Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Bioresorbable Scaffolds: The Revolution in Coronary Stenting?

  • Received: 16 October 2015 Accepted: 07 March 2016 Published: 15 March 2016
  • Bioresorbable scaffolds (BRS) represent the latest revolution in interventional cardiology. Thanks to their reabsorptive properties, they provide temporary scaffolding that helps stabilizing the plaque and promotes healing, and then disappear, thus restoring a functional endothelium and vasomotion. Several devices have been tested at the preclinical and clinical stage. Here we review the rationale, development, design and clinical data of the BRS platforms, providing a comprehensive review of the literature.

    Citation: Lorenzo Azzalini, Philippe L. L’Allier, Jean-François Tanguay. Bioresorbable Scaffolds: The Revolution in Coronary Stenting?[J]. AIMS Medical Science, 2016, 3(1): 126-146. doi: 10.3934/medsci.2016.1.126

    Related Papers:

    [1] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [2] Yingchao Zhang, Yingzhen Lin . An $ {\varepsilon} $-approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813
    [3] Yingchao Zhang, Yuntao Jia, Yingzhen Lin . An $ {\varepsilon} $-approximate solution of BVPs based on improved multiscale orthonormal basis. AIMS Mathematics, 2024, 9(3): 5810-5826. doi: 10.3934/math.2024282
    [4] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [5] Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182
    [6] Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476
    [7] A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160
    [8] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by $ \psi $-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
    [9] Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367
    [10] Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509
  • Bioresorbable scaffolds (BRS) represent the latest revolution in interventional cardiology. Thanks to their reabsorptive properties, they provide temporary scaffolding that helps stabilizing the plaque and promotes healing, and then disappear, thus restoring a functional endothelium and vasomotion. Several devices have been tested at the preclinical and clinical stage. Here we review the rationale, development, design and clinical data of the BRS platforms, providing a comprehensive review of the literature.


    In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat conduction equation [1]:

    $ {ut=k(2ux2+2uy2+2uz2),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=ϕ(x,y,z),u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. $ (1.1)

    Where $ u(t, x, y, z) $ is the temperature field, $ \phi(x, y, z) $ is a known function, $ k $ is the thermal diffusion efficiency, and $ a, b, c $ are constants that determine the size of the space.

    Heat conduction system is a very common and important system in engineering problems, such as the heat transfer process of objects, the cooling system of electronic components and so on [1,2,3,4]. Generally, heat conduction is a complicated process, so we can't get the analytical solution of heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat conduction equation [5,6,7,8]. Reproducing kernel method is also an effective numerical algorithm for solving boundary value problems including heat conduction equation [9,10,11,12,13,14]. Galerkin schemes and Green's function are also used to construct numerical algorithms for solving one-dimensional and two-dimensional heat conduction equations [15,16,17,18,19]. Alternating direction implicit (ADI) method can be very effective in solving high-dimensional heat conduction equations [20,21]. In addition, the novel local knot method and localized space time method are also used to solve convection-diffusion problems [22,23,24,25]. These methods play an important reference role in constructing new algorithms in this paper.

    Legendre orthogonal function system is an important function sequence in the field of numerical analysis. Because its general term is polynomial, Legendre orthogonal function system has many advantages in the calculation process. Scholars use Legendre orthogonal function system to construct numerical algorithm of differential equations [26,27,28].

    Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm that can be extended to high-dimensional heat conduction equation. The proposed algorithm has $ \alpha $-Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.

    The content of the paper is arranged like this: The properties of shifted Legendre polynomials, homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically deduce the numerical algorithm methods of high-dimensional heat conduction equations. The convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief summary are given at the end of this paper.

    In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are introduced. These knowledge will pave the way for describing the algorithm in this paper.

    The traditional Legendre polynomial is the orthogonal function system on $ [-1, 1] $. Since the variables $ t, x, y, z $ to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform the Legendre polynomial on $ [c_1, c_2] $, $ c_1, c_2\in \mathbb{R} $, and the shifted-Legendre polynomials after translation transformation and expansion transformation by Eq (2.1).

    $ p0(x)=1,p1(x)=2(xc1)c2c11,pi+1(x)=2i+1i+1[2(xc1)c2c11]pi(x)ii+1pi1(x),i=1,2,. $ (2.1)

    Obviously, $ \{p_i(x)\}_{i = 0}^\infty $ is a system of orthogonal functions on $ L^2[c_1, c_2] $, and

    $ \int_{c_1}^{c_2}p_i(x)p_j(x)dx = \left\{ c2c12i+1,i=j,0,ij. \right. $

    Let $ L_i(x) = \sqrt{\frac{2 i+1}{c_2-c_1}}p_i(x) $. Based on the knowledge of ref. [29], we begin to discuss the algorithm in this paper.

    Lemma 2.1. [29] $ \{L_i(x)\}_{i = 0}^\infty $ is a orthonormal basis in $ L^2[c_1, c_2] $.

    Considering that the problem studied in this paper has a nonhomogeneous boundary value condition, the problem (1.1) can be homogenized by making a transformation as follows.

    $ v(t,x,y,z) = u(t,x,y,z)-\phi(x,y,z). $

    Here, homogenization is necessary because we can easily construct functional spaces that meet the homogenization boundary value conditions. This makes us only need to pay attention to the operator equation itself in the next research, without considering the interference caused by boundary value conditions.

    In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat conduction system is still represented by $ u $, the thermal diffusion efficiency $ k = 1 $, and the homogeneous system of heat conduction equation is simplified as follows:

    $ {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. $ (2.2)

    The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-dimensional spaces. Therefore, this section first defines the following one-dimensional space.

    Remember $ AC $ represents the space of absolutely continuous functions.

    Definition 2.1. $ W_1[0, 1] = \{u(t)|u\in AC, u(0) = 0, u'\in L^2[0, 1]\}, $ and

    $ u,vW1=10uvdt,u,vW1. $

    Let $ c_1 = 0, c_2 = 1 $, so $ \{T_i(t)\}_{i = 0}^\infty $ is the orthonormal basis in $ L^2[0, 1] $, where $ T_i(t) = L_i(t) $, note $ T_n(t) = \sum\limits_{i = 0}^n c_i t^i $. And $ \{JT_n(t)\}_{n = 0}^\infty $ is the orthonormal basis of $ W_1[0, 1] $, where

    $ JT_n(t) = \sum\limits_{i = 0}^n c_i \frac{t^{i+1}}{i+1}. $

    Definition 2.2. $ W_2[0, a] = \{u(x)|u'\in AC, u(0) = u(a) = 0, u''\in L^2[0, a]\}, $ and

    $ u,vW2=a0uvdx,u,vW2. $

    Similarly, $ \{P_n(x)\}_{n = 0}^\infty $ is the orthonormal basis in $ L^2[0, a] $, and denote $ P_n(x) = \sum\limits_{j = 0}^n d_j x^j $, where $ d_j\in \mathbb{R} $.

    Let

    $ JP_n(x) = \sum\limits_{j = 0}^n d_j \frac{x^{j+2}-a^{j+1}x}{(j+1)(j+2)}, $

    obviously, $ \{JP_n(x)\}_{n = 0}^\infty $ is the orthonormal basis of $ W_2[0, a] $.

    We start with solving one-dimensional heat conduction equation, and then extend the algorithm to high-dimensional heat conduction equations.

    $ {2ux2ut=f(x),t[0,1],x[0,a],u(0,x)=0,u(t,0)=u(t,a)=0. $ (3.1)

    Let $ D = [0, 1]\times[0, a] $, $ CC $ represents the space of completely continuous functions, and $ \mathbb{N}_n $ represents a set of natural numbers not exceeding $ n $.

    Definition 3.1. $ W(D) = \{u(t, x)|\frac{\partial u}{\partial x}\in CC, (t, x)\in D, u(0, x) = 0, u(t, 0) = u(t, a) = 0, \frac{\partial^3 u}{\partial t\partial x^2}\in L^2(D)\}, $ and

    $ u,vW(D)=D3utx23vtx2dσ. $

    Theorem 3.1. $ W(D) $ is an inner product space.

    Proof. $ \forall u(t, x)\in W(D) $, if $ \langle u, u\rangle_{W(D)} = 0 $, means

    $ \iint\limits_D[\frac{\partial^3 u(t,x)}{\partial t\partial x^2}]^2d\sigma = 0, $

    and it implies

    $ \frac{\partial^3 u(t,x)}{\partial t\partial x^2} = \frac{\partial}{\partial t}(\frac{\partial^2 u(t,x)}{\partial x^2}) = 0. $

    Combined with the conditions of $ W(D) $, we can get $ u = 0 $.

    Obviously, $ W(D) $ satisfies other conditions of inner product space.

    Theorem 3.2. $ \forall u\in W(D), v_1(t)v_2(x)\in W(D) $, then

    $ \langle u(t,x), v_1(t)v_2(x)\rangle_{W(D)} = \langle \langle u(t,x), v_1(t)\rangle_{W_1}, v_2(x)\rangle_{W_2}. $
    $ Proof. \langle u(t,x), v_1(t)v_2(x)\rangle_{W(D)} = \iint\limits_D \frac{\partial^3 u(t,x)}{\partial t\partial x^2}\frac{\partial^3 [v_1(t)v_2(x)]}{\partial t\partial x^2}d\sigma\\ = \iint\limits_D \frac{\partial^2}{\partial x^2}[\frac{\partial u(t,x)}{\partial t}]\frac{\partial v_1(t)}{\partial t}\frac{\partial^2 v_2(x)}{\partial x^2}d\sigma\\ = \int_0^a \frac{\partial^2}{\partial x^2}\langle u(t,x), v_1(t)\rangle_{W_1}\frac{\partial^2 v_2(x)}{\partial x^2}dx\\ = \langle \langle u(t,x), v_1(t)\rangle_{W_1}, v_2(x)\rangle_{W_2}. $

    Corollary 3.1. $ \forall u_1(t)u_2(x)\in W(D), v_1(t)v_2(x)\in W(D) $, then

    $ \langle u_1(t)u_2(x), v_1(t)v_2(x)\rangle_{W(D)} = \langle u_1(t), v_1(t)\rangle_{W_1}\langle u_2(x), v_2(x)\rangle_{W_2}. $

    Let

    $ \rho_{ij}(t,x) = JT_i(t)JP_j(x), \; \; i,j\in \mathbb{N}. $

    Theorem 3.3. $ \{\rho_{ij}(t, x)\}_{i, j = 0}^\infty \mathit{\mbox{is an orthonormal basis in}}W(D) $.

    Proof. $ \forall \rho_{ij}(t, x), \rho_{lm}(t, x)\in W(D), \; \; i, j, l, m\in \mathbb{N} $,

    $ \langle \rho_{ij}(t,x), \rho_{lm}(t,x)\rangle_{W(D)} = \langle JT_i(t)JP_j(x), JT_l(t)JP_m(x)\rangle_{W(D)}\\ = \langle JT_i(t), JT_l(t)\rangle_{W_1}\langle JP_j(x), JP_m(x)\rangle_{W_2}. $

    So

    $ \langle \rho_{ij}(t,x), \rho_{lm}(t,x)\rangle_{W(D)} = {1,i=l,j=m,0,others. $

    In addition, $ \forall u\in W(D) $, if $ \langle u, \rho_{ij}\rangle_{W(D)} = 0 $, means

    $ \langle u(t,x), JT_i(t)JP_j(x)\rangle_{W(D)} = \langle\langle u(t,x), JT_i(t)\rangle_{W_1},JP_j(x)\rangle_{W_2} = 0. $

    Note that $ \{JP_j(x)\}_{j = 0}^\infty $ is the complete system of $ W_2 $, so $ \langle u(t, x), JT_i(t)\rangle_{W_1} = 0 $.

    Similarly, we can get $ u(t, x) = 0 $.

    Let $ \mathcal{L}: W(D) \rightarrow L^2(D) $,

    $ \mathcal{L}u = \dfrac{\partial^2 u}{\partial x^2}-\dfrac{\partial u}{\partial t}. $

    So, Eq (3.1) can be simplified as

    $ Lu=f. $ (3.2)

    Definition 3.2. $ \forall\varepsilon > 0 $, if $ u\in W(D) $ and

    $ ||Luf||2L(D)<ε, $ (3.3)

    then $ u $ is called the $ \varepsilon- $best approximate solution for $ \mathcal{L}u = f $.

    Theorem 3.4. Any $ \varepsilon > 0 $, there is $ N\in \mathbb{N} $, when $ n > N $, then

    $ un(t,x)=ni=0nj=0ηijρij(t,x) $ (3.4)

    is the $ \varepsilon- $best approximate solution for $ \mathcal{L}u = f $, where $ \eta^*_{ij} $ satisfies

    $ ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D),dijR,i,jNn. $

    Proof. According to the Theorem 3.3, if $ u $ satisfies Eq (3.2), then $ u(t, x) = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}\eta_{ij}\rho_{ij}(t, x) $, where $ \eta_{ij} $ is the Fourier coefficient of $ u $.

    Note that $ \mathcal{L} $ is a bounded operator [30], hence, any $ \varepsilon > 0 $, there is $ N\in \mathbb{N} $, when $ n > N $, then

    $ ||i=n+1j=n+1ηijρij||2W(D)<ε||L||2. $

    So,

    $ ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D)||ni=0nj=0ηijLρijf||2L2(D)=||ni=0nj=0ηijLρijLu||2L2(D)=||i=n+1j=n+1ηijLρij||2L2(D)||L||2||i=n+1j=n+1ηijρij||2W(D)< ε. $

    For obtain $ u_n(t, x) $, we need to find the coefficients $ \eta_{ij}^{*} $ by solving Eq (3.5).

    $ min{ηij}ni,j=0J=Lunf2L2(D) $ (3.5)

    In addition,

    $ J = \|\mathcal{L}u_n-f\|_{L^2(D)}^2\\ = \langle\mathcal{L}u_n-f,\mathcal{L}u_n-f\rangle_{L^2(D)} \\ = \langle\mathcal{L}u_n,\mathcal{L}u_n\rangle_{L^2(D)}-2\langle\mathcal{L}u_n,f\rangle_{L^2(D)}+\langle f,f\rangle_{L^2(D)}\\ = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\sum\limits_{l = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{ij}\eta_{lm}\langle\mathcal{L}\rho_{ij},\mathcal{L}\rho_{lm}\rangle_{L^2(D)}-2\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\langle\mathcal{L}\rho_{ij},f\rangle_{L^2(D)}+\langle f,f\rangle_{L^2(D)} . $

    So,

    $ \frac{\partial J}{\partial \eta_{ij}} = 2\sum\limits_{l = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{lm}\langle\mathcal{L}\rho_{ij},\mathcal{L}\rho_{lm}\rangle_{L^2(D)}-2\eta_{ij}\langle\mathcal{L}\rho_{ij},f\rangle_{L^2(D)},\; \; i,j\in \mathbb{N}_n $

    and the equations $ \frac{\partial J}{\partial \eta_{ij}} = 0, \; \; i, j \in \mathbb{N}_n $ can be simplified to

    $ Aη=B, $ (3.6)

    where

    $ {\textbf{A}} = (\langle\mathcal{L}\rho_{ij},\mathcal{L}\rho_{lm}\rangle_{L^2(D)})_{N\times N},\; \; N = (n+1)^2,\\\eta = (\eta_{ij})_{N\times 1} , {\textbf{B}} = (\langle\mathcal{L}\rho_{ij},f\rangle_{L^2(D)})_{N\times 1}. $

    Theorem 3.5. $ {\textbf{A}}\eta = {\textbf{B}} $ has a unique solution.

    Proof. It can be proved that $ {\textbf{A}} $ is nonsingular. Let $ \eta $ satisfy $ {\textbf{A}}\eta = 0 $, that is,

    $ \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\langle\mathcal{L}\rho_{ij},\mathcal{L}\rho_{lm}\rangle_{L^2(D)}\eta_{ij} = 0,\; \; l,m\in \mathbb{N}_n. $

    So, we can get the following equations:

    $ \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\langle\eta_{ij}\mathcal{L}\rho_{ij},\eta_{lm}\mathcal{L}\rho_{lm}\rangle_{L^2(D)} = 0,\; \; l,m\in \mathbb{N}_n. $

    By adding the above $ (n+1)^2 $ equations, we can get

    $ \langle\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\mathcal{L}\rho_{ij},\sum\limits_{l = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{lm}\mathcal{L}\rho_{lm}\rangle_{L^2(D)} = \|\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\mathcal{L}\rho_{ij}\|_{L^2(D)}^2 = 0. $

    So,

    $ \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\mathcal{L}\rho_{ij} = 0. $

    Note that $ \mathcal{L} $ is reversible. Therefore, $ \eta_{ij} = 0, \; \; i, j\in \mathbb{N}_n. $

    According to Theorem 3.5, $ u_n(t, x) $ can be obtained by substituting $ \eta = A^{-1}B $ into $ u_n = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\rho_{ij}(t, x) $.

    $ {2ux2+2uy2ut=f(x,y),t[0,1],x[0,a],y[0,b],u(0,x,y)=0,u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0. $ (3.7)

    Similar to definition 2.2, we can give the definition of linear space $ W_3[0, b] $ as follows:

    $ W_3[0,b] = \{u(y)|u'\in AC, y\in [0,b], u(0) = u(b) = 0, u''\in L^2[0,b]\}. $

    Similarly, let $ \{Q_n(y)\}_{n = 0}^\infty $ is the orthonormal basis in $ L^2[0, b] $, and denote $ Q_n(y) = \sum\limits_{k = 0}^n q_k y^k $.

    Let

    $ JQ_n(y) = \sum\limits_{k = 0}^n q_k \frac{y^{k+2}-b^{k+1}y}{(k+1)(k+2)}, $

    it is easy to prove that $ \{JQ_n(y)\}_{n = 0}^\infty $ is the orthonormal basis of $ W_3[0, b] $.

    Let $ \Omega = [0, 1]\times[0, a]\times[0, b] $. Now we define a three-dimensional space.

    Definition 3.3 $ W(\Omega) = \{u(t, x, y)|\frac{\partial^2 u}{\partial x \partial y}\in CC, (t, x, y)\in \Omega, u(0, x, y) = 0$, $u(t, 0, y) = u(t, a, y) = 0, u(t, x, 0) = u(t, x, b) = 0, \frac{\partial^5 u}{\partial t\partial x^2\partial y^2}\in L^2(\Omega)\}, $ and

    $ u,vW(Ω)=Ω5utx2y25vtx2y2dΩ,u,vW(Ω). $

    Similarly, we give the following theorem without proof.

    Theorem 3.6. $ \{\rho_{ijk}(t, x, y)\}_{i, j, k = 0}^\infty {\mathit{\mbox{is an orthonormal basis of}}}\; W(\Omega) $, where

    $ \rho_{ijk}(t,x,y) = JT_i(t)JP_j(x)JQ_k(y),\; \; i,j,k\in \mathbb{N}_n. $

    Therefore, we can get $ u_n $ as

    $ un(t,x,y)=ni=0nj=0nk=0ηijkρijk(t,x,y), $ (3.8)

    according to the theory in Section 3.1, we can find all $ \eta_{ijk}, \; \; i, j, k\in \mathbb{N}_n. $

    $ {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. $ (3.9)

    By Lemma 2.1, note that the orthonormal basis of $ L_2[0, c] $ is $ \{R_n(z)\}_{n = 0}^\infty $, and denote $ R_n(z) = \sum\limits_{m = 0}^n r_m z^m $, where $ r_m $ is the coefficient of polynomial $ R_n(z) $.

    We can further obtain the orthonormal basis $ JR_n(z) = \sum\limits_{m = 0}^n r_m \frac{z^{m+2}-c^{m+1}z}{(m+1)(m+2)} $ of $ W_4[0, c] $, where

    $ JR_n(z) = \sum\limits_{m = 0}^n r_m \frac{z^{m+2}-c^{m+1}z}{(m+1)(m+2)}, $

    and

    $ W_4[0,c] = \{u(z)|u' \in AC, z \in [0,c], u(0) = u(c) = 0, u''\in L^2[0,c]\}. $

    Let $ G = [0, 1]\times[0, a]\times[0, b]\times[0, c] $. Now we define a four-dimensional space.

    Definition 3.4. $ W(G) = \{u(t, x, y, z)|\frac{\partial^3 u}{\partial x \partial y \partial z}\in CC, (t, x, y, z)\in G, u(0, x, y, z) = 0, u(t, 0, y, z) = u(t, a, y, z) = 0$, $u(t, x, 0, z) = u(t, x, b, z) = 0, u(t, x, y, 0) = u(t, x, y, c) = 0, \frac{\partial^7 u}{\partial t\partial x^2\partial y^2\partial z^2}\in L^2(G)\}, $ and

    $ u,vW(G)=G7utx2y2z27vtx2y2z2dG,u,vW(G), $

    where dG = dtdxdydz.

    Similarly, we give the following theorem without proof.

    Theorem 3.7. $ \{\rho_{ijk}(t, x, y, z)\}_{i, j, k, m = 0}^\infty \mathit{\mbox{is an orthonormal basis of}}\; W(G) $, where

    $ \rho_{ijkm}(t,x,y,z) = JT_i(t)JP_j(x)JQ_k(y)JR_m(z),\; \; i,j,k,m\in \mathbb{N}. $

    Therefore, we can get $ u_n $ as

    $ un(t,x,y,z)=ni=0nj=0nk=0nm=0ηijkmρijkm(t,x,y,z), $ (3.10)

    according to the theory in Section 3.1, we can find all $ \eta_{ijkm}, \; \; i, j, k, m\in\mathbb{N}_n. $

    Suppose $ u(t, x) = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}\eta_{ij}\rho_{ij}(t, x) $ is the exact solution of Eq (3.5). Let $ P_{N_1, N_2}u(t, x) = \sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2} \eta_{ij}T_i(t)P_j(x) $ is the projection of $ u $ in $ L(D) $.

    Theorem 4.1. Suppose $ \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) $, and $ N_1 > r, N_2 > l $, then, the error estimate of $ P_{N_1, N_2}u(t, x) $ is

    $ ||u-P_{N_1,N_2}u||_{L^2(D)}^2 \leq C N^{-\alpha}, $

    where $ C $ is a constant, $ N = min\{N_1, N_2\}, \alpha = min\{r, l\}. $

    Proof. According to the lemma in ref. [29], it follows that

    $ ||u-u_{N_1}||_{L_t^2[0,1]}^2 = ||u-P_{t,N_1}u||_{L_t^2[0,1]}^2\leq C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u(t,x) ||_{L_t^2[0,1]}^2, $

    where $ u_{N_1} = P_{t, N_1}u $ represents the projection of $ u $ on variable $ t $ in $ L^2[0, 1] $, and $ ||\cdot||_{L_t^2[0, 1]} $ represents the norm of $ (\cdot) $ with respect to variable $ t $ in $ L^2[0, 1] $.

    By integrating both sides of the above formula with respect to $ x $, we can get

    $ ||uuN1||2L2(D)C1Nr1a0||rtru||2L2t[0,1]dx=C1Nr1||rtru||2L2(D). $

    Moreover,

    $ u(t,x)uN1(t,x)=i=N1+1u,TiL2t[0,1]Ti(t)=i=N1+1j=0u,TiL2t[0,1],PjL2x[0,a]Pj(x)Ti(t). $

    According to the knowledge in Section 3,

    $ ||u-u_{N_1}||_{L^2(D)}^2 = \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2, $

    where $ c_{ij} = \langle \langle u, T_i\rangle _{L_t^2[0, 1]}, P_j\rangle_{L_x^2[0, a]} $.

    Therefore,

    $ \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2\leq C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2. $

    Similarly,

    $ \sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\leq C_2 N_2^{-l}||\dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2. $

    In conclusion,

    $ ||uPN1,N2u||2L2(D)=||(i=0j=0N1i=0N2j=0)c2ijTi(t)Pj(x)||2L2(D)i=N1+1N2j=0c2ij+i=0j=N2+1c2iji=N1+1j=0c2ij+i=0j=N2+1c2ijC1Nr1||rtru||2L2(D)+C2Nl2||lxlu||2L2(D)CNα. $

    Theorem 4.2. Suppose $ \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) $, $ u_n(t, x) $ is the $ \varepsilon- $best approximate solution of Eq (3.2), and $ n > max\{r, l\} $, then,

    $ ||u-u_n||_{W(D)}^2 \leq C n^{-\alpha}. $

    where $ C $ is a constant, $ \alpha = min\{r, l\}. $

    Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.

    $ ||uun||2W(D)||uPN1,N2u||2L2(D)Cnα. $

    So, the $ \varepsilon- $approximate solution has $ \alpha $ convergence order, and the convergence rate is related to $ n $, where represents the number of bases, and the convergence order can calculate as follows.

    $ C.R.=logn2n1max|en1|max|en2|. $ (4.1)

    Where $ n_i, i = 1, 2 $ represents the number of orthonormal base elements.

    Here, three examples are compared with other algorithms. $ N $ represents the number of orthonormal base elements. For example, $ N = 10 \times 10 $, which means that we use the orthonormal system $ \{\rho_{ij}\}_{i, j = 0}^{10} $ of $ W(D) $ for approximate calculation, that is, we take the orthonormal system $ \{JT_i(t)\}_{i = 0}^{10} $ and $ \{JP_j(x)\}_{j = 0}^{10} $ to construct the $ \varepsilon- $best approximate solution.

    Example 5.1. Consider the following one-demensional heat conduction system [7,20]

    $ {ut=uxx,(t,x)[0,1]×[0,2π],u(0,x)=sin(x),u(t,0)=u(t,2π)=0. $

    The exact solution of Ex. 5.1 is $ e^{-t}\sin x $.

    In Table 1, $ C.R. $ is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the real solution, and the yellow surface represents the surface of $ u_n $. With the increase of $ N $, the errors between the two surfaces will be smaller.

    Table 1.  $ \max |u-u_n| $ for Ex. 5.1.
    $ N $ HOC-ADI Method [20] FVM [7] Present method C.R.
    4$ \times $4 6.12E-3 4.92E-2 9.892E-3
    6$ \times $6 1.68E-3 2.05E-2 4.319E-4 3.8613
    8$ \times $8 7.69E-4 1.27E-2 9.758E-6 6.5873
    10$ \times $10 4.40E-4 9.20E-3 1.577E-7 9.2432

     | Show Table
    DownLoad: CSV
    Table 2.  $ |u-u_n| $ for Ex. 5.1 ($ n = 9 $).
    $ |u-u_n| $ $ t=0.1 $ $ t=0.3 $ $ t=0.5 $ $ t=0.7 $ $ t=0.9 $
    $ x=\frac{\pi}{5} $ 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8
    $ x=\frac{3\pi}{5} $ 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    $ x=\frac{7\pi}{5} $ 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    $ x=\frac{9\pi}{5} $ 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8

     | Show Table
    DownLoad: CSV
    Figure 1.  $ u\; \; \mbox{and}\; \; u_{n} $ in Example 5.1($ n = 9 $).
    Figure 2.  $ |u(1, x)-u_{n}(1, x)| $ in Example 5.1($ n = 9 $).

    Example 5.2. Consider the following two-demensional heat conduction system [20,21]

    $ {ut=uxx+uyy,(t,x,y)[0,1]×[0,1]×[0,1],u(0,x,y)=sin(πx)sin(πy),u(t,0,y)=u(t,1,y)=u(t,x,0)=u(t,x,1)=0. $

    The exact solution of Ex. 5.2 is $ u = e^{-2\pi^2 t}\sin(\pi x)\sin(\pi y) $.

    Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison with other algorithms. Table 4 lists the errors variation law in the $ x- $axis direction. Figures 3 and 4 show the convergence effect of the scheme more vividly.

    Table 3.  The absolute errors $ \max |u-u_n| $ for Ex. 5.2 ($ t = 1, (x, y)\in [0, 1]\times[0, 1] $).
    $ N $ CCD-ADI Method [21] RHOC-ADI Method [20] Present method C.R.
    4$ \times $4$ \times $4 8.820E-3 3.225E-2 5.986E-3
    8$ \times $8$ \times $8 6.787E-5 1.969E-3 3.126E-5 2.52704

     | Show Table
    DownLoad: CSV
    Table 4.  The absolute errors $ |u-u_n| $ for Ex. 5.2 ($ t = 1, n = 7 $).
    $ |u-u_n| $ $ y=0.1 $ $ y=0.3 $ $ y=0.5 $ $ y=0.7 $ $ y=0.9 $
    $ x=0.1 $ 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6
    $ x=0.3 $ 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    $ x=0.5 $ 2.421E-5 6.347E-5 7.839E-5 6.347E-5 2.421E-5
    $ x=0.7 $ 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    $ x=0.9 $ 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6

     | Show Table
    DownLoad: CSV
    Figure 3.  $ u\; \; \mbox{and}\; \; u_{n} $ in Example 5.2($ n = 7 $).
    Figure 4.  $ u-u_{n} $ in Example 5.2($ n = 7 $).

    Example 5.3. Consider the three-demensional problem as following:

    $ {(1a2+1b2+1c2)ut=uxx+uyy+uzz,(t,x,y,z)[0,1]×[0,a]×[0,b]×[0,c],u(0,x,y)=sin(πxa)sin(πyb)sin(πzc),u(t,0,y)=u(t,1,y)=u(t,x,0)=u(t,x,1)=0. $

    The exact solution of Ex. 5.3 is $ u = e^{-\pi^2t}\sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}) $.

    Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system is also the most common case in the industrial field. Table 5 lists the approximation degree between the $ \varepsilon- $best approximate solution and the real solution when the boundary time $ t = 1 $.

    Table 5.  The absolute errors $ |u-u_n| $ for Ex. 5.3 ($ t = 1, z = 0.1, n = 2 $).
    $ |u-u_n| $ $ y=0.2 $ $ y=0.6 $ $ y=1.0 $ $ y=1.4 $ $ y=1.8 $
    $ x=0.1 $ 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3
    $ x=0.3 $ 2.893E-3 7.350E-3 8.820E-3 7.350E-3 2.893E-3
    $ x=0.5 $ 3.482E-3 8.838E-3 1.059E-2 8.838E-3 3.482E-3
    $ x=0.7 $ 2.893E-3 7.350E-3 8.820E-3 7.735E-3 2.893E-3
    $ x=0.9 $ 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3

     | Show Table
    DownLoad: CSV

    The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper is a polynomial structure, which has the characteristics of convergence order.

    This work has been supported by three research projects (2019KTSCX217, 2020WQNCX097, ZH22017003200026PWC).

    The authors declare no conflict of interest.

    [1] Grüntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis— percutaneous transluminal coronary angioplasty. New Engl J Med 301:61–68. doi: 10.1056/NEJM197907123010201
    [2] De Feyter PJ, de Jaegere PP, Serruys PW (1994) Incidence, predictors, and management of acute coronary occlusion after coronary angioplasty. Am Heart J 127: 643–651. doi: 10.1016/0002-8703(94)90675-0
    [3] Serruys PW, Luijten HE, Beatt KJ, et al. (1988) Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77: 361–371.
    [4] Gruentzig AR, King SB 3rd, Schlumpf M, et al. (1987) Long-term follow-up after percutaneous transluminal coronary angioplasty. The early Zurich experience. New Engl J Med 316: 1127–1132. doi: 10.1056/NEJM198704303161805
    [5] Farooq V, Gogas BD, Serruys PW (2001) Restenosis: delineating the numerous causes of
    drug-eluting stent restenosis. Circ Cardiovasc Interv 4: 195–205. doi: 10.1080/14628840127766
    [6] Macander PJ, Agrawal SK, Roubin GS (1991) The Gianturco-Roubin balloon-expandable intracoronary flexible coil stent. J Invasive Cardiol 3: 85–94.
    [7] Schatz RA, Palmaz JC, Tio FO, et al. (1987) Balloon-expandable intracoronary stents in the adult dog. Circulation 76: 450–457. doi: 10.1161/01.CIR.76.2.450
    [8] Sigwart U, Gold S, Kaufman U, et al. (1988) Analysis of complications associated with coronary stenting (abstract). J Am Coll Cardiol 11: 66A. doi: 10.1016/0735-1097(88)90168-4
    [9] Sigwart U, Puel J, Mirkovitch V, et al. (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. New Engl J Med 316: 701–706. doi: 10.1056/NEJM198703193161201
    [10] Lansky AJ, Roubin GS, O’Shaughnessy CD, et al. (2000) Randomized comparison of GR-II stent and Palmaz-Schatz stent for elective treatment of coronary stenoses. Circulation 102: 1364–1368. doi: 10.1161/01.CIR.102.12.1364
    [11] Baim DS, Cutlip DE, Midei M, et al. (2001) Final results of a randomized trial comparing the MULTI-LINK stent with the Palmaz-Schatz stent for narrowings in native coronary arteries. Am J Cardiol 87: 157–162. doi: 10.1016/S0002-9149(00)01308-4
    [12] Baim DS, Cutlip DE, O’Shaughnessy CD, et al. (2001) Final results of a randomized trial comparing the NIR stent to the Palmaz-Schatz stent for narrowings in native coronary arteries. Am J Cardiol 87: 152–156.
    [13] Colombo A, Hall P, Nakamura S, et al. (1995) Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91: 1676–1688. doi: 10.1161/01.CIR.91.6.1676
    [14] Duckers HJ, Nabel EG, Serruys PW, editors. (2007) Essentials of restenosis: for the interventional cardiologist. Totowa, NJ: Humana Press.
    [15] Tada T, Byrne RA, Simunovic I, et al. (2013) Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: results from a registry of 18,334 patients. JACC Cardiovasc Interv 6: 1267–1274. doi: 10.1016/j.jcin.2013.06.015
    [16] Daemen J, Wenaweser P, Tsuchida K, et al. (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large
    two-institutional cohort study. Lancet 369: 667–678. doi: 10.1016/S0140-6736(07)60314-6
    [17] Wenaweser P, Daemen J, Zwahlen M, et al. (2008) Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52: 1134–1140.
    [18] Sarno G, Lagerqvist B, Fröbert O, et al. (2012) Lower risk of stent thrombosis and restenosis with unrestricted use of “new-generation” drug-eluting stents: A report from the nationwide Swedish Coronary Angiography and Angioplasty Registry (SCAAR). Eur Heart J 33: 606–613.
    [19] Togni M, Windecker S, Cocchia R, et al. (2005) Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. J Am Coll Cardiol 46: 231–236. doi: 10.1016/j.jacc.2005.01.062
    [20] Hofma SH, Van Der Giessen WJ, Van Dalen BM, et al. (2006) Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur Heart J 27: 166–170.
    [21] Onuma Y, Serruys PW (2011) Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123: 779–797. doi: 10.1161/CIRCULATIONAHA.110.971606
    [22] Wayangankar SA, Ellis SG (2015) Bioresorbable stents: is this where we are headed? Prog Cardiovasc Dis 26.
    [23] Van der Giessen WJ, Slager CJ, van Beusekom HM, et al. (1992) Development of a polymer endovascular prosthesis and its implantation in porcine arteries. J Invasive Cardiol 5: 175–185.
    [24] Van der Giessen WJ, Lincoff AM, Schwartz RS, et al. (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94: 1690–1697. doi: 10.1161/01.CIR.94.7.1690
    [25] Lincoff AM, Furst JG, Ellis SG, et al. (1997) Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol 29: 808–816. doi: 10.1016/S0735-1097(96)00584-0
    [26] Yamawaki T, Shimokawa H, Kozai T, et al. (1998) Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. J Am Coll Cardiol 32: 780–786.
    [27] Iqbal J, Onuma Y, Ormiston J, et al. (2013) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35: 765–776.
    [28] Tamai H, Igaki K, Kyo E, et al. (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102: 399–404. doi: 10.1161/01.CIR.102.4.399
    [29] Serruys PW, Ormiston JA, Onuma Y, et al. (2009) A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373: 897–910.
    [30] Verheye S, Ormiston JA, Stewart J, et al. (2014) A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv 7: 89–99. doi: 10.1016/j.jcin.2013.07.007
    [31] Abizaid A (2014) DESolve NX Trial clinical and imaging results. Presented at: Transcatheter Cardiovascular Therapeutics (TCT). Washington, DC; September 13-17.
    [32] Costa RA (2012) REVA ReZolve clinical program update. Presented at: Transcatheter Cardiovascular Therapeutics (TCT). Miami Beach, FL; October 22-28.
    [33] Muller D (2014) ReZolve 2: Bioresorbable coronary scaffold clinical program update. Presented at: EuroPCR. Paris, France; May 20-23.
    [34] Erbel R, Di Mario C, Bartunek J, et al. (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369: 1869–1875.
    [35] Haude M, Erbel R, Erne P, et al. (2013) Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. The Lancet 381: 836–844.
    [36] Waksman R (2014) Long-term clinical data of the BIOSOLVE-I study with the paclitaxel-eluting absorbable magnesium scaffold (DREAMS 1st generation) and multi- modality imaging analysis.
    [37] Onuma Y, Dudek D, Thuesen L, et al. (2013) Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv 6: 999–1009. doi: 10.1016/j.jcin.2013.05.017
    [38] Serruys PW, Onuma Y, Garcia-Garcia HM, et al. (2014) Dynamics of vessel wall changes following the implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention 9: 1271–1284. doi: 10.4244/EIJV9I11A217
    [39] Serruys PW, Chevalier B, Dudek D, et al. (2015) A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from. Lancet 385: 43–54.
    [40] Ellis SG, Kereiakes DJ, Metzger DC, et al. (2015) Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 373: 1905–1915. doi: 10.1056/NEJMoa1509038
    [41] Sabaté M, Windecker S, Iñiguez A, et al. (2015) Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial
    infarction-TROFI II trial. Eur Heart J 23.
    [42] Gao R, Yang Y, Han Y, et al. (2015) Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J Am Coll Cardiol 25.
    [43] Capodanno D, Gori T, Nef H, et al. (2015) Percutaneous coronary intervention with
    everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 10: 1144–1153. doi: 10.4244/EIJY14M07_11
    [44] Palmerini T, Biondi-Zoccai G, Della Riva D, et al. (2012) Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet 379: 1393–1402. doi: 10.1016/S0140-6736(12)60324-9
    [45] Abizaid A, Costa JR, Bartorelli AL, et al. (2015) The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention 10: 1396–1401.
    [46] Džavík V, Colombo A (2014) The Absorb bioresorbable vascular scaffold in coronary bifurcations: insights from bench testing. JACC Cardiovasc Interv 7: 81–88. doi: 10.1016/j.jcin.2013.07.013
    [47] Rundeken MJ, Hassell MECJ, Kraak RP, et al. (2014) Treatment of coronary bifurcation lesions with the Absorb bioresorbable vascular scaffold in combination with the Tryton dedicated coronary bifurcation stent: evaluation using two- and three-dimensional optical coherence tomography. EuroIntervention 30.
    [48] Capranzano P, Gargiulo G, Capodanno D, et al. (2014) Treatment of coronary bifurcation lesions with bioresorbable vascular scaffolds. Minerva Cardioangiol 62: 229–234.
    [49] Kawamoto H, Latib A, Ruparelia N, et al. (2015) Clinical outcomes following bioresorbable scaffold implantation for bifurcation lesions: overall outcomes and comparison between provisional and planned double stenting strategy. Catheter Cardiovasc Interv 86: 644–652. doi: 10.1002/ccd.26045
    [50] Cortese B, Silva Orrego P, Sebik R, et al. (2014) Biovascular scaffolding of distal left main trunk: experience and follow up from the multicenter prospective RAI registry (Registro Italiano Absorb). Int J Cardiol 177: 497–499.
    [51] Panoulas VF, Miyazaki T, Sato K, et al. (2015) Procedural outcomes of patients with calcified lesions treated with bioresorbable vascular scaffolds. EuroIntervention 30.
    [52] Vaquerizo B, Barros A, Pujadas S, et al. (2014) Bioresorbable everolimus-eluting vascular scaffold for the treatment of chronic total occlusions: CTO-ABSORB pilot study. EuroIntervention 16.
    [53] Diletti R, Karanasos A, Muramatsu T, et al. (2014) Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study. Eur Heart J 35: 777–786. doi: 10.1093/eurheartj/eht546
    [54] Kocka V, Maly M, Tousek P, et al. (2014) Bioresorbable vascular scaffolds in acute ST-segment elevation myocardial infarction: a prospective multicentre study “Prague 19.” Eur Heart J 35: 787–794.
    [55] Ielasi A, Cortese B, Varricchio A, et al. (2015) Immediate and midterm outcomes following primary PCI with bioresorbable vascular scaffold implantation in patients with ST-segment myocardial infarction: insights from the multicentre “Registro ABSORB Italiano” (RAI registry). EuroIntervention 11: 157–162. doi: 10.4244/EIJY14M10_11
    [56] Brugaletta S, Gori T, Low AF, et al. (2015) Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: the BVS-EXAMINATION Study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction). JACC Cardiovasc Interv 8: 189–197.
    [57] Ong PJ, Jafary FH, Ho HH (2013) “First-in-man” use of bioresorbable vascular scaffold in saphenous vein graft. EuroIntervention 9: 165.
    [58] Deora S, Shah S, Patel T (2014) First-in-man implantation of bioresorbable vascular scaffold in left internal mammary artery graft. J Invasive Cardiol 26: 92–93.
    [59] Moscarella E, Varricchio A, Stabile E, et al. (2015) Bioresorbable vascular scaffold implantation for the treatment of coronary in-stent restenosis: results from a multicenter Italian experience. Int J Cardiol 199: 366–372. doi: 10.1016/j.ijcard.2015.07.002
    [60] Tamburino C, Latib A, van Geuns R-J, et al. (2015) Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention 11: 45–52. doi: 10.4244/EIJY15M01_05
    [61] Azzalini L, L’Allier PL (2015) Bioresorbable vascular scaffold thrombosis in an all-comer patient population: single center experience. J Invasive Cardiol 27: 85–92.
    [62] Azzalini L, Al-Hawwas M, L’Allier PL (2015) Very late bioresorbable vascular scaffold thrombosis: a new clinical entity. Eurointervention 11: e1–2.
    [63] Karanasos A, van Geuns R-J, Zijlstra F, et al. (2014) Very late bioresorbable scaffold thrombosis after discontinuation of dual antiplatelet therapy. Eur Heart J 35: 1781. doi: 10.1093/eurheartj/ehu031
    [64] Karanasos A, Van Mieghem N, van Ditzhuijzen N, et al. (2015) Angiographic and optical coherence tomography insights into bioresorbable scaffold thrombosis: single-center experience. Circ Cardiovasc Interv 8: e002369. doi: 10.1161/CIRCINTERVENTIONS.114.002369
    [65] Nakatani S, Onuma Y, Ishibashi Y, et al. (2015) Early (before 6 months), late (6-12 months) and very late (after 12 months) angiographic scaffold restenosis in the ABSORB Cohort B trial. EuroIntervention 10: 1288–1298. doi: 10.4244/EIJV10I11A218
    [66] Longo G, Granata F, Capodanno D, et al. (2015) Anatomical features and management of bioresorbable vascular scaffolds failure: A case series from the GHOST registry. Catheter Cardiovasc Interv 85: 1150–1161. doi: 10.1002/ccd.25819
    [67] Felix C, Everaert B, Jepson N, et al. (2015) Treatment of bioresorbable scaffold failure. EuroIntervention 11: V175–180. doi: 10.4244/EIJV11SVA42
    [68] Cassese S, Byrne RA, Ndrepepa G, et al. (2015) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. The Lancet 6736: 1–8.
  • This article has been cited by:

    1. Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin Zhang, Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN, 2024, 8, 2504-3110, 91, 10.3390/fractalfract8020091
    2. Shiyv Wang, Xueqin Lv, Songyan He, The reproducing kernel method for nonlinear fourth-order BVPs, 2023, 8, 2473-6988, 25371, 10.3934/math.20231294
    3. Yingchao Zhang, Yuntao Jia, Yingzhen Lin, A new multiscale algorithm for solving the heat conduction equation, 2023, 77, 11100168, 283, 10.1016/j.aej.2023.06.066
    4. Safia Malik, Syeda Tehmina Ejaz, Shahram Rezapour, Mustafa Inc, Ghulam Mustafa, Innovative numerical method for solving heat conduction using subdivision collocation, 2025, 1598-5865, 10.1007/s12190-025-02429-9
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7064) PDF downloads(1201) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog