Citation: Rungaroon Waditee-Sirisattha, Hakuto Kageyama, Teruhiro Takabe. Halophilic microorganism resources and their applications in industrial and environmental biotechnology[J]. AIMS Microbiology, 2016, 2(1): 42-54. doi: 10.3934/microbiol.2016.1.42
[1] | Wen Huang, Leiye Xu, Shengnan Xu . Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29(4): 2819-2827. doi: 10.3934/era.2021015 |
[2] | Hanan H. Sakr, Mohamed S. Mohamed . On residual cumulative generalized exponential entropy and its application in human health. Electronic Research Archive, 2025, 33(3): 1633-1666. doi: 10.3934/era.2025077 |
[3] | Mingtao Cui, Wang Li, Guang Li, Xiaobo Wang . The asymptotic concentration approach combined with isogeometric analysis for topology optimization of two-dimensional linear elasticity structures. Electronic Research Archive, 2023, 31(7): 3848-3878. doi: 10.3934/era.2023196 |
[4] | Julian Gerstenberg, Ralph Neininger, Denis Spiegel . On solutions of the distributional Bellman equation. Electronic Research Archive, 2023, 31(8): 4459-4483. doi: 10.3934/era.2023228 |
[5] | Natália Bebiano, João da Providência, Wei-Ru Xu . Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians. Electronic Research Archive, 2022, 30(5): 1864-1880. doi: 10.3934/era.2022094 |
[6] | Xiang Xu . Recent analytic development of the dynamic $ Q $-tensor theory for nematic liquid crystals. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113 |
[7] | Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, José Gregorio Rodríguez-Nieto, Odette M Mendez, Ricardo Hugo Arteaga-Bastidas . Extended Brauer analysis of some Dynkin and Euclidean diagrams. Electronic Research Archive, 2024, 32(10): 5752-5782. doi: 10.3934/era.2024266 |
[8] | Yu Chen, Qingyang Meng, Zhibo Liu, Zhuanzhe Zhao, Yongming Liu, Zhijian Tu, Haoran Zhu . Research on filtering method of rolling bearing vibration signal based on improved Morlet wavelet. Electronic Research Archive, 2024, 32(1): 241-262. doi: 10.3934/era.2024012 |
[9] | Zhenhua Wang, Jinlong Yang, Chuansheng Dong, Xi Zhang, Congqin Yi, Jiuhu Sun . SSMM-DS: A semantic segmentation model for mangroves based on Deeplabv3+ with swin transformer. Electronic Research Archive, 2024, 32(10): 5615-5632. doi: 10.3934/era.2024260 |
[10] | Suhua Wang, Zhen Huang, Bingjie Zhang, Xiantao Heng, Yeyi Jiang, Xiaoxin Sun . Plot-aware transformer for recommender systems. Electronic Research Archive, 2023, 31(6): 3169-3186. doi: 10.3934/era.2023160 |
Throughout this paper, by a topological dynamical system
Given a TDS
Define
$ \mathcal{E}(T) = \{h_\mu(T):\mu\in\mathcal{M}^e(X,T)\} $ |
where
It is interesting to consider the case when
$ [0,htop(f))⊂E(f) $
|
(1.1) |
for any
Conjecture 1.1 (Katok). Let
We need to point out that Katok's conjecture implies that any positive entropy smooth system is not uniquely ergodic, though whether or not a smooth diffeomorphism of positive topological entropy can be uniquely ergodic is still in question (see [5] for Herman's example: positive entropy minimal
In this paper, we study intermediate entropy for affine transformations of nilmanifolds. Throughout this paper, by a nilmanifold
Theorem 1.2. Let
Following Lind [11], we say that an affine transformation of a nilmanifold is quasi-hyperbolic if its associated matrix has no eigenvalue 1. As an application of Theorem 1.2, one has the following.
Theorem 1.3. Let
The paper is organized as follows. In Section 2, we introduce some notions. In Section 3, we prove Theorem 1.2 and Theorem 1.3.
In this section, we recall some notions of entropy, nilmanifold and upper semicontinuity of entropy map.
We summarize some basic concepts and useful properties related to topological entropy and measure-theoretic entropy here.
Let
Definition 2.1. Let
$ h_{top}(T,\mathcal{U}) = \lim\limits_{n\rightarrow +\infty}\frac{1}{n}\log {N}(\bigvee_{i = 0}^{n-1}T^{-i}\mathcal{U}), $ |
where
$ h_{top}(T) = \sup\limits_{\mathcal{U}} h_{top}(T,\mathcal{U}), $ |
where supremum is taken over all finite open covers of
A subset
$ h_d(T,K) = \lim\limits_{\epsilon\to0}\limsup\limits_{n\to\infty}\frac{\log s^{(T)}_n(\epsilon,K)}{n}. $ |
Let
$ h_d(T,Z) = \sup\limits_{K\subset Z\atop K\text{ is compact}}h_d(T,K). $ |
And the Bowen's topological entropy of a TDS
Next we define measure-theoretic entropy. Let
$ h_{\mu}(T,\xi) = \lim\limits_{n\rightarrow +\infty} \frac{1}{n} H_\mu(\bigvee_{i = 0}^{n-1}T^{-i}{\xi}), $ |
where
$ h_{\mu}(T) = \sup\limits_{\xi\in \mathcal{P}_X} h_\mu(T,\xi). $ |
The basic relationship between topological entropy and measure-theoretic entropy is given by the variational principle [12].
Theorem 2.2 (The variational principle). Let
$ h_{top}(T) = \sup\{h_\mu(T): \mu\in \mathcal{M}(X,T)\} = \sup\{h_\mu(T): \mu\in \mathcal{M}^e(X,T)\}. $ |
A factor map
$ supμ∈M(X,T)π(μ)=νhμ(T)=hν(S)+∫Yhd(T,π−1(y))dν(y) $
|
(2.1) |
where
Let
The following is from [1,Theorem 19].
Theorem 2.3. Let
Remark 2.4. (1) In the above situation, Bowen shows that
$ hd(T,π−1(y))=htop(τ) for any y∈Y, $
|
(2.2) |
where
(2) If
$ hd(T,π−1(y))=htop(τ) for any y∈G/H, $
|
(2.3) |
where
Given a TDS
$ \int_{\mathcal{M}^e(X,T)}\int_X f(x)dm(x)d\rho(m) = \int_Xf(x)d\mu(x)\text{ for all }f\in C(X). $ |
We write
Theorem 2.5. Let
$ h_\mu(T) = \int_{\mathcal{M}^e(X,T)}h_m(T)d\rho(m). $ |
We say that the entropy map of
$ \lim\limits_{n\to\infty}\mu_n = \mu \text{ implies }\limsup\limits_{n\to\infty}h_{\mu_n}(T)\le h_{\mu}(T). $ |
We say that a TDS
$ \lim \limits_{\delta\rightarrow 0} \sup\limits_{x\in X} h_{d}(T,\Gamma_\delta(x)) = 0. $ |
Here for each
$ \Gamma_\delta(x) : = \{y \in X: d( T^jx,T^jy) < \delta \text{ for all }j\ge 0\}. $ |
The result of Misiurewicz [12,Corollary 4.1] gives a sufficient condition for upper semicontinuity of the entropy map.
Theorem 2.6. Let
The result of Buzzi [3] gives a sufficient condition for asymptotic entropy expansiveness.
Theorem 2.7. Let
In this section, we prove our main results. In the first subsection, we prove that Katok's conjecture holds for affine transformations of torus. In the second subsection, we show some properties of metrics on nilmanifolds. In the last subsection, we prove Theorem 1.2 and Theorem 1.3.
We say that a topological dynamical system
Theorem 3.1. Let
Proof. We think of
$ \tau(x) = A(x)+b\text{ for each }x\in \mathbb{T}^m. $ |
Let
$ h_{top}(\tau) = \int_{\mathcal{M}^e(\mathbb{T}^m,\tau)}h_\nu(\tau) d\rho(\nu). $ |
By variational principle, there exists
Case 1.
$ \pi(x) = x-q\text{ for each }x\in\mathbb{T}^m. $ |
Then
Case 2.
$ H = \{x\in\mathbb{T}^m:(A-id)^mx = 0\}. $ |
Then
This ends the proof of Theorem 3.1.
Let
If
We fix an
$ \tau(g\Gamma) = g_0A(g)\Gamma\text{ for each } g\in G $ |
where
$ A_j: G_{j-1}\Gamma/G_{j}\Gamma\to G_{j-1}\Gamma/G_{j}\Gamma: A_j(hG_{j}\Gamma) = A(h)G_{j}\Gamma\text{ for each } h\in G_{j-1} $ |
and
$ \tau_j: G/G_{j}\Gamma\to G/G_{j}\Gamma: \tau_j(hG_{j}\Gamma) = g_0A(h)G_{j}\Gamma\text{ for each } h\in G. $ |
It is easy to see that
For each
$ πj+1(gGj+1Γ)=gGjΓ for each g∈G. $
|
(3.1) |
It is easy to see that
Lemma 3.2. For each
Proof. In Remark 2.4 (2), we let
$ h_{d_{j+1}}(\tau_{j+1},\pi_{j+1}^{-1}(y)) = h_{top}(A_{j+1}) = b_{j+1}\text{ for every }y\in G/G_j\Gamma. $ |
This ends the proof of Lemma 3.2.
The following result is immediately from Lemma 3.2, (2.1) and Theorem 2.7.
Lemma 3.3. For
We have the following.
Corollary 3.4.
Proof. We prove the corollary by induction on
$ htop(τj+1)=supμ∈M(G/Gj+1Γ,τj+1)hμ(τj+1)≤supμ∈M(G/GjΓ,τj)(hμ(τj)+∫G/GjΓhdj+1(τj+1,π−1j+1(y))dμ(y))≤htop(τj)+supμ∈M(G/GjΓ,τj)∫G/GjΓhdj+1(τj+1,π−1j+1(y))dμ(y)=j∑i=1bi+bj+1=j+1∑i=1bi, $
|
where we used Lemma 3.2. On the other hand, by Lemma 3.3 there exists
Remark 3.5. We remark that the topological entropy of
$ htop(τ)=hd(τ)=∑|λi|>1log|λi| $
|
where
Lemma 3.6. For
Proof. We fix
$ h_{\nu}(\tau_{j+1}) = \sup\limits_{\mu\in\mathcal{M}(G/G_{j+1}\Gamma,\tau_{j+1})\atop \pi_{j+1}(\mu) = \nu_{j}}h_{\mu}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}. $ |
We fix such
$ \nu = \int_{\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1})}md\rho(m). $ |
Then by property of ergodic decomposition, one has
$ ρ({m∈Me(G/Gj+1Γ,τj+1):πj+1(m)=νj})=1. $
|
Therefore, for
$ h_m(\tau_{j+1})\le h_\nu(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}. $ |
Hence by Theorem 2.5, one has
$ h_{\nu_j}(\tau_{j})+b_{j+1} = h_\nu(\tau_{j+1}) = \int_{\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1})}h_m(\tau_{j+1})d\rho(m)\le h_{\nu_j}(\tau_{j})+b_{j+1}. $ |
We notice that the equality holds only in the case
$ h_{\nu_{j+1}}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}\text{ and }\pi_{j+1}(\nu_{j+1}) = \nu_j. $ |
This ends the proof of Lemma 3.6.
Now we are ready to prove our main results.
Proof of Theorem 1.2. Firstly we assume that
$ \sum\limits_{j = i+1}^{s+1}b_j\le a\le\sum\limits_{j = i}^{s+1}b_j. $ |
Since
$ \tau_{i}(pG_{i-1}\Gamma/G_{i}\Gamma) = p\gamma G_{i-1}\Gamma/G_{i}\Gamma\subset p[\gamma ,G_{i-1}]G_{i-1}\gamma\Gamma/G_{i}\Gamma\subset pG_{i-1}\Gamma/G_{i}\Gamma, $ |
where we used the fact
$ \pi( phG_{i}\Gamma) = hG_{i}\Gamma\text{ for each } h\in G_{i-1}. $ |
Then for each
$ \pi\circ \tau_{i}(phG_{i}\Gamma) = p^{-1}g_0A(p)A(h)G_{i}\Gamma = \gamma A(h)G_{i}\Gamma = A(h)\gamma[\gamma,A(h)]G_{i}\Gamma = A(h)G_{i}\Gamma $ |
where we used the fact
$ (pG_{i-1}\Gamma/G_{i}\Gamma,\tau_{i})\text{ topologically conjugates to } (G_{i-1}\Gamma/G_{i}\Gamma, A_{i}). $ |
Notice that
$ h_{\mu_a}(\tau) = h_{\nu_{s+1}}(\tau_{s+1}) = h_{\nu_{i}}(\tau_{i})+\sum\limits_{j = i+1}^{s+1}b_j = a. $ |
Thus
Now we assume that
This ends the proof of Theorem 1.2.
Proposition 3.7. Let
Proof. We prove the proposition by induction on
$ gA(p) = gA(\tilde p)A(p') = \tilde p \bar g^{-1}\bar g p' = \tilde pp' = p. $ |
By induction, we end the proof of Proposition 3.7.
Proof of Theorem 1.3. This comes immediately from Proposition 3.7 and Theorem 1.2.
W. Huang was partially supported by NNSF of China (11731003, 12031019, 12090012). L. Xu was partially supported by NNSF of China (11801538, 11871188, 12031019) and the USTC Research Funds of the Double First-Class Initiative.
[1] |
Oren A (2015) Halophilic microbial communities and their environments. Curr Opin Biotechnol 33: 119–124. doi: 10.1016/j.copbio.2015.02.005
![]() |
[2] |
Oren A (2014) Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18: 825–834. doi: 10.1007/s00792-014-0654-9
![]() |
[3] |
Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113: 1231–1241. doi: 10.1016/j.mycres.2009.09.002
![]() |
[4] |
Hosseini TA, Shariati M (2009) Dunaliella Biotechnology: methods and applications. J Appl Microbiol 107: 14–35. doi: 10.1111/j.1365-2672.2009.04153.x
![]() |
[5] | Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62: 504–544. |
[6] |
Waditee R, Bhuiyan MN, Rai V, et al. (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102: 1318–1323. doi: 10.1073/pnas.0409017102
![]() |
[7] | DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. CurrOpinMicrobiol 25: 120–126. |
[8] | Arakawa T, Tokunaga M (2005) Electrostatic and hydrophobic interactions play a major role in the stability and refolding of halophilic proteins. Protein Pept Lett 11: 125–132. |
[9] |
DasSarma S, Berquist BR, Coker JA, et al. (2006) Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Systems. 2:3. doi: 10.1186/1746-1448-2-3
![]() |
[10] |
Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterization of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9: 487–495. doi: 10.1007/s00792-005-0471-2
![]() |
[11] |
Fukushima T, Mizuki T, Echigo A, et al. (2005) Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85–89. doi: 10.1007/s00792-004-0423-2
![]() |
[12] |
Waditee-Sirisattha R, Kageyama H, Sopun W, et al. (2014) Identification and upregulation of biosynthetic genes required for accumulation of Mycosporine-2-glycine under salt stress conditions in the halotolerant cyanobacterium Aphanothece halophytica. Appl Environ Microbiol 80: 1763–1769. doi: 10.1128/AEM.03729-13
![]() |
[13] |
Chen D, Feng J, Huang L, et al. (2014) Identification and characterization of a new erythromycin biosynthetic gene cluster in Actinopolyspora erythraea YIM90600, a novel erythronolide-producing halophilic actinomycete isolated from salt field. PLoS One 9:e108129. doi: 10.1371/journal.pone.0108129
![]() |
[14] |
Falb M, Müller K, Königsmaier L, et al. (2008) Metabolism of halophilic archaea. Extremophiles 12: 177–196. doi: 10.1007/s00792-008-0138-x
![]() |
[15] |
Oren A (2013) Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 342: 1–9. doi: 10.1111/1574-6968.12094
![]() |
[16] |
Gammone MA, Riccioni G, D'Orazio N (2015) Marine carotenoids against oxidative stress: Effects on human health. Mar Drugs 13: 6226–6246. doi: 10.3390/md13106226
![]() |
[17] |
Alvarado C, Alvarez P, Jiménez L, et al. (2005) Improvement of leukocyte functions in young prematurely aging mice after a 5-week ingestion of a diet supplemented with biscuits enriched in antioxidants. Antioxid Redox Signal 7: 1203–1210. doi: 10.1089/ars.2005.7.1203
![]() |
[18] |
Jehlička J, Edwards HG, Oren A (2013) Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 106: 99–103. doi: 10.1016/j.saa.2012.12.081
![]() |
[19] |
Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28: 663–692. doi: 10.1039/c0np00036a
![]() |
[20] |
Christaki E, Bonos E, Giannenas I, et al. (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93: 5–11. doi: 10.1002/jsfa.5902
![]() |
[21] |
Ohyanagi N, Ishido M, Suzuki F, et al. (2009) Retinoid ameliorates experimental autoimmune myositis, with modulation of the cell differentiation and antibody production in vivo. Arthritis Rheum 60: 3118–3127. doi: 10.1002/art.24930
![]() |
[22] |
Vachali P, Bhosale P, Bernstein PS (2012) Microbial carotenoids. Methods Mol Biol 898: 41–59. doi: 10.1007/978-1-61779-918-1_2
![]() |
[23] |
Shumskaya M, Wurtzel ET (2013) The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci 208: 58–63. doi: 10.1016/j.plantsci.2013.03.012
![]() |
[24] | Massyuk NP (1966) Mass culture of the carotene containing alga Dunaliella salina. Teod Ukr Bot Zh 23: 12–19. |
[25] |
Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321. doi: 10.1016/S0168-1656(99)00083-8
![]() |
[26] |
Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for -carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481. doi: 10.1002/bit.10914
![]() |
[27] |
Wichuk K, Brynjólfsson S, Fu W (2014) Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects. Bioengineered 5:204–208. doi: 10.4161/bioe.28720
![]() |
[28] | Papaioannou EH, Kyriakides ML, Karabelas AJ (2015) Natural origin lycopene and its 'green' downstream processing. Crit Rev Food Sci Nutr. DOI:10.1080/10408398.2013.817381. |
[29] |
Hong ME, Choi YY, Sim SJ (2016) Effect of red cyst cell inoculation and iron (II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions. J Biotechnol 218: 25–33. doi: 10.1016/j.jbiotec.2015.11.019
![]() |
[30] |
Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9: 791-802. doi: 10.1038/nrmicro2649
![]() |
[31] |
Shick JM and Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262. doi: 10.1146/annurev.physiol.64.081501.155802
![]() |
[32] | Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9: 387–446. |
[33] |
Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34: 418–430. doi: 10.1046/j.1529-8817.1998.340418.x
![]() |
[34] |
Nazifi E, Wada N, Yamaba M, et al. (2013) Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune. Mar Drugs 11: 3124–3154. doi: 10.3390/md11093124
![]() |
[35] |
Matsui K, Nazifi E, Kunita S, et al. (2011) Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune. J Photochem Photobiol B 105: 81–89. doi: 10.1016/j.jphotobiol.2011.07.003
![]() |
[36] |
Rastogi RP, Sinha RP, Moh SH, et al. (2014) Ultraviolet radiation and cyanobacteria. J Photochem Photobiol B 141: 154–169. doi: 10.1016/j.jphotobiol.2014.09.020
![]() |
[37] |
Llewellyn CA, White DA, Martinez-Vincente V, et al. (2012) Distribution of mycosporine-like amino acids along a surface water meridional transect of the Atlantic. Microb Ecol 64: 320–333. doi: 10.1007/s00248-012-0038-6
![]() |
[38] |
Rastogi RP, Richa, Sinha RP, et al. (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37: 537–358. doi: 10.1007/s10295-010-0718-5
![]() |
[39] | Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. (2011) Mar Drugs 9: 387–446. |
[40] |
Volkmann M, Gorbushina AA, Kedar L, et al. (2006) Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophiliccyanobacterium (Euhalothece sp.). FEMS Microbiol Lett 258: 50–54. doi: 10.1111/j.1574-6968.2006.00203.x
![]() |
[41] |
Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:231–240. doi: 10.1080/01490459709378046
![]() |
[42] | Ryu J, Park SJ, Kim IH, et al. (2014) Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int J Mol Med 34: 796–803. |
[43] |
Suh SS, Hwang J, Park M, et al. (2014) Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar Drugs 12: 5174–5187. doi: 10.3390/md12105174
![]() |
[44] | Torres A, Enk CD, Hochberg M, et al. (2006) Porphyra-334, a potential natural source for UVA protective sunscreens. PhotochemPhotobiolSci 5: 432–435. |
[45] | Masaki K, Dunlap WC, Yamamoto Y, et al. (1996) Toyo Suisan Kaisha Pty. Ltd, Japanese Patent Application 9604230. |
[46] |
Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environment perspective. J Phycol 34: 418–430. doi: 10.1046/j.1529-8817.1998.340418.x
![]() |
[47] | Hershkovitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol 57: 645–648. |
[48] |
Bolen DW, Baskakov IV (2001) Theosmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310:955–963. doi: 10.1006/jmbi.2001.4819
![]() |
[49] |
Hagemann M, Pade, N (2015) Heterosides - compatible solutes occurring in prokaryotic and eukaryotic phototrophs. Plant Biol 17: 927–934. doi: 10.1111/plb.12350
![]() |
[50] |
Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44: 357–384. doi: 10.1146/annurev.pp.44.060193.002041
![]() |
[51] |
Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13: 551–562. doi: 10.1111/j.1462-2920.2010.02366.x
![]() |
[52] | Higo A, Katoh H, Ohmori K, et al. (2006) The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152: 979–987. |
[53] | Kolman MA, Nishi CN, Perez-Cenci M, et al. (2015) Sucrose in cyanobacteria: from a salt-response molecule to play a key role in nitrogen fixation. Life (Basel) 5: 102–126. |
[54] | Hagemann M, Richter S, Mikkat S (1997) TheggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. J Bacteriol 179: 714–720. |
[55] | Fulda S, Mikkat S, Huang F, et al. (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystissp. strain PCC 6803. Proteomics 6: 2733–2745. |
[56] |
Ferjani A, Mustardy L, Sulpice R, et al. (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 131: 1628–1637. doi: 10.1104/pp.102.017277
![]() |
[57] |
Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13: 551–562. doi: 10.1111/j.1462-2920.2010.02366.x
![]() |
[58] |
Goh F, Barrow KD, Burns BP, et al. (2010) Identification and regulation of novel compatible solutes from hypersalinestromatolite-associated cyanobacteria. Arch Microbiol 192: 1031–1038. doi: 10.1007/s00203-010-0634-0
![]() |
[59] | Roberts MF, Lai MC, Gunsalus RP (1992) Biosynthetic pathways of the osmolytes N epsilon-acetyl-beta-lysine, beta-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 174:6688–6693. |
[60] |
Laloknam S, Tanaka K, Buaboocha T, et al. (2006) Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl Environ Microbiol 72:6018–6026. doi: 10.1128/AEM.00733-06
![]() |
[61] |
Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72: 623–634. doi: 10.1007/s00253-006-0553-9
![]() |
[62] |
Graf R, Anzali S, Buenger J, et al. (2008) The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol 26: 326–333. doi: 10.1016/j.clindermatol.2008.01.002
![]() |
[63] | Beyer N, Driller H, Bünger J (2000) Ectoine - a innovative, multi-functional active substance for the cosmetic industry. Seifen ÖleFette Wachse J 126: 26–29. |
[64] |
Barth S, Huhn M, Matthey B, et al. (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66: 1572–1579. doi: 10.1128/AEM.66.4.1572-1579.2000
![]() |
[65] | Kunte, HJ, Lentzen, G, Galinski, EA (2014) Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products. Curr >B>iotechnol 3: 10–25. |
[66] |
Grammann, K, Volke, A, Kunte, HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABCmediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J Bacteriol 184:3078–3085. doi: 10.1128/JB.184.11.3078-3085.2002
![]() |
[67] |
Schwibbert K, Marin-Sanguino A, Bagyan I, et al. (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 13:1973–1994. doi: 10.1111/j.1462-2920.2010.02336.x
![]() |
[68] | Jaeger K-E, Eggert T (2002) Lipases for biotechnology. CurrOpinBiotechnol 13: 390–397. |
[69] |
Pérez-Pomares F, Bautista V, Ferrer J, et al. (2003) Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7: 299–306. doi: 10.1007/s00792-003-0327-6
![]() |
[70] |
Pérez-Pomares F, Díaz S, Bautista V, et al. (2009) Identification of several intracellular carbohydrate-degrading activities from the halophilic archaeon Haloferax mediterranei. Extremophiles 13: 633–641. doi: 10.1007/s00792-009-0246-2
![]() |
[71] |
Pérez D, Martín S, Fernández-Lorente G, et al. (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6:e23325. doi: 10.1371/journal.pone.0023325
![]() |
[72] |
Amoozegar MA, Salehghamari E, Khajeh K, et al. (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48: 160–167. doi: 10.1002/jobm.200700361
![]() |
[73] |
Karbalaei-Heidari HR, Amoozegar MA, Hajighasemi M, et al. (2009) Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J Ind Microbio Biotechnol 36: 21–27. doi: 10.1007/s10295-008-0466-y
![]() |
[74] |
Dang H, Zhu H, Wang J, et al. (2009) Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J Microbiol Biotechnol 25: 71–79. doi: 10.1007/s11274-008-9865-5
![]() |
[75] |
Moreno ML, Piubeli F, Bonfá MR, et al. (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113: 550–559. doi: 10.1111/j.1365-2672.2012.05366.x
![]() |
[76] |
Hedlund BP, Dodsworth JA, Murugapiran SK, et al. (2014) Impact of single-cell genomics and metagenomics on the emerging view of extremophile "microbial dark matter". Extremophiles 18: 865–875. doi: 10.1007/s00792-014-0664-7
![]() |
[77] |
López-Pérez M, Ghai R, Leon MJ, et al. (2013) Genomes of "Spiribacter", a streamlined, successful halophilic bacterium. BMC Genomics 14: 787. doi: 10.1186/1471-2164-14-787
![]() |
[78] |
Yakovleva I, Bhagooli R, Takemura A, et al. (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. CompBiochem Physiol B 139:721–730. doi: 10.1016/j.cbpc.2004.08.016
![]() |
[79] |
Helbling EW, Chalker BE, Dunlap WC, et al. (1996) Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101. doi: 10.1016/0022-0981(96)02591-9
![]() |
[80] |
Vale P (2015) Effects of light and salinity stresses in production of mycosporine-like amino acids by Gymnodinium catenatum(dinophyceae). Photochem Photobiol 91:1112–1122. doi: 10.1111/php.12488
![]() |
1. | XIAOBO HOU, XUETING TIAN, Conditional intermediate entropy and Birkhoff average properties of hyperbolic flows, 2024, 44, 0143-3857, 2257, 10.1017/etds.2023.110 | |
2. | Peng Sun, Ergodic measures of intermediate entropies for dynamical systems with the approximate product property, 2025, 465, 00018708, 110159, 10.1016/j.aim.2025.110159 | |
3. | Yi Shi, Xiaodong Wang, Measures of intermediate pressures for geometric Lorenz attractors, 2025, 436, 00220396, 113280, 10.1016/j.jde.2025.113280 |