı∈N.
Note that
Γ(∁+ȷ)=∁(∁+1)⋯(∁+ȷ−1)Γ(∁) |
where ȷ∈N∪{0}.
The Gauss hypergeometric series [7] is given by
φⓈ1(X):=2F1(α,B;T;X)=1+αBTX+α(α+1)B(B+1)T(T+1)X22+⋯=∞∑n=0(α)n(B)n(T)nXnn!, | (2.1) |
where α,B,T,X∈C, n∈N∪{0}, and |X|<1.
Consider the Gauss differential equation
(X−X2)d2ωdX2+(T−(α+B+1)X)dωdX−αBω=0, | (2.2) |
where α,B,X∈C, T∈C∖(Z−∪{0}), and |X|<1. The hypergeometric series is a solution of (2.2).
Theorem 2.3 ([6]).Let α,B,T,X∈C and |X|<1. Then
2F1(α,B;T;X)=Γ(T)Γ(B)Γ(T−B)∫10YB−1(1−Y)T−B−1(1−XY)−αdY, |
where ℜ(T)>ℜ(B)>0.
Theorem 2.4. If ℜ(T)>0,|X|<1, and |arg(−X)|<π, then
2F1(α,B;T;X)=Γ(T)Γ(α)Γ(B)12πi∫+i∞−i∞Γ(α+Y)Γ(B+Y)Γ(−Y)Γ(T+Y)(−X)YdY, |
We now present the Clausen hypergeometric series [7] and its properties:
φⓈ2(X):=pFq((α);(T);X)=pFq(α,⋯,αp;T1,⋯,Tq;X)=pFq(α1,⋯,αpT1,⋯,Tq;X)=∞∑k=0(α1)k⋯(αp)k(T1)k⋯(Tq)kXnn!, | (2.3) |
where p,n,q∈N∪{0} and αn,X,Tn∈C.
Now, (2.3) is a solution of the following differential equation
(M(q,η,Tn)ω)(X)−(N(p,η,αn)ω)(X)=0, |
where
(M(q,η,Tn)ω)(X)=(XddX)q∏n=1((XddX)ω(X)+(Tn−1)ω(X))=XddX(q∏n=1((XddX+(Tn−1))ω)(X)), |
and
(N(p,η,αn)ω)(X)=Xp∏n=1(Xdω(X)dX+αnω(X))=Xp∏n=1((XddX+αn)ω)(X) |
and αn,X,Tn∈C, p,n,q∈N∪{0}, and |X|<1,
Theorem 2.5 ([6]).Suppose αn∈C∖(Z−∪{0}):
(1) The series converges only for X=0, if p>q+1.
(2) The series converges absolutely for X∈C, if p<q.
(3) The series converges absolutely for |X|<1 and diverges for |X|=1 and for |X|>1 it converges absolutely for ℜ(∑qk=1Tk−∑pk=1αk)>0, if p=q+1.
Assume the following notation [7]:
Ξ:=−q∑k=1bk+p∑j=1aj, | (2.4) |
σ:=−q∏k=1|bk|−bk+p∏j=1|aj|−aj, | (2.5) |
and
χ:=−p∑j=1κj+q∑k=1ϑk+p−q2, | (2.6) |
where κj,ϑk∈C,k,j∈N,p,q∈N∪{0}, and bk,aj∈R+.
The Wright generalized hypergeometric series is given by
φⓈ3(X):=pWq(X)=pWq((κ1,a1),⋯,(κp,ap)(ϑ1,b1),⋯,(ϑq,bq);X)=pWq((κp,ap)1,p(ϑq,bq)1,q;X)=∞∑s=0{∏pj=1Γ(κj+ajs)}{∏qk=1Γ(ϑk+bks)}Xss!, | (2.7) |
where j,s,k∈N,X∈C,Ξ>−1,κj,ϑk∈C,p,q∈N∪{0}, and bk,aj∈R+.
Theorem 2.6 ([6]).Suppose X∈C,ϑk,κj∈C,j,s,k∈N, bk,aj∈R+, then
(1) (2.7) is absolutely convergent for each valueof |X|=σ and of |X|<σ, and ℜ(χ)>0.5, if Ξ+1=0.
(2) (2.7) is absolutely convergent for X∈C, if Ξ+1>0.
Now, the Wright function is given by
φⓈ4(X):=K(ϑ,b,X)=0W1(−(b,ϑ);X)=∞∑k=01Γ(ϑ+bk)Xkk!, | (2.8) |
where X,ϑ∈C, and b∈R.
Theorem 2.7 ([6]).Now (2.8) for b∈C (b∈Z−∪{0} if ϑ=0) and ϑ>−1 is an entire function of type δ=(1+ϑ)|ϑ|−ϑ1+ϑ, andfinite order p=11+ϑ.
Theorem 2.8 ([6]).Now (2.8) is an entire functionof X for each b∈C and ϑ>−1.
The Wright generalized Bessel function (Bessel-Maitland function) is given by
φⓈ5(X):=J(κ,a,X)=∞∑k=01Γ(κ+1+ak)(−X)kk!=0W1(−(κ+1,b);−X), |
where κ,X∈C, and a∈R.
Theorem 2.9 ([6]).Suppose X∈C,j,s,k∈N, aj,bk∈R+, and κj,ϑk∈C. Then (2.7) is an entire function of X.
Theorem 2.10 ([6]).Suppose b∈R and ϑ∈C.
(1) (2.8) is absolutely convergent for all |X|<1 and of |X|=1, and ℜ(χ)>0.5, if b+1=0.
(2) (2.8) is absolutely convergent for X∈C, if b+1>0.
Theorem 2.11 ([6]).Suppose b>−1,ϑ∈C. Then(2.8) is anentire function of X.
Theorem 2.12 ([6]).Suppose X∈C,j,k,s∈N,κj,ϑk∈C, and aj,bk∈R+. Then
pWq((κ1,1),⋯,(κp,1)(ϑ1,1),⋯,(ϑq,1);X)=∏pj=1Γ(κj)∏pk=1Γ(ϑk)pFq(κ1,⋯,κpϑ1,⋯,ϑq;X), |
where Ξ+1≥0.
The shifted Wright generalized hypergeometric series [6] is given by
φⓈ6(X):=pBq(X)=pBq((κ1,a1;ϑ1,b1),⋯,(κp,ap;ϑp,bp)(ˆκ1,c1;ˆϑ1,d1),⋯,(ˆκp,cp;ˆϑp,dp);X)=pBq((κp,ap;ϑp,bp)1,p(ˆκp,cp;ˆϑp,dp)1,q;X)=∞∑k=0{∏pm=1b(κm+amk;ϑm+bmk)}{∏qn=1b(ˆκn+cnk;ˆϑn+dnk)}Xkk!=∞∑k=0∏pm=1(Γ(κm+amk)Γ(ϑm+bmk))∏qn=1Γ((ˆκn+ˆϑn)+(cn+dn)k)∏pm=1Γ((ϑm+κm)+(bm+am)k)∏qn=1(Γ(ˆκn+cnk)Γ(ˆϑn+dnk))Xkk!, |
where m,n∈N,k∈N∪{0},κm,ϑm,ˆκn,ˆϑn,X∈C,p,q∈N∪{0}, and am,bm,cn,dn∈R+.
We have the following special cases:
0B0=eX,1B0(X)=1B0((κ,a;ϑ,b)−;X)=∞∑k=0b(κ+ak;ϑ+bk)Xkk!=∞∑k=0Γ(κ+ak)Γ(ϑ+bk)Γ[(b+b)k+(ϑ+κ)]Xkk!=2W1((κ,b),(ϑ,b)(ϑ+κ,b+b);X),0B1(X)=0B1(−(κ,a;ϑ,b);X)=∞∑k=01b(κ+ak;ϑ+bk)Xkk!=∞∑k=0Γ[(b+b)k+(ϑ+κ)]Γ(ϑ+bk)Γ(κ+ak)Xkk!=1W2((ϑ+κ,b+b)(κ,b),(ϑ,b);X),1B1(X)=1B1((ˆκ,c;ˆϑ,d)(κ,a;ϑ,b);X)=∞∑k=0b(κ+ak;ϑ+bk)b(ˆκ+ck;ˆϑ+dk)Xkk!=∞∑k=0Γ(κ+ak)Γ(ϑ+bk)Γ[(ˆκ+ˆϑ)+(c+d)k]Γ[(b+b)k+(κ+ϑ)]Γ(ˆϑ+dk)Γ(ˆκ+ck)Xkk!=3W3((κ,b),(ϑ,b),(ˆκ+ˆϑ,c+d)(ˆκ,c),(ˆϑ,d),(ϑ+κ,b+b);X), |
where k∈N∪{0},κm,ϑm,ˆκn,ˆϑn,X∈C, and am,bm,cn,dn∈R+.
Now, we define the Wright generalized hypergeometric series (see [6]) as follows
φⓈ7(X):=[pWq]n(X)=n∑s=0{∏pj=1Γ(κj+ajs)}{∏qk=1Γ(ϑk+bks)}Xss!, |
where X,κj,ϑk∈C,s,j,k,q,p∈N, and aj,bk∈R+.
Let
diag[ρ1,⋯,ρn]n×n=[ρ10…00ρ2⋱⋮⋮⋱⋱00…0ρn]n×n. |
Note that ρ:=diag[ρ1,⋯,ρn]⪯ϱ:=diag[ϱ1,⋯,ϱn] if ρi≤ϱi for each 1≤i≤n.
We denote W[X] as
diag[φⓈ1(X),⋯,φⓈn(X)]n×n. |
A HUR-stability with control functions W[X], is called multi-stability.
We now propose the notion of antiderivations in Banach algebras and introduce the super-multi-stability of antiderivations in algebras Banach, associated to (1.1).
Throughout this section, let Q be a complex Banach algebra and that θ1,⋯,θn∈C∖{0} with |θ1|,…,|θn|<1.
In this subsection, we study the multi stability of the additive (θ1,⋯,θn)-functional inequality (1.1).
Lemma 3.1. Suppose fi:Q′×Q→Q(i=1,…,n∈N) are mappings satisfying fi(Λ,0)=0 and (1.1) for each ε,ζ,ς∈Q, and Λ∈Q′. Then the mappings fi:Q′×Q→Q,(i=1,…,n∈N) are additive (the usual definition is at the end of the proof).
Proof. Assume that fi:Q′×Q→Q(i=1,…,n∈N) satisfies (1.1).
Replacing ζ by −ζ in (1.1), we get
diag[‖f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1(f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς))‖,…,‖θn(fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς))‖] | (3.1) |
for each ε,ζ,ς∈Q, and Λ∈Q′. According to (1.1) and (3.1) we have
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ21(f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς))‖,…,‖θ2n(fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς))‖] |
and so
fi(Λ,ε+ζ+ς)−fi(Λ,ε+ς)−fi(Λ,ε+ζ−ς)+fi(Λ,ε−ς)=0,i=1,…,n | (3.2) |
for each ε,ζ,ς∈Q,Λ∈Q′, since |θi|<1(i=1,…,n).
Letting ς=ε in (3.2),
fi(Λ,2ε+ζ)−fi(Λ,2ε)−fi(Λ,ζ)=0,i=1,…,n |
for each ε,ζ∈Q,Λ∈Q′. Thus fi(i=1,…,n) are additive.
Throughout the paper, let φji:(Q)3i→[0,∞)i, 1≤i≤n,1≤ji≤n, and n∈N. Notice that M:=diag[φj1,…,φjn] is a matrix valued control function such that φj1(φjn) represents the element at the 1th(nth) row and 1th(nth) column of the matrix M and φji demonstrates the jith given control function.
Theorem 3.2. Let (φj1,…,φjn):(Q×Q×Q)n→[0,∞)n(1≤j1,…,jn≤n), be functions such that there exists an (T1,…,Tn)<(1,…,1)⏟n with
diag[φj1(ε2,ζ2,ς2),…,φjn(ε2,ζ2,ς2)]⪯diag[T12φj1(ε,ζ,ς),…,Tn2φjn(ε,ζ,ς)], | (3.3) |
for all ε,ζ,ς∈Q. Suppose fi:Q′×Q→Q(i=1,…,n) are mappings satisfying fi(Λ,0)=0 and
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖+|θ1|φj1⏟1≤j1≤n(ε,−ζ,ς),…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖+|θn|φjn⏟1≤jn≤n(ε,−ζ,ς)]⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖+φj1⏟1≤j1≤n(ε,ζ,ς),…,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖+φjn⏟1≤jn≤n(ε,ζ,ς)], | (3.4) |
for each ε,ζ,ς∈Q and Λ∈Q′. Then there exist unique additive mappings f′i:Q′×Q→Q such that
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]n×n⪯diag[T12(1−T1)φj1⏟1≤j1≤n(ε2,ε,ε2),…,Tn2(1−Tn)φjn⏟1≤jn≤n(ε2,ε,ε2)]n×n, | (3.5) |
for each ε∈Q, and Λ∈Q′.
Proof. Replacing ζ by −ζ in (3.4), we get
diag[‖f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς)‖+|θ1|φj1⏟1≤j1≤n(ε,ζ,ς),…,‖fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς)‖+|θn|φjn⏟1≤jn≤n(ε,ζ,ς)]⪯diag[‖θ1(f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς))‖+φj1⏟1≤j1≤n(ε,−ζ,ς),…,‖θn(fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς))‖+φjn⏟1≤jn≤n(ε,−ζ,ς)], | (3.6) |
for each ε,ζ,ς∈Q, and Λ∈Q′. According to (3.4) and (3.6) we have
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]n×n⪯diag[φj1⏟1≤j1≤n(ε,ζ,ς),…,φjn⏟1≤jn≤n(ε,ζ,ς)]n×n, | (3.7) |
for each ε,ζ,ς∈Q, and Λ∈Q′.
Letting ε=ς=σ2 and ζ=σ in (3.7), we get
diag[‖f1(Λ,2σ)−2f1(Λ,σ)‖,…,‖fn(Λ,2σ)−2fn(Λ,σ)‖]n×n⪯diag[φj1⏟1≤j1≤n(σ2,σ,σ2),…,φjn⏟1≤jn≤n(σ2,σ,σ2)]n×n, | (3.8) |
for each σ∈Q, and Λ∈Q′.
Let ℏ=(ℏ1,…,ℏn) and ℏ′=(ℏ′1,…,ℏ′n).
Now, consider the set
∇:={ℏ:(Q′×Q)n→Qn:ℏ(Λ,0)=n⏞(0,…,0)} |
and define the generalized metric on ∇ by
d(ℏ,ℏ′)=inf{(μ1,…,μn)∈Rn+:diag[‖ℏ1(Λ,ε)−ℏ′1(Λ,ε)‖,…‖ℏn(Λ,ε)−ℏ′n(Λ,ε)‖]⪯diag[μ1φj1⏟1≤j1≤n(ε2,ε,ε2),…,μnφjn⏟1≤jn≤n(ε2,ε,ε2)],∀ε∈Q,Λ∈Q′}, |
where inf∅=(+∞,…,+∞)⏟n.
Now (∇,d) is complete (also, see [8]).
Let L:=(L1,…,Ln). Now, we consider the linear mapping L:∇→∇ s.t.
Liℏi(Λ,ε):=2ℏi(Λ,ε2),i=1,…,n |
for each ε∈Q, and Λ∈Q′.
Let ℏ,ℏ′∈∇ be given s.t. d(ℏ,ℏ′)=(ε1,…,εn). Then
diag[‖ℏ1(Λ,ε)−ℏ′1(Λ,ε)‖,…,‖ℏn(Λ,ε)−ℏ′n(Λ,ε)‖]⪯diag[ε1φj1⏟1≤j1≤n(ε2,ε,ε2),…,εnφjn⏟1≤jn≤n(ε2,ε,ε2)], |
for each ε∈Q, and Λ∈Q′. Hence
diag[‖L1ℏ1(Λ,ε)−L1ℏ′1(Λ,ε)‖,…,‖Lnℏn(Λ,ε)−Lnℏ′n(Λ,ε)‖]=diag[‖2ℏ1(Λ,ε2)−2ℏ′1(Λ,ε2)‖,…,‖2ℏn(Λ,ε2)−2ℏ′n(Λ,ε2)‖]⪯diag[2ε1φj1⏟1≤j1≤n(ε4,ε2,ε4),…,2εnφjn⏟1≤jn≤n(ε4,ε2,ε4)]⪯diag[T1ε1φj1⏟1≤j1≤n(ε2,ε,ε2),…,Tnεnφjn⏟1≤jn≤n(ε2,ε,ε2)], |
for each ε∈Q, and Λ∈Q′. Thus d(ℏ,ℏ′)=(ε1,…,εn)⏟n implies that
d(Lℏ(Λ,ε),Lℏ′(Λ,ε))⪯(T1ε1,…,Tnεn). |
Hence
d(Lℏ(ε),Lℏ′(ε))⪯(T1,…,Tn)d(ℏ,ℏ′), |
for each ℏ,ℏ′∈∇. According to (3.8), we get
diag[‖f1(Λ,ε)−2f1(Λ,ε2)‖,…,‖fn(Λ,ε)−2fn(Λ,ε2)‖]n×n⪯diag[φj1⏟1≤j1≤n(ε4,ε2,ε4),…,φjn⏟1≤jn≤n(ε4,ε2,ε4)]n×n⪯diag[T12φj1⏟1≤j1≤n(ε2,ε,ε2),…,Tn2φjn⏟1≤jn≤n(ε2,ε,ε2)]n×n, |
for each ε∈Q,Λ∈Q′, so d(f,Lf)⪯(T12,…,Tn2).
According to Theorem 1.2 there exist mappings f′i:Q→Q(i=1,…,n) satisfying the following:
(1) f′ is a fixed point of L, i.e.
f′(Λ,ε)=2f′(Λ,ε2), | (3.9) |
for each ε∈Q, and Λ∈Q′. The mapping f′ is a unique fixed point of L in the set
k={ℏ∈∇:d(f,ℏ)<∞}. |
This implies that f′ is a unique mapping satisfying (3.8) s.t. there exist μ1,…,μn∈(0,∞) satisfying
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]⪯diag[μ1φj1⏟0≤j1≤n(ε2,ε,ε2),…,μnφjn⏟0≤jn≤n(ε2,ε,ε2)], |
for each ε∈Q, and Λ∈Q′.
(2) Since limn→∞d(Lnf,f′)=0,
limn→∞2nfi(Λ,ε2n)=f′i(Λ,ε),∀i=1,…,n | (3.10) |
for each ε∈Q, and Λ∈Q′.
(3) d(f,f′)⪯(11−T1,…,11−Tn)d(f,Lf), which implies
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]n×n⪯diag[T12(1−T1)φj1⏟1≤j1≤n(ε2,ε,ε2),…,Tn2(1−Tn)φjn⏟1≤jn≤n(ε2,ε,ε2)]n×n, |
for each ε∈Q, and Λ∈Q′. According to (3.3) and (3.4) we have
diag[‖f′1(Λ,ε+ζ+ς)−f′1(Λ,ε+ς)−f′1(Λ,ε+ζ−ς)+f′1(Λ,ε−ς)‖,…,‖f′n(Λ,ε+ζ+ς)−f′n(Λ,ε+ς)−f′n(Λ,ε+ζ−ς)+f′n(Λ,ε−ς)‖]=diag[limn→∞2n‖f1(Λ,ε+ζ+ς2n)−f1(Λ,ε+ς2n)−f1(Λ,ε+ζ−ς2n)+f1(Λ,ε−ς2n)‖,…,limn→∞2n‖fn(Λ,ε+ζ+ς2n)−fn(Λ,ε+ς2n)−fn(Λ,ε+ζ−ς2n)+fn(Λ,ε−ς2n)‖]⪯diag[limn→∞2n|θ1|‖f1(Λ,ε−ζ+ς2n)−f1(Λ,ε+ς2n)−f1(Λ,ε−ζ−ς2n)+f1(Λ,ε−ς2n)‖+limn→∞2n(φj1⏟1≤j1≤n(ε2n,ζ2n,ς2n)−θ1φj1⏟1≤j1≤n(ε2n,−ζ2n,ς2n)),…,limn→∞2n|θn|‖fn(Λ,ε−ζ+ς2n)−fn(Λ,ε+ς2n)−fn(Λ,ε−ζ−ς2n)+fn(Λ,ε−ς2n)‖+limn→∞2n(φjn⏟1≤jn≤n(ε2n,ζ2n,ς2n)−θnφjn⏟1≤jn≤n(ε2n,−ζ2n,ς2n))]⪯diag[‖θn(f′1(Λ,ε−ζ+ς)−f′1(Λ,ε+ς)−f′1(Λ,ε−ζ−ς)+f′1(Λ,ε−ς))‖,…,‖θn(f′n(Λ,ε−ζ+ς)−f′n(Λ,ε+ς)−f′n(Λ,ε−ζ−ς)+f′n(Λ,ε−ς))‖] |
for each ε,ζ,ς∈Q, and Λ∈Q′. According to Lemma 3.1, the mapping f′i(i=1,…,n) is additive.
Definition 3.3. Assume Q is a complex Banach algebra. A C-linear mapping G:Q′×Q→Q is called an antiderivation if it satisfies
G(Λ,ε)G(Λ,ζ)=G(Λ,G(Λ,ε)ζ)+G(Λ,εG(Λ,ζ)) |
for each ε,ζ∈Q and Λ∈Q′.
Example 3.4. Suppose Qm is the collection of all polynomials of degree m with complex coefficients and
Q={qm∈Qm|q(Λ,0)=0,m∈N}. |
Define G:Q′×Q→Q by
G(Λ,n∑k=1bkχk)=n∑k=1bkkχk |
and G(Λ,0)=0. Then G is an antiderivation.
Example 3.5. Consider the collection of all continuous functions on R, represented by C(R).
Define G:Q′×C(R)→C(R) by
G(Λ,g(ε))=∫ε0g(τ)dτ |
for each τ∈R. Then G is an antiderivation.
Lemma 3.6. [9]Suppose Q is complex Banach algebra and suppose f:Q′×Q→Q is an additive mapping s.t. f(Λ,Jε)=Jf(Λ,ε) for each J∈T1:={η∈C:|η|=1} and each ε∈Q. Then f is C-linear.
Theorem 3.7. Suppose φj1,…,φjn:Q3→[0,∞), (1≤j1,…,jn≤n), are functions.
(i) If there exist (T1,…,Tn)<(1,…,1) satisfying
diag[φj1⏟1≤j1≤n(εJ,ζJ,ςJ),…,φjn⏟1≤jn≤n(εJ,ζJ,ςJ)]⪯diag[T12φj1⏟1≤j1≤n(2ε,2ζ,2ς),…,Tn2φjn⏟1≤jn≤n(2ε,2ζ,2ς)], | (3.11) |
and if fi:Q′×Q→Q, (i=1,…,n), are mappings satisfying fi(Λ,0)=0 and
diag[‖Jf1(Λ,ε+ζ+ς)−f1(Λ,J(ε+ς))−f1(Λ,J(ε+ζ−ς))+Jf1(Λ,ε−ς)‖+|θ1|φj1⏟1≤j1≤n(ε,−ζ,ς),…,‖Jfn(Λ,ε+ζ+ς)−fn(Λ,J(ε+ς))−fn(Λ,J(ε+ζ−ς))+Jfn(Λ,ε−ς)‖+|θn|φjn⏟1≤jn≤n(ε,−ζ,ς)]⪯diag[‖θ1(Jf1(Λ,ε−ζ+ς)−f1(Λ,J(ε+ς))−f1(Λ,J(ε−ζ−ς))+Jf1(Λ,ε−ς))‖+φj1⏟1≤j1≤n(ε,ζ,ς),…,‖θn(Jfn(Λ,ε−ζ+ς)−fn(Λ,J(ε+ς))−fn(Λ,J(ε−ζ−ς))+Jfn(Λ,ε−ς))‖+φjn⏟1≤jn≤n(ε,ζ,ς)], | (3.12) |
for each J∈T1 and all ε,ζ,ς∈Q,Λ∈Q′, then there exist unique C-linear mappings Gi:Q′×Q→Q,(i=1,…,n), s.t.
diag[‖f1(Λ,ε)−G1(Λ,ε)‖,…,‖fn(Λ,ε)−Gn(Λ,ε)‖]⪯diag[T12(1−T1)φj1⏟1≤j1≤n(ε2,ε,−ε2),…,Tn2(1−Tn)φjn⏟1≤jn≤n(ε2,ε,−ε2)], | (3.13) |
for each ε∈Q,Λ∈Q′.
(ii) In addition, if (T1,…,Tn)<(12,…,12) and fi,(i=1,…,n), are continuous and satisfy fi(Λ,2ε)=2fi(Λ,ε) and
diag[‖f1(Λ,ε)f1(Λ,ζ)−f1(Λ,f1(Λ,ε)ζ)−f1(Λ,εf1(Λ,ζ))‖,…,‖fn(Λ,ε)fn(Λ,ζ)−fn(Λ,fn(Λ,ε)ζ)−fn(Λ,εfn(Λ,ζ))‖]⪯diag[φj1⏟1≤j1≤n(ε,ζ,ε),…,φjn⏟1≤jn≤n(ε,ζ,ε)], | (3.14) |
for each ε,ζ∈Q, then fi:Q′×Q→Q are antiderivations.
Proof. By a similar method used in Theorem 3.2 the proof of (i) is straightforward. Now, we prove (ii).
(ii) Since Gi=fi,(i=1,…,n), are continuous and C-linear, we conclude from (3.11) and (3.14) that
diag[‖G1(Λ,ε)G1(Λ,ζ)−G1(Λ,G1(Λ,ε)ζ)−G1(Λ,εG1(Λ,ζ))‖,…,‖Gn(Λ,ε)Gn(Λ,ζ)−Gn(Λ,Gn(Λ,ε)ζ)−Gn(Λ,εGn(Λ,ζ))‖]=diag[limm→∞4m‖Jm(f1(Λ,ε2mJm)f1(Λ,ζ2mJm)−G1(Λ,f1(Λ,ε2mJm)ζ2mJm)−G1(Λ,ε2mJmf1(Λ,ζ2mJm)))‖,…,limm→∞4m‖Jm(fn(Λ,ε2mJm)fn(Λ,ζ2mJm)−Gn(Λ,fn(Λ,ε2mJm)ζ2mJm)−Gn(Λ,ε2mλmfn(Λ,ζ2mJm)))‖]=diag[limm→∞4m‖Jm(f1(Λ,ε2mJm)f1(Λ,ζ2mJm)−f1(Λ,f1(Λ,ε2mJm)ζ2mJm)−f1(Λ,ε2mJmf1(Λ,ζ2mJm)))‖,…,limm→∞4m‖Jm(fn(Λ,ε2mJm)fn(Λ,ζ2mJm)−fn(Λ,f1(Λ,ε2mJm)ζ2mJm)−fn(Λ,ε2mJmfn(Λ,ζ2mJm)))‖]⪯diag[limm→∞22mφj1⏟1≤j1≤n(ε2mJm,ζ2mJm,ε2mJm),…,limm→∞22mφjn⏟1≤jn≤n(ε2mJm,ζ2mJm,ε2mJm)]⪯diag[limm→∞(2T1)mφj1⏟1≤j1≤n(ε,ζ,ε),…,limm→∞(2Tn)mφjn⏟1≤jn≤n(ε,ζ,ε)], |
for each J∈T1 and each ε,ζ∈Q,Λ∈Q′. Since (2T1,⋯,2Tn)⏟n<(1,⋯,1)⏟n, the C-linear mappings Gi,(i=1,⋯,n), are antiderivations. Thus the mappings fi:Q′×Q→Q,(i=1,⋯,n), are antiderivations.
In this subsection, we investigate the super-multi-stability of continuous antiderivations in Banach algebras.
Theorem 3.8. Consider φj1⏟1≤j1≤n,⋯,φjn⏟1≤jn≤n:Q3→[0,∞).
(i) If there exist (T1,⋯,Tn)≺n⏞(1,⋯,1) satisfying
diag[φj1⏟1≤j1≤n(εJ,ζJ,ςJ),⋯,φjn⏟1≤jn≤n(εJ,ζJ,ςJ)]⪯diag[T12φj1⏟1≤j1≤n(2ε,2ζ,2ς),⋯,Tn2φjn⏟1≤jn≤n(2ε,2ζ,2ς)] | (3.15) |
and if fi:Q′×Q→Q,(i=1,⋯,n), are mappings satisfying fi(Λ,0)=0 and
diag[‖Jf1(Λ,ε+ζ+ς)−f1(Λ,J(ε+ς))−f1(Λ,J(ε+ζ−ς))+Jf1(Λ,ε−ς)‖+|θ1|φj1⏟1≤j1≤n(ε,−ζ,ς),⋯,‖Jfn(Λ,ε+ζ+ς)−fn(Λ,J(ε+ς))−fn(Λ,J(ε+ζ−ς))+Jfn(Λ,ε−ς)‖+|θn|φjn⏟1≤jn≤n(ε,−ζ,ς)]⪯diag[‖θ1(Jf1(Λ,ε−ζ+ς)−f1(Λ,J(ε+ς))−f1(Λ,J(ε−ζ−ς))+Jf1(Λ,ε−ς))‖+φj1⏟1≤j1≤n(ε,ζ,ς),⋯,‖θn(Jfn(Λ,ε−ζ+ς)−fn(Λ,J(ε+ς))−fn(Λ,J(ε−ζ−ς))+Jfn(Λ,ε−ς))‖+φjn⏟1≤jn≤n(ε,ζ,ς)], | (3.16) |
for each J∈C−¯T1 and each ε,ζ,ς∈Q,Λ∈Q′, then there are unique C-linear mappings Gi:Q′×Q→Q,(i=1,⋯,n), s.t.
diag[‖f1(Λ,ε)−G1(Λ,ε)‖,⋯,‖fn(Λ,ε)−Gn(Λ,ε)‖]⪯diag[T12(1−T1)φj1⏟1≤j1≤n(ε2,ε,−ε2),⋯,Tn2(1−Tn)φjn⏟1≤jn≤n(ε2,ε,−ε2)], | (3.17) |
for each ε∈Q,Λ∈Q′.
(ii) Furthermore, if (T1,⋯,Tn)≺n⏞(12,⋯,12), φj1⏟1≤j1≤n,⋯,φjn⏟1≤jn≤n are continuous functions and also fi,(i=1,⋯,n), are continuous and satisfy fi(Λ,2ε)=2fi(Λ,ε) and
diag[‖f1(Λ,ε)f1(Λ,ζ)−f1(Λ,f1(Λ,ε)ζ)−f1(Λ,εf1(Λ,ζ))‖,⋯,‖fn(Λ,ε)fn(Λ,ζ)−fn(Λ,fn(Λ,ε)ζ)−fn(Λ,εfn(Λ,ζ))‖]⪯diag[φj1⏟1≤j1≤n(ε,ζ,ε),⋯,φjn⏟1≤jn≤n(ε,ζ,ε)], |
for each ε,ζ∈Q,Λ∈Q′, then fi:Q′×Q→Q are continuous antiderivations.
Proof. Using the same reasoning as in the proof of Theorem 3.7, we obtain the desired result.
Here, let n=7.
Corollary 3.9. Suppose fi:Q′×Q→Q(i=1,…,n) are mappings satisfying fi(Λ,0)=0 and
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖+(1−|θ1|)φⓈj1⏟1≤j1≤n(‖ε2‖+‖ζ2‖+‖ς2‖),…,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖+(1−|θn|)φⓈjn⏟1≤jn≤n(‖ε2‖+‖ζ2‖+‖ς2‖)] |
for each ε,ζ,ς∈Q, and Λ∈Q′. Then there are unique additive mappings f′i:Q′×Q→Q s.t.
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]n×n⪯diag[φⓈj1⏟1≤j1≤n(‖ε‖2),…,φⓈjn⏟1≤jn≤n(‖ε‖2)], |
for each ε∈Q and Λ∈Q′.
Proof. The proof follows from Theorem 3.2 by letting
diag[φj1⏟1≤j1≤n(ε,ζ,ς),…,φjn⏟1≤jn≤n(ε,ζ,ς)]:=diag[φⓈj1⏟1≤j1≤n(‖ε2‖+‖ζ2‖+‖ς2‖),…,φⓈjn⏟1≤jn≤n(‖ε2‖+‖ζ2‖+‖ς2‖)], |
for each ε,ζ,ς∈Q. Choosing (T1,…,Tn)=(47,…,47), we obtain the desired result.
Corollary 3.10. Suppose fi:Q′×Q→Q,(i=1,…,n) are mappings satisfying fi(Λ,0)=0 and
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖+(1−|θ1|)φⓈj1⏟1≤j1≤n(‖εζς‖),…,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖+(1−|θn|)φⓈjn⏟1≤jn≤n(‖εζς‖)] |
for each ε,ζ,ς∈Q and Λ∈Q′. Then there are unique additive mappings f′i:Q′×Q→Q,(i=1,…,n), s.t.
diag[‖f1(Λ,ε)−f′1(Λ,ε)‖,…,‖fn(Λ,ε)−f′n(Λ,ε)‖]⪯diag[φⓈj1⏟1≤j1≤n(‖ε‖3),…,φⓈjn⏟1≤jn≤n(‖ε‖3)], |
for each ε∈Q and Λ∈Q′.
Proof. The proof follows from Theorem 3.2 by letting
diag[φj1⏟1≤j1≤n(ε,ζ,ς),…,φjn⏟1≤jn≤n(ε,ζ,ς)]:=diag[φⓈj1⏟1≤j1≤n(‖εζς‖),…,φⓈjn⏟1≤jn≤n(‖εζς‖)], |
for each ε,ζ,ς∈Q and Λ∈Q′. Choosing (T1,…,Tn)=(89,…,89), we obtain the desired result.
Corollary 3.11. Let fi:Q′×Q→Q,(i=1,…,n) be odd mappings satisfying
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,…,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1[f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς)]‖+(1−|θ1|)φⓈj1⏟1≤j1≤n(‖εζς‖),…,‖θn[fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς)]‖+(1−|θn|)φⓈjn⏟1≤jn≤n(‖εζς‖)], | (3.18) |
for each ε,ζ,ς∈Q and Λ∈Q′. Then fi(i=1,…,n) are additive.
Proof. Putting ε=0 in (3.18), we get
diag[‖f1(Λ,ζ+ς)−f1(Λ,ς)−f1(Λ,ζ−ς)+f1(Λ,−ς)‖,…,‖fn(Λ,ζ+ς)−fn(Λ,ς)−fn(Λ,ζ−ς)+fn(Λ,−ς)‖]⪯diag[‖θ1(f1(Λ,−ζ+ς)−f1(Λ,ς)−f1(Λ,−ζ−ς)+f1(Λ,−ς))‖,…,‖θn(fn(Λ,−ζ+ς)−fn(Λ,ς)−fn(Λ,−ζ−ς)+fn(Λ,−ς))‖], | (3.19) |
for each ζ,ς∈Q and Λ∈Q′. Replacing ζ by −ζ in (3.19), we have
diag[‖f1(Λ,−ζ+ς)−f1(Λ,ς)−f1(Λ,−ζ−ς)+f1(Λ,−ς)‖,…,‖fn(Λ,−ζ+ς)−fn(Λ,ς)−fn(Λ,−ζ−ς)+fn(Λ,−ς)‖]⪯diag[‖θ1[f1(Λ,ζ+ς)−f1(Λ,ς)−f1(Λ,ζ−ς)+f1(Λ,−ς)]‖,…,‖θn[fn(Λ,ζ+ς)−fn(Λ,ς)−fn(Λ,ζ−ς)+fn(Λ,−ς)]‖], | (3.20) |
for each ζ,ς∈Q and Λ∈Q′. From (3.19) and (3.20), it follows that
fi(Λ,ζ+ς)−fi(Λ,ς)−fi(Λ,ζ−ς)+fi(Λ,−ς)=0,i=1,…,n |
for each ζ,ς∈Q and Λ∈Q′. Since fi,(i=1,…,n), are odd mappings,
fi(ς+ζ)+fi(ς−ζ)−2fi(ς)=0,i=1,…,n |
for each ζ,ς∈Q and Λ∈Q′. Thus the mappings fi,(i=1,…,n), are additive.
Corollary 3.12. Suppose fi:Q′×Q→Q,(i=1,⋯,n), are mappings satisfying fi(Λ,0)=0 and
diag[‖f1(Λ,ε+ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε+ζ−ς)+f1(Λ,ε−ς)‖,⋯,‖fn(Λ,ε+ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε+ζ−ς)+fn(Λ,ε−ς)‖]⪯diag[‖θ1(f1(Λ,ε−ζ+ς)−f1(Λ,ε+ς)−f1(Λ,ε−ζ−ς)+f1(Λ,ε−ς))‖+(1−|θ1|)φⓈj1⏟1≤j1≤n(‖ε4+ζ4+ς4‖),⋯,‖θn(fn(Λ,ε−ζ+ς)−fn(Λ,ε+ς)−fn(Λ,ε−ζ−ς)+fn(Λ,ε−ς))‖+(1−|θn|)φⓈjn⏟1≤jn≤n(‖ε4+ζ4+ς4‖)] |
and
\begin{align*} &\mathit{\text{diag}}\bigg[\:\:\bigg\Vert f_{1}(\Lambda, \varepsilon)f_{1}(\Lambda, \zeta)-f_{1}(\Lambda, f_{1}(\Lambda, \varepsilon)\zeta)-f_{1}(\Lambda, \varepsilon f_{1}(\Lambda, \zeta))\bigg\Vert \: , \cdots , \\ & \quad \bigg\Vert f_{n}(\Lambda, \varepsilon)f_{n}(\Lambda, \zeta)-f_{n}(\Lambda, f_{n}(\Lambda, \varepsilon)\zeta)-f_{n}(\Lambda, \varepsilon f_{n}(\Lambda, \zeta))\bigg\Vert \: \bigg] \\ & \preceq \mathit{\text{diag}}\bigg[\:\: {\underbrace{\varphi_{j_{1}}^{{\circledS}}}_{1\leq j_{1}\leq n}}\bigg(\Vert 2\varepsilon^{4}+\zeta^{4}\Vert\bigg) , \cdots , {\underbrace{\varphi_{j_{n}}^{{\circledS}}}_{1\leq j_{n}\leq n}}\bigg(\Vert 2\varepsilon^{4}+\zeta^{4}\Vert \bigg)\bigg]_{n\times n}, \end{align*} |
for each \varepsilon, \zeta, \varsigma\in \mathscr{Q}, \: \Lambda\in \mathscr{Q}^{\prime} . If f_{i}(\Lambda, 2\varepsilon) = 2 f_{i}(\Lambda, \varepsilon) foreach \varepsilon, \zeta, \varsigma\in \mathscr{Q}, \: \Lambda\in \mathscr{Q}^{\prime} , and f_{i}, (i = 1, \cdots, n), are continuous, then the mappings f_{i}: \mathscr{Q}^{\prime}\times \mathscr{Q}\to \mathscr{Q}, (i = 1, \cdots, n), are antiderivations.
Proof. The proof follows from Theorem 3.7 by letting
\begin{eqnarray*} &&\text{diag}\bigg[\:\: \underbrace{\varphi_{j_{1}}}_{1\leq j_{1}\leq n}(\varepsilon , \zeta , \varsigma) , \cdots , \underbrace{\varphi_{j_{n}}}_{1\leq j_{n}\leq n}(\varepsilon , \zeta , \varsigma) \bigg]\\ &&: = \text{diag}\bigg[\:\:{\underbrace{\varphi_{j_{1}}^{{\circledS}}}_{1\leq j_{1}\leq n}} \bigg(\Vert \varepsilon^{4}+\zeta^{4}+\varsigma^{4} \Vert\bigg) \: , \cdots , \:{\underbrace{\varphi_{j_{n}}^{{\circledS}}}_{1\leq j_{n}\leq n}}\bigg( \Vert \varepsilon^{4}+\zeta^{4}+\varsigma^{4} \Vert \bigg) \:\bigg]_{n\times n} \end{eqnarray*} |
for each \varepsilon, \zeta, \varsigma\in \mathscr{Q} . Choosing (\mathcal{T}_{1}, \cdots, \mathcal{T}_{n}) = \overbrace{(\frac{8}{17}, \cdots, \frac{8}{17})}^{n} , we obtain the desired result.
In this study, we investigated the concept of antiderivations in Banach algebras and study multi-super-stability of antiderivations in Banach algebras, associated with functional inequalities.
The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through Research Partnership Program no RP-21-09-08.
The authors declare that they have no competing interests.
[1] |
Kaczorek E, Chrzanowski L, Pijanowska A, et al. (2008) Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: Rhamnolipides and saponins. Bioresource Technol 99: 4285–4291. doi: 10.1016/j.biortech.2007.08.049
![]() |
[2] |
Toledo FL, Calvo C, Rodelas B, et al. (2006) Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol 29: 244–252. doi: 10.1016/j.syapm.2005.09.003
![]() |
[3] | Solomons TWG, Fryhle CB (2000) Organic Chemistry, 7 Eds., New York: Wiley, 1–30. |
[4] | Li H, Liu YH, Luo N, et al. (2006) Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22. Res Microbiol 157: 629–636. |
[5] |
Chen HY, Teng YG, Wang JS (2013) Source apportionment for sediment PAHs from the Daliao River (China) using an extended fit measurement mode of chemical mass balance model. Ecotox Environ Safe 88: 148–154. doi: 10.1016/j.ecoenv.2012.11.007
![]() |
[6] | Sawadogo A, Otoidobiga HC, Nitiema LW, et al. (2016) Optimization of hydrocarbons biodegradation by bacterial strains isolated from wastewaters in Ouagadougou, Burkina Faso: case study of SAE 40/50 used oils and diesel. J Agric Chem Environ 5: 1–11. |
[7] |
Lin C, Gan L, Chen ZL (2010) Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J Hazard Mater 182: 771–777. doi: 10.1016/j.jhazmat.2010.06.101
![]() |
[8] | Deng MC, Li J, Liang FR, et al. (2014) Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China. Mar Pollut Bull 83: 79–86. |
[9] |
Yuan SY, Shiung LC, Chang BV (2002) Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil. B Environ Contam Tox 69: 66–73. doi: 10.1007/s00128-002-0011-z
![]() |
[10] |
Perelo LW (2010) Review: In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177: 81–89. doi: 10.1016/j.jhazmat.2009.12.090
![]() |
[11] |
Delille D, Pelletier E, Rodriguez-Blanco A, et al. (2009) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol 32: 1521–1528. doi: 10.1007/s00300-009-0652-z
![]() |
[12] |
Männistö MK, Häggblom MM (2006) Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29: 229–243. doi: 10.1016/j.syapm.2005.09.001
![]() |
[13] |
Giudice AL, Casella P, Carusa C, et al. (2010) Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast. Polar Biol 33: 929–943. doi: 10.1007/s00300-010-0770-7
![]() |
[14] | Lechner S, Mayr R, Francis KP, et al. (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48: 1373–1382. |
[15] | El-Rahman HAA, Fritze D, Spröer C, et al. (2002) Two novel psychrotolerant species, Bacillus psychrotolerants sp. nov. and Bacillus psychrodurans sp. navo., which contain ornithine in their cell walls. Int J Syst Evol Microbiol 52: 2117–2133. |
[16] |
Vazquez SC, Coria SH, Cormack WPM (2004) Extracellular proteases from eight psychrotolerant antarctic strains. Microbiol Res 159: 157–166. doi: 10.1016/j.micres.2004.03.001
![]() |
[17] | Demir İ, Demirbağ Z, Beldüz AO (2000) Isolation and characterization of phenanthrene decomposing Pseudomonas sp. Fresen Environ Bull 9: 9–16. |
[18] |
Nievas ML, Commendatore MG, Estevas JL, et al. (2005) Effect of pH modification on bilge waste biodegradation by a native microbial community. Int Biodeter Biodegr 56: 151–157. doi: 10.1016/j.ibiod.2005.06.006
![]() |
[19] | Helmke E, Weyland H (2004) Psychrophilic Versus psychrotolerant bacteria occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50: 553–561. |
[20] |
Luigi M, Gaetano DM, Vivia B, et al. (2007) Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar Pollut Bull 54: 1754–1761. doi: 10.1016/j.marpolbul.2007.07.011
![]() |
[21] | Okoh A, Ajisebutu S, Babalola G, et al. (2001) Potential of Burkholderia cepacia RQ1 in the biodegradation of heavy crude oil. Int Microbiol 4: 83–87. |
[22] | Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53: 224–229. |
[23] | Christova N, Tuleva B, Nikolova-Damyanova B (2004) Enhanced hydrocarbon biodegradation by newly isolated Bacillus subtilis strain. Z Naturforsch C 59: 205–208. |
[24] |
Sponza DT, Gok O (2010) Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresource Technol 101: 914–924. doi: 10.1016/j.biortech.2009.09.022
![]() |
[25] |
Sponza DT, Gok O (2012) Aerobic biodegradation and inhibition kinetics of poly-aromatic hydrocarbons (PAHs) in a petrochemical industry wastewater in the presence of biosurfactants. J Chem Technol Biotechnol 87: 658–672. doi: 10.1002/jctb.2762
![]() |
[26] | Russell NJ, Cowan DA (2006) Handling of psychrophilic micro-organisms. Meth Microbiol 35: 371–374. |
[27] | Deming JW (2009) Extremophiles: Cold Environments, In: Encyclopedia of Microbiology, 3 Eds., USA: Schaechter, 147–157. |
[28] | Ruberto LAM, Vazquez SC, Cormack WPM (2008) Bacteriology of Extremely Cold Soils Exposed to Hydrocarbon Pollution, In: Dion P, Nautiyal CS, Ediors, Microbiology of Extrem Soils, USA: Springer, 247–274. |
[29] | Brakstad OG, Booth AM, Fakness L (2010) Microbial Degradation of Petroleum Compounds in Cold Marine Water and Ice, In: Bej AK, Aislabie J, Atlas RM, Ediors, Polar Microbiology: the Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments, USA: CRC Press, 231–247. |
[30] |
Zhan Z, Gai L, Hou Z, et al. (2010) Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresource Technol 101: 8452–8456. doi: 10.1016/j.biortech.2010.05.060
![]() |
[31] |
Connaughton S, Collins G, O'Flaherty V (2006) Psycrophilic and mesophilic anaerobic digestion of brewery effluent; a comparative study. Water Res 40: 2503–2510. doi: 10.1016/j.watres.2006.04.044
![]() |
[32] |
Rüger HJ, Fritze D, Spröer C (2000) New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species. Int J Syst Evol Microbiol 50: 1305–1313. doi: 10.1099/00207713-50-3-1305
![]() |
[33] |
Trejo-Hernandez MR, Ortiz A, Okoh AI, et al. (2007) Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Chemosphere 68: 848–855. doi: 10.1016/j.chemosphere.2007.02.023
![]() |
[34] |
Haddadin MSY, Arqoub AAA, Reesh IA, et al. (2009) Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energy Convers Manage 50: 983–990. doi: 10.1016/j.enconman.2008.12.015
![]() |
[35] |
Dhote M, Juwarkar A, Kumar A, et al. (2010) Biodegration of chrysene by the bacterial strains isolated from oily sludge. World J Microbiol Biotechnol 26: 329–335. doi: 10.1007/s11274-009-0180-6
![]() |
[36] |
Al-Saleh ES, Drobiova H, Obuekwe C (2009) Predominant culturable crude oil-degrading bateria in the coast of Kuwait. Int Biodeter Biodegr 63: 400–406. doi: 10.1016/j.ibiod.2008.11.004
![]() |
[37] | Toledo FL, Gonzalez-Lopez J, Calvo C (2008) Production of emulsifiers by Bacillus subtilis, Alcaligenes faecalis and Enterobacter species in liquid culture Bioresourse Technol 99: 8470–8475. |
[38] | Pathak H, Kantharia D, Malpani A, et al. (2009) Naphthalene degradation by Pseudomonas sp. HOB1: In vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms. J Hazard Mater 166: 1466–1473. |
[39] | Larter S, Wilhelms A, Head I, et al. (2003) The controls on the composition of biodegraded oils in the deep subsurface biodegradation rates in petroleum reservoirs. Org Geochem 34: 601–613. |
[40] | Das N, Chandran P (2010) Bioremediation of petroleum hydrocarbon contaminants-an overview. Biotechnol Res Int 2011: 1–13. |
[41] |
Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technol 98: 1339–1345. doi: 10.1016/j.biortech.2006.05.032
![]() |
[42] |
Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31: 835–844. doi: 10.1080/09593331003663328
![]() |
[43] | Zhuang WQ, Tay JH, Maszenan A, et al. (2002) Bacillus naphthovorans sp. nov. from oil-contaminated tropical marine sediments and its role in naphthalene biodegradation. Appl Microbiol Biotechnol 58: 547–554. |
[44] |
Swaathy S, Kavitha V, Pravin AS, et al. (2014) Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnol Rep 4: 161–170. doi: 10.1016/j.btre.2014.10.004
![]() |
[45] | Ukiwe LN, Egereonu UU, Njoku PC, et al. (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5: 43–55. |
1. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Themistocles M. Rassias, Choonkil Park, Special functions and multi-stability of the Jensen type random operator equation in C^{*}-algebras via fixed point, 2023, 2023, 1029-242X, 10.1186/s13660-023-02942-0 | |
2. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 13, 978-3-031-55563-3, 337, 10.1007/978-3-031-55564-0_13 | |
3. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 14, 978-3-031-55563-3, 351, 10.1007/978-3-031-55564-0_14 | |
4. | Safoura Rezaei Aderyani, Azam Ahadi, Reza Saadati, Hari M. Srivastava, Aggregate special functions to approximate permuting tri-homomorphisms and permuting tri-derivations associated with a tri-additive ψ-functional inequality in Banach algebras, 2024, 44, 0252-9602, 311, 10.1007/s10473-024-0117-z | |
5. | Safoura Rezaei Aderyani, Reza Saadati, Stability and controllability results by n–ary aggregation functions in matrix valued fuzzy n–normed spaces, 2023, 643, 00200255, 119265, 10.1016/j.ins.2023.119265 | |
6. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 11, 978-3-031-55563-3, 275, 10.1007/978-3-031-55564-0_11 | |
7. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 1, 978-3-031-55563-3, 1, 10.1007/978-3-031-55564-0_1 | |
8. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 10, 978-3-031-55563-3, 251, 10.1007/978-3-031-55564-0_10 |