Loading [MathJax]/jax/output/SVG/jax.js
Review

Duodenoduodenal and duodenojejunal intussusceptions in adults: A systematic review with a focus on demographics, diagnosis, and etiology

  • Received: 06 July 2020 Accepted: 24 August 2020 Published: 10 September 2020
  • Background and Objectives Diagnosis and management of Duodenal Intussusception (DI) in adults present several clinical challenges. Available literature specific to the DI in adults is scant, mainly due to the rarity and emergency associated with DI. The objective of this study is to conduct a systematic review of the literature and elucidate key factors related to DI in adults.
    Methods and Materials PubMed, Scopus, Web of Science, and Cochrane databases were searched. Data on demographics, etiology, symptoms, physical examination, and diagnosis was extracted and analyzed for pooled incidence of adult DI (ADI; adult duodenal intussusception) and its specific subclasses i.e. duodenoduodenal (ADDI) and duodenojejunal (ADJI) intussusceptions.
    Results The database search yielded 234 results. A total of 51 studies, involving 54 patients with ADI, were included in the final analysis. The median (Interquartile, IQR) age of patients was 44.5 (26) years and 66.7% of patients were women. Among 54 ADI patients, 40.7% had ADDI and 59.3% had ADJI. The duration of symptoms varied widely with a median (IQR) of 60 (357) days. Abdominal pain and vomiting were the common reported symptoms. Physical examination and laboratory tests were inconclusive in several patients. CT scan was the most commonly used diagnostic modality. Only one case of ADI was idiopathic. Adenomas were the most frequent etiology, observed in about 50% of ADI patients. Peutz–Jeghers Syndrome was seen in 8 patients and all of them had ADJI. Out of the 12.5% cases that were malignant, only one had ADDI.
    Conclusion This study is probably the first attempt to systematically review ADI and its subclasses with the intention to provide key information specific to patient characteristics, diagnosis, and etiology of ADI. The findings of this review will possibly augment research in the area of the management and epidemiology of ADI.

    Citation: Nasser A. N. Alzerwi. Duodenoduodenal and duodenojejunal intussusceptions in adults: A systematic review with a focus on demographics, diagnosis, and etiology[J]. AIMS Medical Science, 2020, 7(3): 204-222. doi: 10.3934/medsci.2020012

    Related Papers:

    [1] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [2] Yingchao Zhang, Yingzhen Lin . An ε-approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813
    [3] Yingchao Zhang, Yuntao Jia, Yingzhen Lin . An ε-approximate solution of BVPs based on improved multiscale orthonormal basis. AIMS Mathematics, 2024, 9(3): 5810-5826. doi: 10.3934/math.2024282
    [4] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [5] Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182
    [6] Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476
    [7] A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160
    [8] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
    [9] Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367
    [10] Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509
  • Background and Objectives Diagnosis and management of Duodenal Intussusception (DI) in adults present several clinical challenges. Available literature specific to the DI in adults is scant, mainly due to the rarity and emergency associated with DI. The objective of this study is to conduct a systematic review of the literature and elucidate key factors related to DI in adults.
    Methods and Materials PubMed, Scopus, Web of Science, and Cochrane databases were searched. Data on demographics, etiology, symptoms, physical examination, and diagnosis was extracted and analyzed for pooled incidence of adult DI (ADI; adult duodenal intussusception) and its specific subclasses i.e. duodenoduodenal (ADDI) and duodenojejunal (ADJI) intussusceptions.
    Results The database search yielded 234 results. A total of 51 studies, involving 54 patients with ADI, were included in the final analysis. The median (Interquartile, IQR) age of patients was 44.5 (26) years and 66.7% of patients were women. Among 54 ADI patients, 40.7% had ADDI and 59.3% had ADJI. The duration of symptoms varied widely with a median (IQR) of 60 (357) days. Abdominal pain and vomiting were the common reported symptoms. Physical examination and laboratory tests were inconclusive in several patients. CT scan was the most commonly used diagnostic modality. Only one case of ADI was idiopathic. Adenomas were the most frequent etiology, observed in about 50% of ADI patients. Peutz–Jeghers Syndrome was seen in 8 patients and all of them had ADJI. Out of the 12.5% cases that were malignant, only one had ADDI.
    Conclusion This study is probably the first attempt to systematically review ADI and its subclasses with the intention to provide key information specific to patient characteristics, diagnosis, and etiology of ADI. The findings of this review will possibly augment research in the area of the management and epidemiology of ADI.


    In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat conduction equation [1]:

    {ut=k(2ux2+2uy2+2uz2),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=ϕ(x,y,z),u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (1.1)

    Where u(t,x,y,z) is the temperature field, ϕ(x,y,z) is a known function, k is the thermal diffusion efficiency, and a,b,c are constants that determine the size of the space.

    Heat conduction system is a very common and important system in engineering problems, such as the heat transfer process of objects, the cooling system of electronic components and so on [1,2,3,4]. Generally, heat conduction is a complicated process, so we can't get the analytical solution of heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat conduction equation [5,6,7,8]. Reproducing kernel method is also an effective numerical algorithm for solving boundary value problems including heat conduction equation [9,10,11,12,13,14]. Galerkin schemes and Green's function are also used to construct numerical algorithms for solving one-dimensional and two-dimensional heat conduction equations [15,16,17,18,19]. Alternating direction implicit (ADI) method can be very effective in solving high-dimensional heat conduction equations [20,21]. In addition, the novel local knot method and localized space time method are also used to solve convection-diffusion problems [22,23,24,25]. These methods play an important reference role in constructing new algorithms in this paper.

    Legendre orthogonal function system is an important function sequence in the field of numerical analysis. Because its general term is polynomial, Legendre orthogonal function system has many advantages in the calculation process. Scholars use Legendre orthogonal function system to construct numerical algorithm of differential equations [26,27,28].

    Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm that can be extended to high-dimensional heat conduction equation. The proposed algorithm has α-Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.

    The content of the paper is arranged like this: The properties of shifted Legendre polynomials, homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically deduce the numerical algorithm methods of high-dimensional heat conduction equations. The convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief summary are given at the end of this paper.

    In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are introduced. These knowledge will pave the way for describing the algorithm in this paper.

    The traditional Legendre polynomial is the orthogonal function system on [1,1]. Since the variables t,x,y,z to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform the Legendre polynomial on [c1,c2], c1,c2R, and the shifted-Legendre polynomials after translation transformation and expansion transformation by Eq (2.1).

    p0(x)=1,p1(x)=2(xc1)c2c11,pi+1(x)=2i+1i+1[2(xc1)c2c11]pi(x)ii+1pi1(x),i=1,2,. (2.1)

    Obviously, {pi(x)}i=0 is a system of orthogonal functions on L2[c1,c2], and

    c2c1pi(x)pj(x)dx={c2c12i+1,i=j,0,ij.

    Let Li(x)=2i+1c2c1pi(x). Based on the knowledge of ref. [29], we begin to discuss the algorithm in this paper.

    Lemma 2.1. [29] {Li(x)}i=0 is a orthonormal basis in L2[c1,c2].

    Considering that the problem studied in this paper has a nonhomogeneous boundary value condition, the problem (1.1) can be homogenized by making a transformation as follows.

    v(t,x,y,z)=u(t,x,y,z)ϕ(x,y,z).

    Here, homogenization is necessary because we can easily construct functional spaces that meet the homogenization boundary value conditions. This makes us only need to pay attention to the operator equation itself in the next research, without considering the interference caused by boundary value conditions.

    In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat conduction system is still represented by u, the thermal diffusion efficiency k=1, and the homogeneous system of heat conduction equation is simplified as follows:

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (2.2)

    The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-dimensional spaces. Therefore, this section first defines the following one-dimensional space.

    Remember AC represents the space of absolutely continuous functions.

    Definition 2.1. W1[0,1]={u(t)|uAC,u(0)=0,uL2[0,1]}, and

    u,vW1=10uvdt,u,vW1.

    Let c1=0,c2=1, so {Ti(t)}i=0 is the orthonormal basis in L2[0,1], where Ti(t)=Li(t), note Tn(t)=ni=0citi. And {JTn(t)}n=0 is the orthonormal basis of W1[0,1], where

    JTn(t)=ni=0citi+1i+1.

    Definition 2.2. W2[0,a]={u(x)|uAC,u(0)=u(a)=0,uL2[0,a]}, and

    u,vW2=a0uvdx,u,vW2.

    Similarly, {Pn(x)}n=0 is the orthonormal basis in L2[0,a], and denote Pn(x)=nj=0djxj, where djR.

    Let

    JPn(x)=nj=0djxj+2aj+1x(j+1)(j+2),

    obviously, {JPn(x)}n=0 is the orthonormal basis of W2[0,a].

    We start with solving one-dimensional heat conduction equation, and then extend the algorithm to high-dimensional heat conduction equations.

    {2ux2ut=f(x),t[0,1],x[0,a],u(0,x)=0,u(t,0)=u(t,a)=0. (3.1)

    Let D=[0,1]×[0,a], CC represents the space of completely continuous functions, and Nn represents a set of natural numbers not exceeding n.

    Definition 3.1. W(D)={u(t,x)|uxCC,(t,x)D,u(0,x)=0,u(t,0)=u(t,a)=0,3utx2L2(D)}, and

    u,vW(D)=D3utx23vtx2dσ.

    Theorem 3.1. W(D) is an inner product space.

    Proof. u(t,x)W(D), if u,uW(D)=0, means

    D[3u(t,x)tx2]2dσ=0,

    and it implies

    3u(t,x)tx2=t(2u(t,x)x2)=0.

    Combined with the conditions of W(D), we can get u=0.

    Obviously, W(D) satisfies other conditions of inner product space.

    Theorem 3.2. uW(D),v1(t)v2(x)W(D), then

    u(t,x),v1(t)v2(x)W(D)=u(t,x),v1(t)W1,v2(x)W2.
    Proof.u(t,x),v1(t)v2(x)W(D)=D3u(t,x)tx23[v1(t)v2(x)]tx2dσ=D2x2[u(t,x)t]v1(t)t2v2(x)x2dσ=a02x2u(t,x),v1(t)W12v2(x)x2dx=u(t,x),v1(t)W1,v2(x)W2.

    Corollary 3.1. u1(t)u2(x)W(D),v1(t)v2(x)W(D), then

    u1(t)u2(x),v1(t)v2(x)W(D)=u1(t),v1(t)W1u2(x),v2(x)W2.

    Let

    ρij(t,x)=JTi(t)JPj(x),i,jN.

    Theorem 3.3. {ρij(t,x)}i,j=0is an orthonormal basis inW(D).

    Proof. ρij(t,x),ρlm(t,x)W(D),i,j,l,mN,

    ρij(t,x),ρlm(t,x)W(D)=JTi(t)JPj(x),JTl(t)JPm(x)W(D)=JTi(t),JTl(t)W1JPj(x),JPm(x)W2.

    So

    ρij(t,x),ρlm(t,x)W(D)={1,i=l,j=m,0,others.

    In addition, uW(D), if u,ρijW(D)=0, means

    u(t,x),JTi(t)JPj(x)W(D)=u(t,x),JTi(t)W1,JPj(x)W2=0.

    Note that {JPj(x)}j=0 is the complete system of W2, so u(t,x),JTi(t)W1=0.

    Similarly, we can get u(t,x)=0.

    Let L:W(D)L2(D),

    Lu=2ux2ut.

    So, Eq (3.1) can be simplified as

    Lu=f. (3.2)

    Definition 3.2. ε>0, if uW(D) and

    ||Luf||2L(D)<ε, (3.3)

    then u is called the εbest approximate solution for Lu=f.

    Theorem 3.4. Any ε>0, there is NN, when n>N, then

    un(t,x)=ni=0nj=0ηijρij(t,x) (3.4)

    is the εbest approximate solution for Lu=f, where ηij satisfies

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D),dijR,i,jNn.

    Proof. According to the Theorem 3.3, if u satisfies Eq (3.2), then u(t,x)=i=0j=0ηijρij(t,x), where ηij is the Fourier coefficient of u.

    Note that L is a bounded operator [30], hence, any ε>0, there is NN, when n>N, then

    ||i=n+1j=n+1ηijρij||2W(D)<ε||L||2.

    So,

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D)||ni=0nj=0ηijLρijf||2L2(D)=||ni=0nj=0ηijLρijLu||2L2(D)=||i=n+1j=n+1ηijLρij||2L2(D)||L||2||i=n+1j=n+1ηijρij||2W(D)< ε.

    For obtain un(t,x), we need to find the coefficients ηij by solving Eq (3.5).

    min{ηij}ni,j=0J=Lunf2L2(D) (3.5)

    In addition,

    J=Lunf2L2(D)=Lunf,LunfL2(D)=Lun,LunL2(D)2Lun,fL2(D)+f,fL2(D)=ni=0nj=0nl=0nm=0ηijηlmLρij,LρlmL2(D)2ni=0nj=0ηijLρij,fL2(D)+f,fL2(D).

    So,

    Jηij=2nl=0nm=0ηlmLρij,LρlmL2(D)2ηijLρij,fL2(D),i,jNn

    and the equations Jηij=0,i,jNn can be simplified to

    Aη=B, (3.6)

    where

    A=(Lρij,LρlmL2(D))N×N,N=(n+1)2,η=(ηij)N×1,B=(Lρij,fL2(D))N×1.

    Theorem 3.5. Aη=B has a unique solution.

    Proof. It can be proved that A is nonsingular. Let η satisfy Aη=0, that is,

    ni=0nj=0Lρij,LρlmL2(D)ηij=0,l,mNn.

    So, we can get the following equations:

    ni=0nj=0ηijLρij,ηlmLρlmL2(D)=0,l,mNn.

    By adding the above (n+1)2 equations, we can get

    ni=0nj=0ηijLρij,nl=0nm=0ηlmLρlmL2(D)=ni=0nj=0ηijLρij2L2(D)=0.

    So,

    ni=0nj=0ηijLρij=0.

    Note that L is reversible. Therefore, ηij=0,i,jNn.

    According to Theorem 3.5, un(t,x) can be obtained by substituting η=A1B into un=ni=0nj=0ηijρij(t,x).

    {2ux2+2uy2ut=f(x,y),t[0,1],x[0,a],y[0,b],u(0,x,y)=0,u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0. (3.7)

    Similar to definition 2.2, we can give the definition of linear space W3[0,b] as follows:

    W3[0,b]={u(y)|uAC,y[0,b],u(0)=u(b)=0,uL2[0,b]}.

    Similarly, let {Qn(y)}n=0 is the orthonormal basis in L2[0,b], and denote Qn(y)=nk=0qkyk.

    Let

    JQn(y)=nk=0qkyk+2bk+1y(k+1)(k+2),

    it is easy to prove that {JQn(y)}n=0 is the orthonormal basis of W3[0,b].

    Let Ω=[0,1]×[0,a]×[0,b]. Now we define a three-dimensional space.

    Definition 3.3 W(Ω)={u(t,x,y)|2uxyCC,(t,x,y)Ω,u(0,x,y)=0, u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0,5utx2y2L2(Ω)}, and

    u,vW(Ω)=Ω5utx2y25vtx2y2dΩ,u,vW(Ω).

    Similarly, we give the following theorem without proof.

    Theorem 3.6. {ρijk(t,x,y)}i,j,k=0is an orthonormal basis ofW(Ω), where

    ρijk(t,x,y)=JTi(t)JPj(x)JQk(y),i,j,kNn.

    Therefore, we can get un as

    un(t,x,y)=ni=0nj=0nk=0ηijkρijk(t,x,y), (3.8)

    according to the theory in Section 3.1, we can find all ηijk,i,j,kNn.

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (3.9)

    By Lemma 2.1, note that the orthonormal basis of L2[0,c] is {Rn(z)}n=0, and denote Rn(z)=nm=0rmzm, where rm is the coefficient of polynomial Rn(z).

    We can further obtain the orthonormal basis JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2) of W4[0,c], where

    JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2),

    and

    W4[0,c]={u(z)|uAC,z[0,c],u(0)=u(c)=0,uL2[0,c]}.

    Let G=[0,1]×[0,a]×[0,b]×[0,c]. Now we define a four-dimensional space.

    Definition 3.4. W(G)={u(t,x,y,z)|3uxyzCC,(t,x,y,z)G,u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0, u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0,7utx2y2z2L2(G)}, and

    u,vW(G)=G7utx2y2z27vtx2y2z2dG,u,vW(G),

    where dG = dtdxdydz.

    Similarly, we give the following theorem without proof.

    Theorem 3.7. {ρijk(t,x,y,z)}i,j,k,m=0is an orthonormal basis ofW(G), where

    ρijkm(t,x,y,z)=JTi(t)JPj(x)JQk(y)JRm(z),i,j,k,mN.

    Therefore, we can get un as

    un(t,x,y,z)=ni=0nj=0nk=0nm=0ηijkmρijkm(t,x,y,z), (3.10)

    according to the theory in Section 3.1, we can find all ηijkm,i,j,k,mNn.

    Suppose u(t,x)=i=0j=0ηijρij(t,x) is the exact solution of Eq (3.5). Let PN1,N2u(t,x)=N1i=0N2j=0ηijTi(t)Pj(x) is the projection of u in L(D).

    Theorem 4.1. Suppose r+lu(t,x)trxlL2(D), and N1>r,N2>l, then, the error estimate of PN1,N2u(t,x) is

    ||uPN1,N2u||2L2(D)CNα,

    where C is a constant, N=min{N1,N2},α=min{r,l}.

    Proof. According to the lemma in ref. [29], it follows that

    ||uuN1||2L2t[0,1]=||uPt,N1u||2L2t[0,1]C1Nr1||rtru(t,x)||2L2t[0,1],

    where uN1=Pt,N1u represents the projection of u on variable t in L2[0,1], and ||||L2t[0,1] represents the norm of () with respect to variable t in L2[0,1].

    By integrating both sides of the above formula with respect to x, we can get

    ||uuN1||2L2(D)C1Nr1a0||rtru||2L2t[0,1]dx=C1Nr1||rtru||2L2(D).

    Moreover,

    u(t,x)uN1(t,x)=i=N1+1u,TiL2t[0,1]Ti(t)=i=N1+1j=0u,TiL2t[0,1],PjL2x[0,a]Pj(x)Ti(t).

    According to the knowledge in Section 3,

    ||uuN1||2L2(D)=i=N1+1j=0c2ij,

    where cij=u,TiL2t[0,1],PjL2x[0,a].

    Therefore,

    i=N1+1j=0c2ijC1Nr1||rtru||2L2(D).

    Similarly,

    i=0j=N2+1c2ijC2Nl2||lxlu||2L2(D).

    In conclusion,

    ||uPN1,N2u||2L2(D)=||(i=0j=0N1i=0N2j=0)c2ijTi(t)Pj(x)||2L2(D)i=N1+1N2j=0c2ij+i=0j=N2+1c2iji=N1+1j=0c2ij+i=0j=N2+1c2ijC1Nr1||rtru||2L2(D)+C2Nl2||lxlu||2L2(D)CNα.

    Theorem 4.2. Suppose r+lu(t,x)trxlL2(D), un(t,x) is the εbest approximate solution of Eq (3.2), and n>max{r,l}, then,

    ||uun||2W(D)Cnα.

    where C is a constant, α=min{r,l}.

    Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.

    ||uun||2W(D)||uPN1,N2u||2L2(D)Cnα.

    So, the εapproximate solution has α convergence order, and the convergence rate is related to n, where represents the number of bases, and the convergence order can calculate as follows.

    C.R.=logn2n1max|en1|max|en2|. (4.1)

    Where ni,i=1,2 represents the number of orthonormal base elements.

    Here, three examples are compared with other algorithms. N represents the number of orthonormal base elements. For example, N=10×10, which means that we use the orthonormal system {ρij}10i,j=0 of W(D) for approximate calculation, that is, we take the orthonormal system {JTi(t)}10i=0 and {JPj(x)}10j=0 to construct the εbest approximate solution.

    Example 5.1. Consider the following one-demensional heat conduction system [7,20]

    {ut=uxx,(t,x)[0,1]×[0,2π],u(0,x)=sin(x),u(t,0)=u(t,2π)=0.

    The exact solution of Ex. 5.1 is etsinx.

    In Table 1, C.R. is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the real solution, and the yellow surface represents the surface of un. With the increase of N, the errors between the two surfaces will be smaller.

    Table 1.  max|uun| for Ex. 5.1.
    N HOC-ADI Method [20] FVM [7] Present method C.R.
    4×4 6.12E-3 4.92E-2 9.892E-3
    6×6 1.68E-3 2.05E-2 4.319E-4 3.8613
    8×8 7.69E-4 1.27E-2 9.758E-6 6.5873
    10×10 4.40E-4 9.20E-3 1.577E-7 9.2432

     | Show Table
    DownLoad: CSV
    Table 2.  |uun| for Ex. 5.1 (n=9).
    |uun| t=0.1 t=0.3 t=0.5 t=0.7 t=0.9
    x=π5 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8
    x=3π5 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    x=7π5 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    x=9π5 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8

     | Show Table
    DownLoad: CSV
    Figure 1.  uandun in Example 5.1(n=9).
    Figure 2.  |u(1,x)un(1,x)| in Example 5.1(n=9).

    Example 5.2. Consider the following two-demensional heat conduction system [20,21]

    {ut=uxx+uyy,(t,x,y)[0,1]×[0,1]×[0,1],u(0,x,y)=sin(πx)sin(πy),u(t,0,y)=u(t,1,y)=u(t,x,0)=u(t,x,1)=0.

    The exact solution of Ex. 5.2 is u=e2π2tsin(πx)sin(πy).

    Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison with other algorithms. Table 4 lists the errors variation law in the xaxis direction. Figures 3 and 4 show the convergence effect of the scheme more vividly.

    Table 3.  The absolute errors max|uun| for Ex. 5.2 (t=1,(x,y)[0,1]×[0,1]).
    N CCD-ADI Method [21] RHOC-ADI Method [20] Present method C.R.
    4×4×4 8.820E-3 3.225E-2 5.986E-3
    8×8×8 6.787E-5 1.969E-3 3.126E-5 2.52704

     | Show Table
    DownLoad: CSV
    Table 4.  The absolute errors |uun| for Ex. 5.2 (t=1,n=7).
    |uun| y=0.1 y=0.3 y=0.5 y=0.7 y=0.9
    x=0.1 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6
    x=0.3 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    x=0.5 2.421E-5 6.347E-5 7.839E-5 6.347E-5 2.421E-5
    x=0.7 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    x=0.9 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6

     | Show Table
    DownLoad: CSV
    Figure 3.  uandun in Example 5.2(n=7).
    Figure 4.  uun in Example 5.2(n=7).

    Example 5.3. Consider the three-demensional problem as following:

    {(1a2+1b2+1c2)ut=uxx+uyy+uzz,(t,x,y,z)[0,1]×[0,a]×[0,b]×[0,c],u(0,x,y)=sin(πxa)sin(πyb)sin(πzc),u(t,0,y)=u(t,1,y)=u(t,x,0)=u(t,x,1)=0.

    The exact solution of Ex. 5.3 is u=eπ2tsin(πxa)sin(πyb)sin(πzc).

    Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system is also the most common case in the industrial field. Table 5 lists the approximation degree between the εbest approximate solution and the real solution when the boundary time t=1.

    Table 5.  The absolute errors |uun| for Ex. 5.3 (t=1,z=0.1,n=2).
    |uun| y=0.2 y=0.6 y=1.0 y=1.4 y=1.8
    x=0.1 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3
    x=0.3 2.893E-3 7.350E-3 8.820E-3 7.350E-3 2.893E-3
    x=0.5 3.482E-3 8.838E-3 1.059E-2 8.838E-3 3.482E-3
    x=0.7 2.893E-3 7.350E-3 8.820E-3 7.735E-3 2.893E-3
    x=0.9 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3

     | Show Table
    DownLoad: CSV

    The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper is a polynomial structure, which has the characteristics of convergence order.

    This work has been supported by three research projects (2019KTSCX217, 2020WQNCX097, ZH22017003200026PWC).

    The authors declare no conflict of interest.



    Author contributions



    Nasser A. N. Alzerwi: Idea generation and conception, study design, data collection, data analysis, literature review, and manuscript writing.

    Conflict of interest



    There is no conflict of interest to disclose.

    [1] Lu HL, Ding Y, Goyal H, et al. (2019) Association between rotavirus vaccination and risk of intussusception among neonates and infants: A systematic review and meta-analysis. JAMA e1912458.
    [2] Marinis A, Yiallourou A, Samanides L, et al. (2009) Intussusception of the bowel in adults: A review. World J Gastroenterol 15: 407-411. doi: 10.3748/wjg.15.407
    [3] Weilbaecher D, Bolin JA, Hearn D, et al. (1971) Intussusception in adults. Review of 160 cases. Am J Surg 121: 531-5. doi: 10.1016/0002-9610(71)90133-4
    [4] Chen XD, Yu YY, Yang L, et al. (2012) Duodenal intussusception due to a giant neuroendocrine carcinoma in a patient with Peutz-Jeghers syndrome: Case report and systematic review. Eur J Gastroenterol Hepatol 24: 722-726. doi: 10.1097/MEG.0b013e328351c1df
    [5] Hong KD, Kim J, Ji W, et al. (2019) Adult intussusception: a systematic review and meta-analysis. Tech Coloproctol 23: 315-324. doi: 10.1007/s10151-019-01980-5
    [6] Honjo H, Mike M, Kusanagi H, et al. (2015) Adult intussusception: a retrospective review. World J Surg 39: 134-138. doi: 10.1007/s00268-014-2759-9
    [7] Marsicovetere P, Ivatury SJ, White B, et al. (2017) Intestinal intussusception: etiology, diagnosis, and treatment. Clin Colon Rectal Surg 30: 30-39. doi: 10.1055/s-0036-1593429
    [8] Valentini V, Buquicchio GL, Galluzzo M, et al. (2016) Intussusception in adults: the role of MDCT in the identification of the site and cause of obstruction. Gastroenterol Res Pract 2016: 5623718. doi: 10.1155/2016/5623718
    [9] Lianos G, Xeropotamos N, Bali C, et al. (2013) Adult bowel intussusception: presentation, location, etiology, diagnosis and treatment. G Chir 34: 280-283.
    [10] Yalamarthi S, Smith RC (2005) Adult intussusception: case reports and review of literature. Postgrad Med J 81: 174-177. doi: 10.1136/pgmj.2004.022749
    [11] Moher D, Liberati A, Tetzlaff J, et al. (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med 151: 264-269. doi: 10.7326/0003-4819-151-4-200908180-00135
    [12] Azar T, Berger DL (2009) Adult intussusception. Ann Surg 226: 134-138. doi: 10.1097/00000658-199708000-00003
    [13] Gagnier JJ, Kienle G, Altman DG, et al. (2013) The CARE guidelines: consensus-based clinical case reporting guideline development. J Med Case Rep 7: 223. doi: 10.1186/1752-1947-7-223
    [14] Kellogg EL (1931) Intussusception of the duodenum caused by adenoma originating in Brunner's glands. Med J Rec 134: 440-442.
    [15] Ibrahim H (1959) Duodeno-jejunal intussusception caused by a myoma of third part of duodenum. J Egypt Med Assoc 42: 14-17.
    [16] Lempke R (1959) Intussusception of the duodenum: Report of a case due to Brunner's gland hyperplasia. Ann Surg 150: 160-166. doi: 10.1097/00000658-195907000-00020
    [17] Rieth D, Abbott G, Gray G (1977) Duodenal intussusception secondary to Brunner's gland hamartoma. A case report. Gastrointest Radiol 2: 13-16. doi: 10.1007/BF02256458
    [18] Van Beers B, Trigaux JP, Pringot J (1983) Duodenojejunal intussusception secondary to duodenal tumors. Gastrointest Radiol 13: 24-26. doi: 10.1007/BF01889017
    [19] Taams J, Huizinga WK, Somers SR (1992) The wandering ampulla--duodenal-jejunal intussusception of a carcinoid tumour with displacement of the bile duct to the left iliac fossa. A case report. S Afr J Surg 30: 153-155.
    [20] Vinnicombe S, Grundy A (1992) Case report: obstructive jaundice secondary to an intussuscepting duodenal villous adenoma. Clin Radiol 46: 63-65. doi: 10.1016/S0009-9260(05)80040-6
    [21] Schnedl WJ, Reisinger EC, Lipp RW, et al. (1996) Biliary obstruction due to duodenojejunal intussusception in Peutz-Jeghers syndrome. J Clin Gastroenterol 23: 220-223. doi: 10.1097/00004836-199610000-00014
    [22] Uggowitzer M, Kugler C, Aschauer M, et al. (1996) Duodenojejunal intussusception with biliary obstruction and atrophy of the pancreas. Abdom Imaging 21: 240-242. doi: 10.1007/s002619900055
    [23] O'Connor PA, McGrath FP, Lane BE (1999) Duodenal intussusception secondary to an internal duodenal duplication. Clin Radiol 4: 69-70. doi: 10.1016/S0009-9260(99)91243-6
    [24] Blanchet MC, Arnal E, Paparel P, et al. (2003) Obstructive duodenal lipoma successfully treated by endoscopic polypectomy. Gastrointest Endosc 58: 938-939. doi: 10.1016/S0016-5107(03)02232-6
    [25] Ijichi H, Kawabe T, Isayama H, et al. (2003) Duodenal intussusception due to adenoma of the papilla of Vater. Hepatogastroenterology 50: 1399-1402.
    [26] Gardner-Thorpe J, Hardwick RH, Carroll NR, et al. (2007) Adult duodenal intussusception associated with congenital malrotation. World J Gastroenterol 13: 3892-3894. doi: 10.3748/wjg.v13.i28.3892
    [27] Jeon SJ, Yoon SE, Lee YH, et al. (2007) Acute pancreatitis secondary to duodenojejunal intussusception in Peutz-Jegher syndrome. Clin Radiol 62: 88-91. doi: 10.1016/j.crad.2006.08.011
    [28] Madanur MA, Mula VR, Patel D, et al. (2008) Periampullary carcinoma presenting as duodenojejunal intussusception: A diagnostic and therapeutic dilemma. Hepatobiliary Pancreat Dis Int 7: 658-660.
    [29] Neogi P, Misra A, Agrawal R (2008) Duodenal adenoma presenting as duodenojejunal intussusception. Acta Biomed 79: 137-139.
    [30] Bayan K, Tuzun Y, Yilmaz S, et al. (2009) Pyloric giant Brunner's gland hamartoma as a cause of both duodenojejunal intussusception and obscure gastrointestinal bleeding. Turk J Gastroenterol 20: 52-56.
    [31] George J, Kadambari D, Jagdish S, et al. (2009) An unusual case of a duodenal adenocarcinoma presenting as duodeno-jejunal intussusception. ANZ J Surg 79: 655-656. doi: 10.1111/j.1445-2197.2009.05023.x
    [32] Mourra N, Chafai N, Lewin M (2009) An unusual cause of duodenojejunal intussusception and melena. Gastroenterology 137: e7. doi: 10.1053/j.gastro.2009.02.012
    [33] Singhal M, Kang M, Narayanan S, et al. (2009) Duodenoduodenal intussusception. J Gastrointest Surg 13: 386-388. doi: 10.1007/s11605-008-0509-8
    [34] Aiyappan SK, Kang M, Yadav TD, et al. (2010) Duodenojejunal intussusception in Peutz-Jeghers syndrome: Report of a case. Surg Today 40: 1179-1182. doi: 10.1007/s00595-009-4199-y
    [35] Dhinakar M, Allaya D, Golash V (2010) A rare case of Brunneroma duodenum causing gastric outlet obstraction. Oman Med J 25: 44-46.
    [36] Limi L, Liew NC, Badrul RH, et al. (2010) Duodenal intussusception of Brunner's gland adenoma mimicking a pancreatic tumour. Med J Malaysia 65: 311-312.
    [37] Singla R, Bharti P, Jain R, et al. (2010) Giant Brunner gland adenoma manifesting as iron deficiency anaemia and intussusception. Natl Med J India 23: 376-377.
    [38] He J, Yu LF, Zhang SZ (2011) Jaundice and rectal bleeding in a young man. Gut 60: 892. doi: 10.1136/gut.2009.181149
    [39] Karahan N, Bozkurt KK, Ciris IM, et al. (2011) Duodenojejunal invagination caused by small bowel metastasis of renal cell carcinoma. Turk J Gastroenterol 22: 355-357. doi: 10.4318/tjg.2011.0231
    [40] Abeysekera WYM, de Silva W, Pragatheswaran P, et al. (2012) Brunneroma presenting with radiological features of duodeno-duodenal intussusception. Sri Lanka J Surg 30.
    [41] Li Y, Liu W, Zhou L, et al. (2012) Synchronous presentation of acute pancreatitis and splenomegaly with intussusceptions in Peutz-Jeghers syndrome. Dig Endosc 24: 374-377. doi: 10.1111/j.1443-1661.2012.01308.x
    [42] Rathi V, Jain BK, Garg PK, et al. (2012) An unusual case of duodenal beaking. Br J Radiol 85: 1517-1521. doi: 10.1259/bjr/13193393
    [43] Watanabe F, Noda H, Okamura J, et al. (2012) Acute pancreatitis secondary to duodenoduodenal intussusception in duodenal adenoma. Case Rep Gastroenterol 6: 143-149. doi: 10.1159/000337868
    [44] Ko SY, Ko SH, Ha S, et al. (2013) A case of a duodenal duplication cyst presenting as melena. World J Gastroenterol 19: 6490-6493. doi: 10.3748/wjg.v19.i38.6490
    [45] Pandey A, Chandra A, Wahal A (2013) Brunneroma with duodenojejunal intussusception: A rare cause of gastric outlet obstruction. BMJ Case Rep 2013: bcr2012008119.
    [46] Upadhyay S, Chaudhry N, Mahajan A, et al. (2013) Hamartomatous duodenal polyp leading to duodeno-jejunal intussusception—a rare case report. J Int Med Sci Acad 26: 121-122.
    [47] Ahmad S, Lal N, Fatima U, et al. (2014) Adult duodenojejunal intussusception due to heterotopic pancreas—A rare entity. Bangladesh J Med Sci 13: 340-342. doi: 10.3329/bjms.v13i3.12781
    [48] Kusnierz K, Pilch-Kowalczyk J, Gruszczynska K, et al. (2014) A duodenal duplication cyst manifested by duodenojejunal intussusception and chronic pancreatitis. Surgery 156: 742-744. doi: 10.1016/j.surg.2013.02.013
    [49] Ozer A, Sarkut P, Ozturk E, et al. (2014) Jejunoduodenal intussusception caused by a solitary polyp in a woman with Peutz-Jeghers syndrome: A case report. J Med Case Rep 8: 13. doi: 10.1186/1752-1947-8-13
    [50] Kefeli A, Basyigit S, Yeniova AO, et al. (2015) Retrograde duodenoduodenal intussusception: an uncommon complication of peptic ulcer. Chinese Med J 128: 2981-2982. doi: 10.4103/0366-6999.168085
    [51] Larsen PO, Ellebæk MB, Pless T, et al. (2015) Acute pancreatitis secondary to duodeno-duodenal intussusception caused by a duodenal membrane, in a patient with intestinal malrotation. Int J Surg Case Rep 13: 58-60. doi: 10.1016/j.ijscr.2015.06.013
    [52] Naik B, Arjun N, Kudari A (2015) A case of duodeno-duodenal intussusception. J Evol Med Dent Sci 4: 6138-6142. doi: 10.14260/jemds/2015/893
    [53] Pradhan D, Kaur N, Nagi B (2015) Duodenoduodenal intussusception: Report of three challenging cases with literature review. J Cancer Res The 11: 1031.
    [54] Chai LF, Batista PM, Lavu H (2016) Taking the lead: A case report of a leiomyoma causing duodeno-duodenal intussusception and review of literature. Case Rep Pancreat Cancer 2: 19-22. doi: 10.1089/crpc.2016.0001
    [55] Griffin M, Nolan H, Wengler C, et al. (2016) Duodenal leiomyoma causing duodenojejunal intussusception. Am Surg 82: E164-166. doi: 10.1177/000313481608200714
    [56] McCluney SJ, Balarajah V, Giakoustidis A, et al. (2016) Intussuscepting ampullary adenoma: An unusual cause of gastric outlet obstruction leading to cavitating lung lesions. Case Rep Gastroenterol 10: 545-552. doi: 10.1159/000450540
    [57] Patankar AM, Wadhwa AM, Bajaj A, et al. (2016) Brunneroma: A rare cause of duodeno-duodenal intussusception. Euroasian J Hepatogastroenterol 6: 84-88. doi: 10.5005/jp-journals-10018-1174
    [58] Uda H, Murai T, Shinozuka T, et al. (2016) A case of intussusception into the jejunum caused by a Brunner's gland adenoma. Nihon Fukubu Kyukyu Igakkai Zasshi (J Abdom Emerg Med) 36: 125-127.
    [59] Loo GH, Abu Zeid WMM, Lim SL, et al. (2017) Rare presentation of idiopathic duodenoduodenal intussusception. Ann R Coll Surg Engl 99: e188-e190. doi: 10.1308/rcsann.2017.0104
    [60] Kinoo SM, Naidoo R, Singh B (2018) Duodeno-duodenal intussusception secondary to a Brunner's gland adenoma. South Afr J Surg 56.
    [61] Lingala S, Moore A, Kadire S, et al. (2018) Unusual presentation of duodenal ulcer presenting with duodenal intussusception. ACG Case Rep J 5: e25. doi: 10.14309/crj.2018.25
    [62] Fujimoto G, Osada S (2019) Duodenojejunal intussusception secondary to primary gastrointestinal stromal tumor: A case report. Int J Surg Case Rep 64: 15-19. doi: 10.1016/j.ijscr.2019.09.041
    [63] Hirata M, Shirakata Y, Yamanaka K (2019) Duodenal intussusception secondary to ampullary adenoma: A case report. World J Clin Cases 7: 1857-1864. doi: 10.12998/wjcc.v7.i14.1857
    [64] Begos DG, Sandor A, Modlin IM (1997) The diagnosis and management of adult intussusception. Am J Surg 173: 88-94. doi: 10.1016/S0002-9610(96)00419-9
    [65] Brayton D, Norris WJ (1995) Intussusception in adults. Am J Surg 88: 32-43. doi: 10.1016/0002-9610(54)90328-1
    [66] Gupta V, Doley RP, Bharathy KGS, et al. (2011) Adult intussusception in Northern India. Int J Surg 9: 297-301. doi: 10.1016/j.ijsu.2011.01.004
    [67] Gordon RS, O'Dell KB, Namon AJ, et al. (1991) Intussusception in the adult—a rare disease. J Emerg Med 9: 337-342. doi: 10.1016/0736-4679(91)90377-R
    [68] Bartocci M, Fabrizi G, Valente I, et al. (2014) Intussusception in childhood: role of sonography on diagnosis and treatment. J Ultrasound 18: 205-211. doi: 10.1007/s40477-014-0110-9
    [69] Gluckman S, Karpelowsky J, Webster AC, et al. (2017) Management for intussusception in children. Cochrane Database Syst Rev 6: Cd006476.
    [70] Wolfe D, Kanji S, Yazdi F, et al. (2020) Drug induced pancreatitis: A systematic review of case reports to determine potential drug associations. PLoS One 15: e0231883. doi: 10.1371/journal.pone.0231883
  • This article has been cited by:

    1. Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin Zhang, Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN, 2024, 8, 2504-3110, 91, 10.3390/fractalfract8020091
    2. Shiyv Wang, Xueqin Lv, Songyan He, The reproducing kernel method for nonlinear fourth-order BVPs, 2023, 8, 2473-6988, 25371, 10.3934/math.20231294
    3. Yingchao Zhang, Yuntao Jia, Yingzhen Lin, A new multiscale algorithm for solving the heat conduction equation, 2023, 77, 11100168, 283, 10.1016/j.aej.2023.06.066
    4. Safia Malik, Syeda Tehmina Ejaz, Shahram Rezapour, Mustafa Inc, Ghulam Mustafa, Innovative numerical method for solving heat conduction using subdivision collocation, 2025, 1598-5865, 10.1007/s12190-025-02429-9
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5620) PDF downloads(139) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog