Review Topical Sections

Halophilic microorganism resources and their applications in industrial and environmental biotechnology

  • Hypersaline environments are extreme habitats on the planet and have a diverse microbial population formed by halophilic microorganisms. They are considered to be actual or potential sources for discovery bioactive compounds, compatible solutes including novel and/or extraordinarily enzymes. To date, a number of bioactive compounds for the use in various fields of biotechnology which show assorted biological activities ranging from antioxidant, sunscreen and antibiotic actions have been reported. In addition, some halophilic microorganisms are capable of producing massive amounts of compatible solutes that are useful as stabilizers for biomolecules or stress-protective agents. The present review will impart knowledge and discuss on (i) potential biotechnological applications of bioactive compounds, compatible solutes and some novel hydrolytic enzymes; (ii) recent efforts on discovery and utilization of halophiles for biotechnological interest; (iii) future perspective of aforementioned points.

    Citation: Rungaroon Waditee-Sirisattha, Hakuto Kageyama, Teruhiro Takabe. Halophilic microorganism resources and their applications in industrial and environmental biotechnology[J]. AIMS Microbiology, 2016, 2(1): 42-54. doi: 10.3934/microbiol.2016.1.42

    Related Papers:

    [1] Wen Huang, Leiye Xu, Shengnan Xu . Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29(4): 2819-2827. doi: 10.3934/era.2021015
    [2] Hanan H. Sakr, Mohamed S. Mohamed . On residual cumulative generalized exponential entropy and its application in human health. Electronic Research Archive, 2025, 33(3): 1633-1666. doi: 10.3934/era.2025077
    [3] Mingtao Cui, Wang Li, Guang Li, Xiaobo Wang . The asymptotic concentration approach combined with isogeometric analysis for topology optimization of two-dimensional linear elasticity structures. Electronic Research Archive, 2023, 31(7): 3848-3878. doi: 10.3934/era.2023196
    [4] Julian Gerstenberg, Ralph Neininger, Denis Spiegel . On solutions of the distributional Bellman equation. Electronic Research Archive, 2023, 31(8): 4459-4483. doi: 10.3934/era.2023228
    [5] Natália Bebiano, João da Providência, Wei-Ru Xu . Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians. Electronic Research Archive, 2022, 30(5): 1864-1880. doi: 10.3934/era.2022094
    [6] Xiang Xu . Recent analytic development of the dynamic $ Q $-tensor theory for nematic liquid crystals. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113
    [7] Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, José Gregorio Rodríguez-Nieto, Odette M Mendez, Ricardo Hugo Arteaga-Bastidas . Extended Brauer analysis of some Dynkin and Euclidean diagrams. Electronic Research Archive, 2024, 32(10): 5752-5782. doi: 10.3934/era.2024266
    [8] Yu Chen, Qingyang Meng, Zhibo Liu, Zhuanzhe Zhao, Yongming Liu, Zhijian Tu, Haoran Zhu . Research on filtering method of rolling bearing vibration signal based on improved Morlet wavelet. Electronic Research Archive, 2024, 32(1): 241-262. doi: 10.3934/era.2024012
    [9] Zhenhua Wang, Jinlong Yang, Chuansheng Dong, Xi Zhang, Congqin Yi, Jiuhu Sun . SSMM-DS: A semantic segmentation model for mangroves based on Deeplabv3+ with swin transformer. Electronic Research Archive, 2024, 32(10): 5615-5632. doi: 10.3934/era.2024260
    [10] Suhua Wang, Zhen Huang, Bingjie Zhang, Xiantao Heng, Yeyi Jiang, Xiaoxin Sun . Plot-aware transformer for recommender systems. Electronic Research Archive, 2023, 31(6): 3169-3186. doi: 10.3934/era.2023160
  • Hypersaline environments are extreme habitats on the planet and have a diverse microbial population formed by halophilic microorganisms. They are considered to be actual or potential sources for discovery bioactive compounds, compatible solutes including novel and/or extraordinarily enzymes. To date, a number of bioactive compounds for the use in various fields of biotechnology which show assorted biological activities ranging from antioxidant, sunscreen and antibiotic actions have been reported. In addition, some halophilic microorganisms are capable of producing massive amounts of compatible solutes that are useful as stabilizers for biomolecules or stress-protective agents. The present review will impart knowledge and discuss on (i) potential biotechnological applications of bioactive compounds, compatible solutes and some novel hydrolytic enzymes; (ii) recent efforts on discovery and utilization of halophiles for biotechnological interest; (iii) future perspective of aforementioned points.


    Throughout this paper, by a topological dynamical system $ (X,T) $ (TDS for short) we mean a compact metric space $ (X,d) $ with a homeomorphism map $ T $ from $ X $ onto itself, where $ d $ refers to the metric on $ X $. By a measure preserving system (MPS for short) we mean a quadruple $ (X,\mathcal{X},\mu,T) $, where $ (X,\mathcal{X},\mu) $ is a Borel probability space and $ T, T^{-1}:X\rightarrow X $ are both measurable and measure preserving, i.e. $ T^{-1}\mathcal{X} = \mathcal{X} = T\mathcal{X} $ and $ \mu(A) = \mu(T^{-1}A) $ for each $ A\in \mathcal{X} $.

    Given a TDS $ (X,T) $, let $ \mathcal{M}(X,T) $ be the set of all $ T $-invariant Borel probability measures of $ X $. In weak$ ^* $-topology, $ \mathcal{M}(X,T) $ is a compact convex space. By Krylov-Bogolioubov Theorem $ \mathcal{M}(X,T)\neq \emptyset $. For each $ \mu\in \mathcal{M}(X,T) $, $ (X,\mathcal{B}_X,T,\mu) $ can be viewed as a MPS, where $ \mathcal{B}_X $ is the Borel $ \sigma $-algebra of $ X $. Let $ \mathcal{M}^e(X,T) $ be the space of all ergodic measures of $ (X, T) $. Then $ \mathcal{M}^e(X,T) $ is the set of extreme points of $ \mathcal{M}(X,T) $.

    Define

    $ \mathcal{E}(T) = \{h_\mu(T):\mu\in\mathcal{M}^e(X,T)\} $

    where $ h_\mu(T) $ denotes the measure-theoretic entropy of the measure preserving system $ (X,\mathcal{B}_X,T,\mu) $. By the variational principle of entropy $ \sup \mathcal{E}(T) = h_{top}(T) $, where $ h_{top}(T) $ is the topological entropy of $ (X,T) $. The extreme case is that $ \mathcal{M}^{e}(X,T) $ consists of only one member, that is, $ (X,T) $ is uniquely ergodic. When $ (X,T) $ is uniquely ergodic, $ \mathcal{E}(T) = \{h_{top}(T)\} $.

    It is interesting to consider the case when $ \mathcal{E}(T) $ is big. As a direct corollary of [7,Theorem 11], Katok showed that

    $ [0,htop(f))E(f)
    $
    (1.1)

    for any $ C^{1+\alpha} $ diffeomorphism $ f $ on a two-dimensional surface, based on the fact that every ergodic measure of positive metric entropy is hyperbolic. Katok conjectured that (1.1) holds for any smooth system.

    Conjecture 1.1 (Katok). Let $ f $ be a $ C^r $ ($ r>1 $) diffeomorphism on a smooth compact manifold $ M $, then (1.1) holds, i.e. for every $ a\in [0,h_{top}(f)) $, there is $ \mu_a\in \mathcal{M}^e(M,f) $ such that $ h_{\mu_a}(f) = a $.

    We need to point out that Katok's conjecture implies that any positive entropy smooth system is not uniquely ergodic, though whether or not a smooth diffeomorphism of positive topological entropy can be uniquely ergodic is still in question (see [5] for Herman's example: positive entropy minimal $ C^\infty $-smooth diffeomorphisms). In [13,14], Quas and Soo showed that if a topological dynamical system satisfies asymptotic entropy expansiveness, almost weak specification property and small boundary property, then it is universal, which implies the conclusion of Katok's conjeture. Recently, Burguet [2], Chandgotia and Meyerovitch [4], extended the result of Quas and Soo to request only the almost weak specification property.

    In this paper, we study intermediate entropy for affine transformations of nilmanifolds. Throughout this paper, by a nilmanifold $ G/\Gamma $ we mean that $ G $ is a connected, simply connected nilpotent Lie group, and $ \Gamma $ is a cocompact discrete subgroup of $ G $. A homeomorphism $ \tau $ of $ G/\Gamma $ is an affine transformation if there exist a $ \Gamma $-invariant automorphism $ A $ of $ G $ and a fixed element $ g_0\in G $ such that $ \tau(g\Gamma) = g_0A(g)\Gamma $ for each $ g\in G $. Our main result is the following.

    Theorem 1.2. Let $ G/\Gamma $ be a nilmanifold and $ \tau $ be an affine transformation of $ G/\Gamma $. If $ (G/\Gamma,\tau) $ has a periodic point, then $ \mathcal{E}(\tau) = [0, h_{top}(\tau)] $.

    Following Lind [11], we say that an affine transformation of a nilmanifold is quasi-hyperbolic if its associated matrix has no eigenvalue 1. As an application of Theorem 1.2, one has the following.

    Theorem 1.3. Let $ G/\Gamma $ be a nilmanifold and $ \tau $ be an affine transformation of $ G/\Gamma $. If $ \tau $ is quasi-hyperbolic, then $ \mathcal{E}(\tau) = [0, h_{top}(\tau)] $.

    The paper is organized as follows. In Section 2, we introduce some notions. In Section 3, we prove Theorem 1.2 and Theorem 1.3.

    In this section, we recall some notions of entropy, nilmanifold and upper semicontinuity of entropy map.

    We summarize some basic concepts and useful properties related to topological entropy and measure-theoretic entropy here.

    Let $ (X,T) $ be a TDS. A cover of $ X $ is a family of subsets of $ X $, whose union is X. A partition of $ X $ is a cover of X whose elements are pairwise disjoint. Given two covers $ \mathcal{U},\mathcal{V} $ of $ X $, set $ \mathcal{U}\vee \mathcal{V} = \{ U\cap V:U\in \mathcal{U},V\in \mathcal{V}\} $ and $ T^{-i}\mathcal{U} = \{T^{-i}U: U\in \mathcal{U}\} $ for $ i\in \mathbb{Z}_+ $. Denote by $ {N}(\mathcal{U}) $ the minimal cardinality among all cardinalities of subcovers of $ \mathcal{U} $.

    Definition 2.1. Let $ (X,T) $ be a TDS and $ \mathcal{U} $ be a finite open cover of $ X $. The topological entropy of $ \mathcal{U} $ is defined by

    $ h_{top}(T,\mathcal{U}) = \lim\limits_{n\rightarrow +\infty}\frac{1}{n}\log {N}(\bigvee_{i = 0}^{n-1}T^{-i}\mathcal{U}), $

    where $ \{\log {N}(\bigvee_{i = 0}^{n-1}T^{-i}\mathcal{U})\}_{n = 1}^\infty $ is a sub-additive sequence and hence $ h_{top}(T,\mathcal{U}) $ is well defined. The topological entropy of $ (X,T) $ is

    $ h_{top}(T) = \sup\limits_{\mathcal{U}} h_{top}(T,\mathcal{U}), $

    where supremum is taken over all finite open covers of $ X $.

    A subset $ E $ of $ X $ is an $ (n, \epsilon) $-separated set with respect to $ T $ provided that for any distinct $ x,y\in E $ there is $ 0\le j<n $ such that $ d(T^jx, T^jy)\ge\epsilon $. Let $ K $ be a compact subset of $ X $. Let $ s_n^{(T)}(\epsilon, K) $ be the largest cardinality of any subset $ E $ of $ K $ which is an $ (n, \epsilon) $-separated set. Then the Bowen's topological entropy of $ K $ with respect to $ T $ [1] is defined by

    $ h_d(T,K) = \lim\limits_{\epsilon\to0}\limsup\limits_{n\to\infty}\frac{\log s^{(T)}_n(\epsilon,K)}{n}. $

    Let $ Z $ be a non-empty subset of $ X $. The Bowen's topological entropy of $ Z $ with respect to $ T $ is defined by

    $ h_d(T,Z) = \sup\limits_{K\subset Z\atop K\text{ is compact}}h_d(T,K). $

    And the Bowen's topological entropy of a TDS $ (X,T) $ is defined by $ h_d(T) = h_d(T,X) $ which happens to coincide with $ h_{top}(T) $.

    Next we define measure-theoretic entropy. Let $ (X,\mathcal{X},\mu,T) $ be a MPS and $ \mathcal{P}_X $ be the set of finite measurable partitions of $ X $. Suppose $ \xi\in \mathcal{P}_X $. The entropy of $ \xi $ is defined by

    $ h_{\mu}(T,\xi) = \lim\limits_{n\rightarrow +\infty} \frac{1}{n} H_\mu(\bigvee_{i = 0}^{n-1}T^{-i}{\xi}), $

    where $ H_\mu(\bigvee_{i = 0}^{n-1}T^{-i}{\xi}) = -\sum _{A\in \bigvee_{i = 0}^{n-1}T^{-i}{\xi}} \mu (A)\log \mu(A) $ and $ \{H_\mu(\bigvee_{i = 0}^{n-1}T^{-i}{\xi})\}_{n = 1}^\infty $ is a sub-additive sequence. The entropy of $ (X,\mathcal{X},T,\mu) $ is defined by

    $ h_{\mu}(T) = \sup\limits_{\xi\in \mathcal{P}_X} h_\mu(T,\xi). $

    The basic relationship between topological entropy and measure-theoretic entropy is given by the variational principle [12].

    Theorem 2.2 (The variational principle). Let $ (X, T ) $ be a TDS. Then

    $ h_{top}(T) = \sup\{h_\mu(T): \mu\in \mathcal{M}(X,T)\} = \sup\{h_\mu(T): \mu\in \mathcal{M}^e(X,T)\}. $

    A factor map $ \pi: (X,T)\rightarrow (Y,S) $ between the TDS $ (X,T) $ and $ (Y,S) $ is a continuous onto map with $ \pi\circ T = S\circ \pi $; we say that $ (Y,S) $ is a factor of $ (X,T) $ and that $ (X,T) $ is an extension of $ (Y,S) $. The systems are said to be conjugate if $ \pi $ is bijective. In [8], Ledrappier and Walters showed that if $ \pi: (X,T)\rightarrow (Y,S) $ is a factor map and $ \nu\in\mathcal{M}(Y,S) $, then

    $ supμM(X,T)π(μ)=νhμ(T)=hν(S)+Yhd(T,π1(y))dν(y)
    $
    (2.1)

    where $ \pi(\mu)(B) = \mu(\pi^{-1}(B)) $ for $ B\in\mathcal{B}_Y $.

    Let $ G $ be a compact metric group and $ \tau:G\to G $ be a continuous surjective map. Let $ \pi:(X,T)\to (Y,S) $ be a factor map. We say that $ \pi $ is a $ (G,\tau) $-extension, if there exists a continuous map $ P: X\times G\to X $ (we write $ P(x, g) = xg $) such that:

    $ (1) $ $ \pi^{-1}(\pi(x)) = xG $ for $ x\in X $,

    $ (2) $ For any $ x\in X,g_1,g_2\in G $, $ xg_1 = xg_2 $ if and only if $ g_1 = g_2 $,

    $ (3) T(xg) = T(x)\tau( g) $ for $ x\in X $ and $ g\in G $.

    The following is from [1,Theorem 19].

    Theorem 2.3. Let $ \pi:(X,T)\to (Y,S) $ be a factor map. If $ \pi $ is a $ (G,\tau) $-extension, then $ h_{top}(T) = h_{top}(S)+h_{top}(\tau) $.

    Remark 2.4. (1) In the above situation, Bowen shows that

    $ hd(T,π1(y))=htop(τ) for any yY,
    $
    (2.2)

    where $ d $ is the metric on $ X $. This fact is proved in the proof of [1,Theorem 19]. In fact, (2.2) holds in the more general situation of actions of amenable groups. This fact is given explicitly as Lemma 6.12 in the paper [10].

    (2) If $ G $ is a Lie group, $ H $ and $ N $ are cocompact closed subgroups of $ G $ such that $ N $ is a normal subgroup of $ H $, then $ G/N $ and $ G/H $ are compact metric spaces and $ H/N $ is a compact metric group. Given further $ g_0 \in G $ and an automorphism $ A $ of $ G $ preserving $ H $ and $ N $, one has the affine maps $ T : G/N \to G/N $ given by $ T(gN) = g_0A(g)N $, and $ S:G/H \to G/H $ given by $ S(gH) = g_0A(g)H $, and the automorphism $ \tau $ of $ H/N $ given by $ \tau (hN) = A(h)N $. Then there is a map $ \pi: G/N\to G/H $ given by $ \pi(gN) = gH $ for $ g\in G $, and a map $ P : G/N \times H/N \to G/N $ given by $ P(gN, hN) = ghN $ for $ g,h\in G $. These maps satisfy the conditions $ (1)- (3) $ in the definition of $ (H/N,\tau) $-extension for the factor map $ \pi:(G/N,T)\to (G/H,S) $. That is, $ (G/N, T) $ is an $ (H/N, \tau ) $-extension of $ (G/H, S) $. Hence one has by (2.2) that

    $ hd(T,π1(y))=htop(τ) for any yG/H,
    $
    (2.3)

    where $ d $ is the metric on $ G/N $.

    Given a TDS $ (X,T) $, the entropy map of $ (X,T) $ is the map $ \mu\mapsto h_\mu(T) $ which is defined on $ \mathcal{M}(X,T) $ and has value in $ [0,\infty] $. For any invariant measure $ \mu $ on $ X $, there is a unique Borel probability measure $ \rho $ on $ \mathcal{M}(X,T) $ with $ \rho(\mathcal{M}^e(X,T)) = 1 $ such that

    $ \int_{\mathcal{M}^e(X,T)}\int_X f(x)dm(x)d\rho(m) = \int_Xf(x)d\mu(x)\text{ for all }f\in C(X). $

    We write $ \mu = \int_{\mathcal{M}^e(X,T)}md\rho(m) $ and call it the ergodic decomposition of $ \mu $. The following is standard.

    Theorem 2.5. Let $ (X,T) $ be a TDS. If $ \mu\in\mathcal{M}(X,T) $ and $ \mu = \int_{\mathcal{M}^e(X,T)}md\rho(m) $ is the ergodic decomposition of $ \mu $. Then

    $ h_\mu(T) = \int_{\mathcal{M}^e(X,T)}h_m(T)d\rho(m). $

    We say that the entropy map of $ (X,T) $ is upper semicontinuous if for $ \mu_n,\mu\in\mathcal{M}(X,T) $

    $ \lim\limits_{n\to\infty}\mu_n = \mu \text{ implies }\limsup\limits_{n\to\infty}h_{\mu_n}(T)\le h_{\mu}(T). $

    We say that a TDS $ (X,T) $ satisfies asymptotic entropy expansiveness if

    $ \lim \limits_{\delta\rightarrow 0} \sup\limits_{x\in X} h_{d}(T,\Gamma_\delta(x)) = 0. $

    Here for each $ \delta>0 $,

    $ \Gamma_\delta(x) : = \{y \in X: d( T^jx,T^jy) < \delta \text{ for all }j\ge 0\}. $

    The result of Misiurewicz [12,Corollary 4.1] gives a sufficient condition for upper semicontinuity of the entropy map.

    Theorem 2.6. Let $ (X,T) $ be a TDS. If $ (X,T) $ satisfies asymptotic entropy expansiveness. Then the entropy map of $ (X,T) $ is upper semicontinuous.

    The result of Buzzi [3] gives a sufficient condition for asymptotic entropy expansiveness.

    Theorem 2.7. Let $ f $ be a $ C^\infty $ diffeomorphism on a smooth compact manifold $ M $, then $ (M,f) $ satisfies asymptotic entropy expansiveness. Especially, the entropy map of $ (M,f) $ is upper semicontinuous.

    In this section, we prove our main results. In the first subsection, we prove that Katok's conjecture holds for affine transformations of torus. In the second subsection, we show some properties of metrics on nilmanifolds. In the last subsection, we prove Theorem 1.2 and Theorem 1.3.

    We say that a topological dynamical system $ (Y, S) $ is universal if for every invertible non-atomic ergodic measure preserving system $ (X,\mathcal{X}, \mu, T) $ with measure-theoretic entropy strictly less than the topological entropy of $ S $ there exists $ \nu\in \mathcal{M}^e(Y,S) $ such that $ (X,\mathcal{X}, \mu, T) $ is isomorphic to $ (Y,\mathcal{B}_Y,\nu, S) $. In [14], Quas and Soo show that toral automorphisms are universal, which implies the conclusion of Katok's conjeture. By using Quas and Soo's result, we have the following.

    Theorem 3.1. Let $ m\in\mathbb{N} $, $ \mathbb{T}^m = \mathbb{R}^m/\mathbb{Z}^m $ and $ \tau $ be an affine transformation of $ \mathbb{T}^m $. Then $ \mathcal{E}(\tau) = [0, h_{top}(\tau)] $.

    Proof. We think of $ \mathbb{T}^m $ as a group. Then there exist an element $ b\in\mathbb{T}^m $ and a toral automorphism $ A $ of $ \mathbb{T}^m $ such that

    $ \tau(x) = A(x)+b\text{ for each }x\in \mathbb{T}^m. $

    Let $ \mu_h $ be the Haar measure. Then $ h_{\mu_h}(\tau) = h_{top}(\tau) $. Let $ \mu_h = \int_{\mathcal{M}^e(\mathbb{T}^m,\tau)}\nu d\rho(\nu) $ be the ergodic decomposition of $ \mu_h $. Then by Theorem 2.5, one has

    $ h_{top}(\tau) = \int_{\mathcal{M}^e(\mathbb{T}^m,\tau)}h_\nu(\tau) d\rho(\nu). $

    By variational principle, there exists $ \mu\in\mathcal{M}^e(\mathbb{T}^m,\tau) $ such that $ h_\mu(\tau) = h_{top}(\tau) $. Now we assume that $ a\in [0,h_{top}(\tau)) $. We have two cases.

    Case 1. $ A $ is quasi-hyperbolic. In this case, there is $ q\in\mathbb{T}^m $ such that $ A(q) = q-b $. We let

    $ \pi(x) = x-q\text{ for each }x\in\mathbb{T}^m. $

    Then $ \pi $ is a self homeomorphism of $ \mathbb{T}^m $ and $ \pi\circ\tau = A\circ\pi $. That is, $ (\mathbb{T}^m,\tau) $ topologically conjugates to a torus automorphism. By Quas and Soo's result [14,Theorem 1], there exists $ \mu_a\in\mathcal{M}^e(\mathbb{T}^m,\tau) $ such that $ h_{\mu_a}(\tau) = a $.

    Case 2. $ A $ is not quasi-hyperbolic. In this case, we put

    $ H = \{x\in\mathbb{T}^m:(A-id)^mx = 0\}. $

    Then $ H $ is a compact subgroup of $ \mathbb{T}^m $ and $ \mathbb{T}^m/H $ is a torus. We let $ Y = \mathbb{T}^m/H $ and $ \pi_Y $ be the natural projection from $ \mathbb{T}^m $ to $ Y $. The induced map $ \tau_Y $ on $ Y $ is a quasi-hyperbolic affine transformation and the extension $ \pi_Y $ is distal. Therefore, $ h_{top}(\tau_Y) = h_{top}(\tau) $ and by Case 1 there exists $ \mu^Y_a\in\mathcal{M}^e(Y,\tau_Y) $ such that $ h_{\mu^Y_a}(\tau_Y) = a $. There is $ \mu_a\in\mathcal{M}^e(\mathbb{T}^m,\tau) $ such that $ \pi_Y(\mu_a) = \mu^Y_a. $ Since the extension $ \pi_Y $ is distal, one has $ h_{\mu_a}(\tau) = h_{\mu^Y_a}(\tau_Y) = a $ (see [6,Theorem 4.4]).

    This ends the proof of Theorem 3.1.

    Let $ G $ be a group. For $ g, h\in G $, we write $ [g, h] = ghg^{-1}h^{-1} $ for the commutator of $ g $ and $ h $ and we write $ [B_1,B_2] $ for the subgroup spanned by $ \{[b_1,b_2] : b_1 \in B_1, b_2\in B_2\} $. The commutator subgroups $ G_j $, $ j\ge 1 $, are defined inductively by setting $ G_0 = G_1 = G $ and $ G_{j+1} = [G_j ,G] $. Let $ s \ge 1 $ be an integer. We say that $ G $ is $ s $-step nilpotent if $ G_{s+1} $ is the trivial subgroup. Recall that an $ s $-step nilmanifold is a manifold of the form $ G/\Gamma $ where $ G $ is a connected, simply connected $ s $-step nilpotent Lie group, and $ \Gamma $ is a cocompact discrete subgroup of $ G $.

    If $ G/\Gamma $ is an $ s $-step nilmanifold, then for each $ j = 1,\cdots,s $, $ G_j\Gamma $ and $ G_j $ are closed subgroups of $ G $ and $ G_j\Gamma/\Gamma $ is a closed submanifold of $ G/\Gamma $ (see Subsection 2.11 in [9]).

    We fix an $ s $-step nilmanifold of the form $ G/\Gamma $ and an affine transformation $ \tau $ of $ G/\Gamma $ such that

    $ \tau(g\Gamma) = g_0A(g)\Gamma\text{ for each } g\in G $

    where $ g_0\in G $ and $ A $ is a $ \Gamma $-invariant automorphism of $ G $. For each $ j\ge1 $, we let

    $ A_j: G_{j-1}\Gamma/G_{j}\Gamma\to G_{j-1}\Gamma/G_{j}\Gamma: A_j(hG_{j}\Gamma) = A(h)G_{j}\Gamma\text{ for each } h\in G_{j-1} $

    and

    $ \tau_j: G/G_{j}\Gamma\to G/G_{j}\Gamma: \tau_j(hG_{j}\Gamma) = g_0A(h)G_{j}\Gamma\text{ for each } h\in G. $

    It is easy to see that $ \{A_j\}_{j\in\mathbb{N}} $ and $ \{\tau_j\}_{j\in\mathbb{N}} $ are well defined since $ A(G_j)\subset G_j $ for each $ j\ge 1 $.

    For each $ j\ge 1 $, define the map $ \pi_{j+1} $ from $ G/G_{j+1}\Gamma $ to $ G/G_{j}\Gamma $ by

    $ πj+1(gGj+1Γ)=gGjΓ for each gG.
    $
    (3.1)

    It is easy to see that $ \pi_{j+1} $ is continuous and onto, and satisfies $ \pi_{j+1}\circ\tau_{j+1} = \tau_{j}\circ\pi_{j+1} $. Hence, for each $ j\ge 1 $, $ \pi_{j+1}:G/G_{j+1}\Gamma\to G/G_j\Gamma $ is a factor map. We let $ b_j = h_{top}(A_j) $ for each $ j\ge 1 $. Then we have the following.

    Lemma 3.2. For each $ j\ge 1 $ and $ y\in G/G_{j}\Gamma $, $ h_{d_{j+1}}(\tau_{j+1},\pi_{j+1}^{-1}(y)) = b_{j+1} $ where $ d_{j+1} $ is the metric on $ G/G_{j+1}\Gamma $.

    Proof. In Remark 2.4 (2), we let $ N = G_{j+1}\Gamma $ and $ H = G_{j}\Gamma $. Then both $ N $ and $ H $ are cocompact subgroup of $ G $. Moreover, $ N $ is a normal subgroup of $ H $. Hence $ (G/N = G/G_{j+1}\Gamma, \tau_{j+1}) $ is an $ (H/N = G_{j}\Gamma/G_{j+1}\Gamma, A_{j+1} ) $-extension of $ (G/H = G/G_{j}\Gamma, \tau_j) $. By (2.3), one has

    $ h_{d_{j+1}}(\tau_{j+1},\pi_{j+1}^{-1}(y)) = h_{top}(A_{j+1}) = b_{j+1}\text{ for every }y\in G/G_j\Gamma. $

    This ends the proof of Lemma 3.2.

    The following result is immediately from Lemma 3.2, (2.1) and Theorem 2.7.

    Lemma 3.3. For $ j\ge 1 $ and $ \nu_j\in \mathcal{M}(G/G_j\Gamma,\tau_j) $, there exists $ \mu\in\mathcal{M}(G/G_{j+1}\Gamma, \tau_{j+1}) $ such that $ h_{\mu}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1} $.

    We have the following.

    Corollary 3.4. $ h_{top}(\tau_j) = \sum_{i = 1}^jb_i $ for $ j\ge 1 $. Especially, $ h_{top}(\tau) = \sum_{i = 1}^{s+1}b_i $.

    Proof. We prove the corollary by induction on $ j $. In the case $ j = 1 $, it is obviously true. Now we assume that the corollary is valid for some $ j\in\mathbb{N} $. Then for $ j+1 $, let $ \pi_{j+1} $ be defined as in (3.1). Then by Ledrappier and Walters's result (2.1) and variational principle Theorem 2.2, we have

    $ htop(τj+1)=supμM(G/Gj+1Γ,τj+1)hμ(τj+1)supμM(G/GjΓ,τj)(hμ(τj)+G/GjΓhdj+1(τj+1,π1j+1(y))dμ(y))htop(τj)+supμM(G/GjΓ,τj)G/GjΓhdj+1(τj+1,π1j+1(y))dμ(y)=ji=1bi+bj+1=j+1i=1bi,
    $

    where we used Lemma 3.2. On the other hand, by Lemma 3.3 there exists $ \mu\in\mathcal{M}(G/G_{j+1}\Gamma,\tau_{j+1}) $ such that $ h_\mu(\tau_{j+1}) = \sum_{i = 1}^{j+1}b_i. $ Therefore $ h_{top}(\tau_{j+1}) = \sum_{i = 1}^{j+1}b_i. $ By induction, this ends the proof of Corollary 3.4.

    Remark 3.5. We remark that the topological entropy of $ (G/\Gamma,\tau) $ is determined by the associated matrix of $ \tau $ [1]. That is

    $ htop(τ)=hd(τ)=|λi|>1log|λi|
    $

    where $ \lambda_1,\lambda_2,\cdots,\lambda_m $ are the eigenvalues of the associated matrix of $ \tau $.

    Lemma 3.6. For $ j\ge 1 $ and $ \nu_j\in \mathcal{M}^e(G/G_j\Gamma,\tau_j) $, there is $ \nu_{j+1}\in\mathcal{M}^e(G/G_{j+1}\Gamma, \tau_{j+1}) $ such that $ h_{\nu_{j+1}}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}. $

    Proof. We fix $ \nu_j\in\mathcal{M}^e(G/G_j\Gamma,\tau_j) $. Let $ \pi_{j+1} $ be defined as in (3.1). By Lemma 3.3, there exists $ \nu\in\mathcal{M}(G/G_{j+1}\Gamma,\tau_{j+1}) $ such that

    $ h_{\nu}(\tau_{j+1}) = \sup\limits_{\mu\in\mathcal{M}(G/G_{j+1}\Gamma,\tau_{j+1})\atop \pi_{j+1}(\mu) = \nu_{j}}h_{\mu}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}. $

    We fix such $ \nu $ and assume that the ergodic decomposition of $ \nu $ is

    $ \nu = \int_{\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1})}md\rho(m). $

    Then by property of ergodic decomposition, one has

    $ ρ({mMe(G/Gj+1Γ,τj+1):πj+1(m)=νj})=1.
    $

    Therefore, for $ \rho $-a.e. $ m\in\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1}) $,

    $ h_m(\tau_{j+1})\le h_\nu(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}. $

    Hence by Theorem 2.5, one has

    $ h_{\nu_j}(\tau_{j})+b_{j+1} = h_\nu(\tau_{j+1}) = \int_{\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1})}h_m(\tau_{j+1})d\rho(m)\le h_{\nu_j}(\tau_{j})+b_{j+1}. $

    We notice that the equality holds only in the case $ h_m(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1} $ for $ \rho $-a.e. $ m\in\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1}) $. Therefore, there exists $ \nu_{j+1}\in\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1}) $ such that

    $ h_{\nu_{j+1}}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}\text{ and }\pi_{j+1}(\nu_{j+1}) = \nu_j. $

    This ends the proof of Lemma 3.6.

    Now we are ready to prove our main results.

    Proof of Theorem 1.2. Firstly we assume that $ (G/\Gamma,\tau) $ has a fixed point $ p\Gamma $. We fix a real number $ a\in[0, h_{top}(\tau)] $. We are going to show that there exists $ \mu_a\in\mathcal{M}^e(G/\Gamma,\tau) $ such that $ h_{\mu_a}(\tau) = a $. By Corollary 3.4, we can find an $ i\in\{1,2,\cdots,s, s+1\} $ such that

    $ \sum\limits_{j = i+1}^{s+1}b_j\le a\le\sum\limits_{j = i}^{s+1}b_j. $

    Since $ p\Gamma $ is a fixed point of $ (G/\Gamma,\tau) $, there exists $ \gamma\in\Gamma $ such that $ g_0A(p) = p\gamma $. Therefore,

    $ \tau_{i}(pG_{i-1}\Gamma/G_{i}\Gamma) = p\gamma G_{i-1}\Gamma/G_{i}\Gamma\subset p[\gamma ,G_{i-1}]G_{i-1}\gamma\Gamma/G_{i}\Gamma\subset pG_{i-1}\Gamma/G_{i}\Gamma, $

    where we used the fact $ [\gamma,G_{i-1}]\subset G_{i-1} $. That is, $ (pG_{i-1}\Gamma/G_{i}\Gamma,\tau_i) $ is a TDS. We let

    $ \pi( phG_{i}\Gamma) = hG_{i}\Gamma\text{ for each } h\in G_{i-1}. $

    Then for each $ h\in G_{i-1} $, one has

    $ \pi\circ \tau_{i}(phG_{i}\Gamma) = p^{-1}g_0A(p)A(h)G_{i}\Gamma = \gamma A(h)G_{i}\Gamma = A(h)\gamma[\gamma,A(h)]G_{i}\Gamma = A(h)G_{i}\Gamma $

    where we used the fact $ [\gamma,A(h)]\in G_i $ since $ h\in G_{i-1} $. Therefore $ \pi\circ \tau_{i}(phG_{i}\Gamma) = A_i\circ\tau_i(phG_{i}\Gamma) $ for each $ h\in G_{i-1} $. That is $ \pi\circ \tau_{i} = A_{i}\circ\pi. $ Hence,

    $ (pG_{i-1}\Gamma/G_{i}\Gamma,\tau_{i})\text{ topologically conjugates to } (G_{i-1}\Gamma/G_{i}\Gamma, A_{i}). $

    Notice that $ (G_{i-1}\Gamma/G_{i}\Gamma, A_{i}) $ is a toral automarphism and $ h_{top}(A_{i}) = b_i $. By Theorem 3.1, there exists $ \nu_{i}\in\mathcal{M}^e(G/G_i\Gamma,\tau_{i}) $ such that $ h_{\nu_{i}}(\tau_{i}) = a-\sum_{j = i+1}^{s+1}b_j $. Combining this with Lemma 3.6, there exists an ergodic measure $ \mu_a = \nu_{s+1}\in\mathcal{M}^e(G/G_{s+1}\Gamma,\tau_{s+1}) = \mathcal{M}^e(G/\Gamma,\tau) $ such that

    $ h_{\mu_a}(\tau) = h_{\nu_{s+1}}(\tau_{s+1}) = h_{\nu_{i}}(\tau_{i})+\sum\limits_{j = i+1}^{s+1}b_j = a. $

    Thus $ \mu_a $ is the ergodic measure as required.

    Now we assume that $ (G/\Gamma,\tau) $ has a periodic point. By assumption, there exists $ m\in\mathbb{N} $ such that $ (G/\Gamma,\tau^m) $ has a fixed point. Since $ \tau^m $ is an affine transformation of $ G/\Gamma $, by argument above, there exists $ \mu\in\mathcal{M}^e(G/\Gamma,\tau^m) $ such that $ h_{\mu}(\tau^m) = ma $. Put $ \mu_a = \frac{1}{m}\sum_{j = 0}^{m-1}\tau^j(\mu) $. It is easy to see that $ \mu_a\in\mathcal{M}^e(G/\Gamma,\tau) $ and $ h_{\mu_a}(\tau) = \frac{h_\mu(\tau^m)}{m} = a $. Thus $ \mu_a $ is the ergodic measure as required.

    This ends the proof of Theorem 1.2.

    Proposition 3.7. Let $ G $ be an $ s $-step nilpotent Lie group and $ A $ be a quasi-hyperbolic automorphism of $ G $. Then for $ g\in G $, there exists $ p\in G $ such that $ gA(p) = p $.

    Proof. We prove the proposition by induction on $ s $. In the case $ s = 1 $, it is obviously true. Now we assume that the Proposition is valid in the case $ s = k $. Then in the case $ s = k+1 $, we fix $ g\in G $. Notice that $ G/G_{k+1} $ is a $ k $-step nilpotent Lie group. There exists $ \tilde p\in G $ such that $ gA(\tilde p)G_{k+1} = \tilde pG_{k+1} $. There exists $ \bar g\in G_{k+1} $ such that $ gA(\tilde p)\bar g = \tilde p $. There exists $ p'\in G_{k+1} $ such that $ \bar g^{-1}A(p') = p' $. In the end, we let $ p = \tilde p p' $. Then

    $ gA(p) = gA(\tilde p)A(p') = \tilde p \bar g^{-1}\bar g p' = \tilde pp' = p. $

    By induction, we end the proof of Proposition 3.7.

    Proof of Theorem 1.3. This comes immediately from Proposition 3.7 and Theorem 1.2.

    W. Huang was partially supported by NNSF of China (11731003, 12031019, 12090012). L. Xu was partially supported by NNSF of China (11801538, 11871188, 12031019) and the USTC Research Funds of the Double First-Class Initiative.

    [1] Oren A (2015) Halophilic microbial communities and their environments. Curr Opin Biotechnol 33: 119–124. doi: 10.1016/j.copbio.2015.02.005
    [2] Oren A (2014) Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18: 825–834. doi: 10.1007/s00792-014-0654-9
    [3] Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113: 1231–1241. doi: 10.1016/j.mycres.2009.09.002
    [4] Hosseini TA, Shariati M (2009) Dunaliella Biotechnology: methods and applications. J Appl Microbiol 107: 14–35. doi: 10.1111/j.1365-2672.2009.04153.x
    [5] Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62: 504–544.
    [6] Waditee R, Bhuiyan MN, Rai V, et al. (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102: 1318–1323. doi: 10.1073/pnas.0409017102
    [7] DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. CurrOpinMicrobiol 25: 120–126.
    [8] Arakawa T, Tokunaga M (2005) Electrostatic and hydrophobic interactions play a major role in the stability and refolding of halophilic proteins. Protein Pept Lett 11: 125–132.
    [9] DasSarma S, Berquist BR, Coker JA, et al. (2006) Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Systems. 2:3. doi: 10.1186/1746-1448-2-3
    [10] Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterization of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9: 487–495. doi: 10.1007/s00792-005-0471-2
    [11] Fukushima T, Mizuki T, Echigo A, et al. (2005) Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85–89. doi: 10.1007/s00792-004-0423-2
    [12] Waditee-Sirisattha R, Kageyama H, Sopun W, et al. (2014) Identification and upregulation of biosynthetic genes required for accumulation of Mycosporine-2-glycine under salt stress conditions in the halotolerant cyanobacterium Aphanothece halophytica. Appl Environ Microbiol 80: 1763–1769. doi: 10.1128/AEM.03729-13
    [13] Chen D, Feng J, Huang L, et al. (2014) Identification and characterization of a new erythromycin biosynthetic gene cluster in Actinopolyspora erythraea YIM90600, a novel erythronolide-producing halophilic actinomycete isolated from salt field. PLoS One 9:e108129. doi: 10.1371/journal.pone.0108129
    [14] Falb M, Müller K, Königsmaier L, et al. (2008) Metabolism of halophilic archaea. Extremophiles 12: 177–196. doi: 10.1007/s00792-008-0138-x
    [15] Oren A (2013) Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 342: 1–9. doi: 10.1111/1574-6968.12094
    [16] Gammone MA, Riccioni G, D'Orazio N (2015) Marine carotenoids against oxidative stress: Effects on human health. Mar Drugs 13: 6226–6246. doi: 10.3390/md13106226
    [17] Alvarado C, Alvarez P, Jiménez L, et al. (2005) Improvement of leukocyte functions in young prematurely aging mice after a 5-week ingestion of a diet supplemented with biscuits enriched in antioxidants. Antioxid Redox Signal 7: 1203–1210. doi: 10.1089/ars.2005.7.1203
    [18] Jehlička J, Edwards HG, Oren A (2013) Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 106: 99–103. doi: 10.1016/j.saa.2012.12.081
    [19] Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28: 663–692. doi: 10.1039/c0np00036a
    [20] Christaki E, Bonos E, Giannenas I, et al. (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93: 5–11. doi: 10.1002/jsfa.5902
    [21] Ohyanagi N, Ishido M, Suzuki F, et al. (2009) Retinoid ameliorates experimental autoimmune myositis, with modulation of the cell differentiation and antibody production in vivo. Arthritis Rheum 60: 3118–3127. doi: 10.1002/art.24930
    [22] Vachali P, Bhosale P, Bernstein PS (2012) Microbial carotenoids. Methods Mol Biol 898: 41–59. doi: 10.1007/978-1-61779-918-1_2
    [23] Shumskaya M, Wurtzel ET (2013) The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci 208: 58–63. doi: 10.1016/j.plantsci.2013.03.012
    [24] Massyuk NP (1966) Mass culture of the carotene containing alga Dunaliella salina. Teod Ukr Bot Zh 23: 12–19.
    [25] Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321. doi: 10.1016/S0168-1656(99)00083-8
    [26] Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for -carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481. doi: 10.1002/bit.10914
    [27] Wichuk K, Brynjólfsson S, Fu W (2014) Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects. Bioengineered 5:204–208. doi: 10.4161/bioe.28720
    [28] Papaioannou EH, Kyriakides ML, Karabelas AJ (2015) Natural origin lycopene and its 'green' downstream processing. Crit Rev Food Sci Nutr. DOI:10.1080/10408398.2013.817381.
    [29] Hong ME, Choi YY, Sim SJ (2016) Effect of red cyst cell inoculation and iron (II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions. J Biotechnol 218: 25–33. doi: 10.1016/j.jbiotec.2015.11.019
    [30] Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9: 791-802. doi: 10.1038/nrmicro2649
    [31] Shick JM and Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262. doi: 10.1146/annurev.physiol.64.081501.155802
    [32] Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9: 387–446.
    [33] Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34: 418–430. doi: 10.1046/j.1529-8817.1998.340418.x
    [34] Nazifi E, Wada N, Yamaba M, et al. (2013) Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune. Mar Drugs 11: 3124–3154. doi: 10.3390/md11093124
    [35] Matsui K, Nazifi E, Kunita S, et al. (2011) Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune. J Photochem Photobiol B 105: 81–89. doi: 10.1016/j.jphotobiol.2011.07.003
    [36] Rastogi RP, Sinha RP, Moh SH, et al. (2014) Ultraviolet radiation and cyanobacteria. J Photochem Photobiol B 141: 154–169. doi: 10.1016/j.jphotobiol.2014.09.020
    [37] Llewellyn CA, White DA, Martinez-Vincente V, et al. (2012) Distribution of mycosporine-like amino acids along a surface water meridional transect of the Atlantic. Microb Ecol 64: 320–333. doi: 10.1007/s00248-012-0038-6
    [38] Rastogi RP, Richa, Sinha RP, et al. (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37: 537–358. doi: 10.1007/s10295-010-0718-5
    [39] Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. (2011) Mar Drugs 9: 387–446.
    [40] Volkmann M, Gorbushina AA, Kedar L, et al. (2006) Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophiliccyanobacterium (Euhalothece sp.). FEMS Microbiol Lett 258: 50–54. doi: 10.1111/j.1574-6968.2006.00203.x
    [41] Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:231–240. doi: 10.1080/01490459709378046
    [42] Ryu J, Park SJ, Kim IH, et al. (2014) Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int J Mol Med 34: 796–803.
    [43] Suh SS, Hwang J, Park M, et al. (2014) Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar Drugs 12: 5174–5187. doi: 10.3390/md12105174
    [44] Torres A, Enk CD, Hochberg M, et al. (2006) Porphyra-334, a potential natural source for UVA protective sunscreens. PhotochemPhotobiolSci 5: 432–435.
    [45] Masaki K, Dunlap WC, Yamamoto Y, et al. (1996) Toyo Suisan Kaisha Pty. Ltd, Japanese Patent Application 9604230.
    [46] Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environment perspective. J Phycol 34: 418–430. doi: 10.1046/j.1529-8817.1998.340418.x
    [47] Hershkovitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol 57: 645–648.
    [48] Bolen DW, Baskakov IV (2001) Theosmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310:955–963. doi: 10.1006/jmbi.2001.4819
    [49] Hagemann M, Pade, N (2015) Heterosides - compatible solutes occurring in prokaryotic and eukaryotic phototrophs. Plant Biol 17: 927–934. doi: 10.1111/plb.12350
    [50] Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44: 357–384. doi: 10.1146/annurev.pp.44.060193.002041
    [51] Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13: 551–562. doi: 10.1111/j.1462-2920.2010.02366.x
    [52] Higo A, Katoh H, Ohmori K, et al. (2006) The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152: 979–987.
    [53] Kolman MA, Nishi CN, Perez-Cenci M, et al. (2015) Sucrose in cyanobacteria: from a salt-response molecule to play a key role in nitrogen fixation. Life (Basel) 5: 102–126.
    [54] Hagemann M, Richter S, Mikkat S (1997) TheggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. J Bacteriol 179: 714–720.
    [55] Fulda S, Mikkat S, Huang F, et al. (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystissp. strain PCC 6803. Proteomics 6: 2733–2745.
    [56] Ferjani A, Mustardy L, Sulpice R, et al. (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 131: 1628–1637. doi: 10.1104/pp.102.017277
    [57] Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13: 551–562. doi: 10.1111/j.1462-2920.2010.02366.x
    [58] Goh F, Barrow KD, Burns BP, et al. (2010) Identification and regulation of novel compatible solutes from hypersalinestromatolite-associated cyanobacteria. Arch Microbiol 192: 1031–1038. doi: 10.1007/s00203-010-0634-0
    [59] Roberts MF, Lai MC, Gunsalus RP (1992) Biosynthetic pathways of the osmolytes N epsilon-acetyl-beta-lysine, beta-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 174:6688–6693.
    [60] Laloknam S, Tanaka K, Buaboocha T, et al. (2006) Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl Environ Microbiol 72:6018–6026. doi: 10.1128/AEM.00733-06
    [61] Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72: 623–634. doi: 10.1007/s00253-006-0553-9
    [62] Graf R, Anzali S, Buenger J, et al. (2008) The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol 26: 326–333. doi: 10.1016/j.clindermatol.2008.01.002
    [63] Beyer N, Driller H, Bünger J (2000) Ectoine - a innovative, multi-functional active substance for the cosmetic industry. Seifen ÖleFette Wachse J 126: 26–29.
    [64] Barth S, Huhn M, Matthey B, et al. (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66: 1572–1579. doi: 10.1128/AEM.66.4.1572-1579.2000
    [65] Kunte, HJ, Lentzen, G, Galinski, EA (2014) Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products. Curr >B>iotechnol 3: 10–25.
    [66] Grammann, K, Volke, A, Kunte, HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABCmediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J Bacteriol 184:3078–3085. doi: 10.1128/JB.184.11.3078-3085.2002
    [67] Schwibbert K, Marin-Sanguino A, Bagyan I, et al. (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 13:1973–1994. doi: 10.1111/j.1462-2920.2010.02336.x
    [68] Jaeger K-E, Eggert T (2002) Lipases for biotechnology. CurrOpinBiotechnol 13: 390–397.
    [69] Pérez-Pomares F, Bautista V, Ferrer J, et al. (2003) Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7: 299–306. doi: 10.1007/s00792-003-0327-6
    [70] Pérez-Pomares F, Díaz S, Bautista V, et al. (2009) Identification of several intracellular carbohydrate-degrading activities from the halophilic archaeon Haloferax mediterranei. Extremophiles 13: 633–641. doi: 10.1007/s00792-009-0246-2
    [71] Pérez D, Martín S, Fernández-Lorente G, et al. (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6:e23325. doi: 10.1371/journal.pone.0023325
    [72] Amoozegar MA, Salehghamari E, Khajeh K, et al. (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48: 160–167. doi: 10.1002/jobm.200700361
    [73] Karbalaei-Heidari HR, Amoozegar MA, Hajighasemi M, et al. (2009) Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J Ind Microbio Biotechnol 36: 21–27. doi: 10.1007/s10295-008-0466-y
    [74] Dang H, Zhu H, Wang J, et al. (2009) Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J Microbiol Biotechnol 25: 71–79. doi: 10.1007/s11274-008-9865-5
    [75] Moreno ML, Piubeli F, Bonfá MR, et al. (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113: 550–559. doi: 10.1111/j.1365-2672.2012.05366.x
    [76] Hedlund BP, Dodsworth JA, Murugapiran SK, et al. (2014) Impact of single-cell genomics and metagenomics on the emerging view of extremophile "microbial dark matter". Extremophiles 18: 865–875. doi: 10.1007/s00792-014-0664-7
    [77] López-Pérez M, Ghai R, Leon MJ, et al. (2013) Genomes of "Spiribacter", a streamlined, successful halophilic bacterium. BMC Genomics 14: 787. doi: 10.1186/1471-2164-14-787
    [78] Yakovleva I, Bhagooli R, Takemura A, et al. (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. CompBiochem Physiol B 139:721–730. doi: 10.1016/j.cbpc.2004.08.016
    [79] Helbling EW, Chalker BE, Dunlap WC, et al. (1996) Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101. doi: 10.1016/0022-0981(96)02591-9
    [80] Vale P (2015) Effects of light and salinity stresses in production of mycosporine-like amino acids by Gymnodinium catenatum(dinophyceae). Photochem Photobiol 91:1112–1122. doi: 10.1111/php.12488
  • This article has been cited by:

    1. XIAOBO HOU, XUETING TIAN, Conditional intermediate entropy and Birkhoff average properties of hyperbolic flows, 2024, 44, 0143-3857, 2257, 10.1017/etds.2023.110
    2. Peng Sun, Ergodic measures of intermediate entropies for dynamical systems with the approximate product property, 2025, 465, 00018708, 110159, 10.1016/j.aim.2025.110159
    3. Yi Shi, Xiaodong Wang, Measures of intermediate pressures for geometric Lorenz attractors, 2025, 436, 00220396, 113280, 10.1016/j.jde.2025.113280
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(11537) PDF downloads(2243) Cited by(60)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog