This work investigated the combined effects of intraocular pressure (IOP) and blood pressure (BP) on retinal hemodynamics and glaucoma progression using a novel, physiology-based digital twin for ocular hemodynamics (DT-OH). The DT-OH integrates a mathematical model of ocular physiology with machine learning to simulate retinal blood flow dynamics based on individualized IOP and BP inputs. The DT-OH was applied to clinical data from the Indianapolis Glaucoma Progression Study (IGPS) to characterize how IOP and BP jointly influence retinal hemodynamics and their association with glaucoma progression. The DT-OH identified three distinct hemodynamic profiles based on the combined effects of IOP and BP. Membership in one specific profile at baseline was associated with a significantly higher risk of glaucoma progression. These profiles reflect distinct patterns of ocular blood flow regulation and provide physiological insight into the interplay between systemic and ocular factors in glaucoma. These findings enhance our understanding of glaucoma pathophysiology and support the development of personalized risk assessment tools that account for both IOP and BP.
Citation: Giovanna Guidoboni, James M. Keller, Christopher K. Wikle, Rajat Rai, Mikey Joyce, Omar Ibrahim, Daphne Zou, Rachel S. Chong, Ching-Yu Cheng, Brent A. Siesky, Alice C. Verticchio Vercellin, Keren Wood, Alon Harris. Digital twin for ocular hemodynamics: Combining physiology-based modeling and machine learning for personalized glaucoma care[J]. Mathematical Biosciences and Engineering, 2026, 23(3): 678-701. doi: 10.3934/mbe.2026026
This work investigated the combined effects of intraocular pressure (IOP) and blood pressure (BP) on retinal hemodynamics and glaucoma progression using a novel, physiology-based digital twin for ocular hemodynamics (DT-OH). The DT-OH integrates a mathematical model of ocular physiology with machine learning to simulate retinal blood flow dynamics based on individualized IOP and BP inputs. The DT-OH was applied to clinical data from the Indianapolis Glaucoma Progression Study (IGPS) to characterize how IOP and BP jointly influence retinal hemodynamics and their association with glaucoma progression. The DT-OH identified three distinct hemodynamic profiles based on the combined effects of IOP and BP. Membership in one specific profile at baseline was associated with a significantly higher risk of glaucoma progression. These profiles reflect distinct patterns of ocular blood flow regulation and provide physiological insight into the interplay between systemic and ocular factors in glaucoma. These findings enhance our understanding of glaucoma pathophysiology and support the development of personalized risk assessment tools that account for both IOP and BP.
| [1] |
A. Heijl, M. C. Leske, B. Bengtsson, L. Hyman, B. Bengtsson, M. Hussein, et al., Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial, Arch. Ophthalmol., 120 (2002), 1268–1279. https://doi.org/10.1001/archopht.120.10.1268 doi: 10.1001/archopht.120.10.1268
|
| [2] |
A. Harris, G. Guidoboni, B. Siesky, S. Mathew, A. C. Verticchio Vercellin, L. Rowe, et al., Ocular blood flow as a clinical observation: Value, limitations and data analysis, Prog. Retin. Eye Res., 78 (2020), 100841. https://doi.org/10.1016/j.preteyeres.2020.100841 doi: 10.1016/j.preteyeres.2020.100841
|
| [3] | R. N. Weinreb, A. Harris, Ocular blood flow in glaucoma: The 6th consensus report of the world glaucoma association, Kugler Publications, Amsterdam, 6 (2009). Available from: https://wga.one/consensus/consensus-6 |
| [4] |
M.C. Leske, A. Heijl, M. Hussein, B. Bengtsson, L. Hyman, E. Komaroff, et al., Factors for glaucoma progression and the effect of treatment: The Early Manifest Glaucoma Trial, Arch. Ophthalmol., 121 (2003), 48–56. https://doi.org/10.1001/archopht.121.1.48 doi: 10.1001/archopht.121.1.48
|
| [5] |
R. N. Weinreb, C. K. Leung, J. G. Crowston, F. A. Medeiros, D. S. Friedman, J. L. Wiggs, et al., Primary open-angle glaucoma, Nat. Rev. Dis. Primers, 2 (2016), 1–19. https://doi.org/10.1038/nrdp.2016.67 doi: 10.1038/nrdp.2016.67
|
| [6] |
R. N. Weinreb, T. Aung, F. A. Medeiros, The pathophysiology and treatment of glaucoma: A review, JAMA, 311 (2014), 1901–1911. https://doi.org/10.1001/jama.2014.3192 doi: 10.1001/jama.2014.3192
|
| [7] |
Y. J. Lim, J. W. Bang, R. N. Weinreb, L. M. Zangwill, M. H. Suh, Temporal optic disc microvasculature dropout in glaucoma, Invest. Ophthalmol. Vis. Sci., 64 (2023), 6. https://doi.org/10.1167/iovs.64.11.6 doi: 10.1167/iovs.64.11.6
|
| [8] |
V. P. Costa, J. Jimenez-Roman, F. G. Carrasco, A. Lupinacci, A. Harris, Twenty-four hour ocular perfusion pressure in primary open-angle glaucoma, Br. J. Ophthalmol., 94 (2010), 1291–1294. https://doi.org/10.1136/bjo.2009.167569 doi: 10.1136/bjo.2009.167569
|
| [9] |
H. J. Kaiser, J. Flammer, T. Graf, D. Stümpfig, Systemic blood pressure in glaucoma patients, Graefe's Arch. Clin. Exp. Ophthalmol., 231 (1993), 677–680. https://doi.org/10.1007/bf00919280 doi: 10.1007/bf00919280
|
| [10] |
B. Krasinska, M. Karolczak-Kulesza, Z. Krasinski, K. Pawlaczyk-Gabriel, A. Niklas, J. Głuszek, et al., A marked fall in nocturnal blood pressure is associated with the stage of primary open-angle glaucoma in patients with arterial hypertension, Blood Pres., 20 (2011), 171–181. https://doi.org/10.3109/08037051.2010.538964 doi: 10.3109/08037051.2010.538964
|
| [11] |
P. Mitchell, W. Smith, K. Attebo, P. R. Healey, Prevalence of open-angle glaucoma in Australia: The Blue Mountains Eye Study, Ophthalmology, 103 (1996), 1661–1669. https://doi.org/10.1016/S0161-6420(96)30449-1 doi: 10.1016/S0161-6420(96)30449-1
|
| [12] |
I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. V. M. de Jong, Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population: The Rotterdam Study, Ophthalmology, 102 (1995), 54–60. https://doi.org/10.1016/s0161-6420(95)31054-8 doi: 10.1016/s0161-6420(95)31054-8
|
| [13] |
P. J. Foster, D. Machin, T. Y. Wong, T. P. Ng, J. F. Kirwan, G. J. Johnson, et al., Determinants of intraocular pressure and its association with glaucomatous optic neuropathy in Chinese Singaporeans: The Tanjong Pagar Study, Invest. Ophthalmol. Vis. Sci., 44 (2003), 3885–3891. https://doi.org/10.1167/iovs.03-0012 doi: 10.1167/iovs.03-0012
|
| [14] |
J. Y. Lee, J. A. Choi, Risk factors for disease progression in glaucoma patients with disk hemorrhage, J. Glaucoma, 33 (2024), 828–834. https://doi.org/10.1097/ijg.0000000000002460 doi: 10.1097/ijg.0000000000002460
|
| [15] |
V. Q. Pham, T. Nishida, S. Moghimi, C. A. Girkin, M. A. Fazio, J. M. Liebmann, et al., Long-term blood pressure variability and visual field progression in glaucoma, JAMA Ophthalmol., 143 (2024), 25–32. https://doi.org/10.1001/jamaophthalmol.2024.4868 doi: 10.1001/jamaophthalmol.2024.4868
|
| [16] |
S. Y. Lee, J. S. Lee, J. Y. Kim, H. Tchah, H. Lee, Visit-to-visit variability in blood pressure and the risk of open-angle glaucoma in individuals without systemic hypertension: A nationwide population-based cohort study, Front. Med., 10 (2024), 1300778. https://doi.org/10.3389/fmed.2023.1300778 doi: 10.3389/fmed.2023.1300778
|
| [17] |
J. D. Melgarejo, J. Van Eijgen, D. Wei, G. E. Maestre, L. A. Al-Aswad, C. T. Liao, et al., Effect of 24-h blood pressure dysregulations and reduced ocular perfusion pressure in open-angle glaucoma progression, J. Hypertens., 41 (2023), 1785–1792. https://doi.org/10.1097/hjh.0000000000003772 doi: 10.1097/hjh.0000000000003772
|
| [18] |
J. Caprioli, A. L. Coleman, Blood pressure, perfusion pressure, and glaucoma, Am. J. Ophthalmol., 149 (2010), 704–712. https://doi.org/10.1001/archopht.126.5.741-a doi: 10.1001/archopht.126.5.741-a
|
| [19] |
M. Fahim, V. Sharma, T. V. Cao, B. Canberk, T. Q. Duong, Machine learning-based digital twin for predictive modeling in wind turbines, IEEE Access, 10 (2022), 14184–14194. https://doi.org/10.1109/access.2022.3147602 doi: 10.1109/access.2022.3147602
|
| [20] |
A. Lal, G. Li, E. Cubro, S. Chalmers, H. Li, V. Herasevich, et al., Development and verification of a digital twin patient model to predict specific treatment response during the first 24 hours of sepsis, Crit. Care Explor., 2 (2020), e0249. https://doi.org/10.1097/cce.0000000000000249 doi: 10.1097/cce.0000000000000249
|
| [21] |
Q. Qiao, J. Wang, L. Ye, R. X. Gao, Digital twin for machining tool condition prediction. Procedia CIRP, 81 (2019), 1388–1393. https://doi.org/10.1016/j.procir.2019.04.049 doi: 10.1016/j.procir.2019.04.049
|
| [22] |
R. Laubenbacher, B. Mehrad, I. Shmulevich, N. Trayanova, Digital twins in medicine, Nat. Comput. Sci., 4 (2024), 184–191. https://doi.org/10.1038/s43588-024-00607-6 doi: 10.1038/s43588-024-00607-6
|
| [23] |
M. Laviola, Introduction to the special section on computational modeling and digital twin technology in biomedical engineering, IEEE Open J. Eng. Med. Biol., 5 (2024), 607–610. https://doi.org/10.1109/ojemb.2024.3428898 doi: 10.1109/ojemb.2024.3428898
|
| [24] |
G. A. Alsalloum, N. M. Al Sawaftah, K. M. Percival, G. A. Husseini, Digital twins of biological systems: A narrative review, IEEE Open J. Eng. Med. Biol., (2024), 670–677. https://doi.org/10.1109/ojemb.2024.3426916 doi: 10.1109/ojemb.2024.3426916
|
| [25] |
M. E. Iliuţă, M. A. Moisescu, S. I. Caramihai, A. Cernian, E. Pop, D. I. Chiş, et al., Digital twin models for personalised and predictive medicine in ophthalmology, Technologies, 12 (2024), 55–55. https://doi.org/10.3390/technologies12040055 doi: 10.3390/technologies12040055
|
| [26] |
G. Guidoboni, A. Harris, S. Cassani, J. Arciero, B. Siesky, A. Amireskandari, et al., Intraocular pressure, blood pressure, and retinal blood flow autoregulation: A mathematical model to clarify their relationship and clinical relevance, Invest. Ophthalmol. Vis. Sci., 55 (2014), 4105–4118. https://doi.org/10.1167/iovs.13-13611 doi: 10.1167/iovs.13-13611
|
| [27] |
N. A. Moore, A. Harris, S. Wentz, A. C. V. Vercellin, P. Parekh, J. Gross, et al., Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years, Br. J. Ophthalmol., 101 (2017), 305–308. https://doi.org/10.1136/bjophthalmol-2016-308460 doi: 10.1136/bjophthalmol-2016-308460
|
| [28] |
Y. C. Tham, S. H. Lim, P. Gupta, T. Aung, T. Y. Wong, C. Y. Cheng, Inter-relationship between ocular perfusion pressure, blood pressure, intraocular pressure profiles and primary open-angle glaucoma: The Singapore Epidemiology of Eye Diseases study, Br. J. Ophthalmol., 102 (2018), 1402–1406. https://doi.org/10.1136/bjophthalmol-2017-311359 doi: 10.1136/bjophthalmol-2017-311359
|
| [29] |
S. Majithia, Y. C. Tham, M. L. Chee, S. Nusinovici, C. L. Teo, M. L. Chee, et al., Cohort profile: The Singapore Epidemiology of Eye Diseases study, Int. J. Epidemiol., 50 (2021), 41–52. https://doi.org/10.1093/ije/dyaa238 doi: 10.1093/ije/dyaa238
|
| [30] | G. Guidoboni, A. Harris, R. Sacco, Ocular fluid dynamics, Springer, New York, (2019). https://doi.org/10.1007/978-3-030-25886-3 |
| [31] |
R. Rai, G. Guidoboni, C. K. Wikle, F. Topouzis, B. Siesky, A. Verticchio Vercellin, et al., Retinal venous vulnerability in primary open angle glaucoma: The combined effects of intraocular pressure and blood pressure with application to the Thessaloniki Eye Study, La Matematica, 4 (2024), 66–83. https://doi.org/10.1007/s44007-024-00144-8 doi: 10.1007/s44007-024-00144-8
|
| [32] |
J. Keller, M. Gray, J. Givens, A fuzzy K-nearest neighbor algorithm, IEEE Trans. Syst. Man. Cybern., 15 (1985), 580–585. https://doi.org/10.1109/tsmc.1985.6313426 doi: 10.1109/tsmc.1985.6313426
|
| [33] |
N. R. Pal, K. Pal, J. M. Keller, J. C. Bezdek, A possibilistic fuzzy c-means clustering algorithm, IEEE Trans. Fuzz. Syst., 13 (2005), 517–530. https://doi.org/10.1109/tfuzz.2004.840099 doi: 10.1109/tfuzz.2004.840099
|
| [34] |
X. L. Xie, G. Beni, A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell., 13 (2002), 841–847. https://doi.org/10.1109/34.85677 doi: 10.1109/34.85677
|
| [35] |
D. L. Davies, D. W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., 2 (2009), 224–227. https://doi.org/10.1109/TPAMI.1979.4766909 doi: 10.1109/TPAMI.1979.4766909
|
| [36] |
A. C. Vercellin, A. Harris, F. Oddone, B. Siesky, G. Eckert, A. Belamkar, et al., Ocular blood flow biomarkers may predict long-term glaucoma progression, Br. J. Ophthalmol., 108 (2024), 946–950. https://doi.org/10.1136/bjo-2022-322644 doi: 10.1136/bjo-2022-322644
|
| [37] |
P. Murtagh, G. Greene, C. O'Brien, Current applications of machine learning in the screening and diagnosis of glaucoma: A systematic review and meta-analysis, Int. J. Ophthalmol., 13 (2020), 149–162. https://doi.org/10.18240/ijo.2020.01.22 doi: 10.18240/ijo.2020.01.22
|
| [38] | M. H. Goldbaum, P. A. Sample, K. Chan, J. Willians, T. Lee, E. Blumenthal, et al., Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry, Invest. Ophthalmol.Vis. Sci., 43 (2002), 162–169. Available from: https://pubmed.ncbi.nlm.nih.gov/11773027 |
| [39] |
R. Nunez, A. Harris, O. Ibrahim, J. Keller, C. K. Wikle, E. Robinson, et al., Artificial intelligence to aid glaucoma diagnosis and monitoring: State of the art and new directions, Photonics, 9 (2022), 810. https://doi.org/10.3390/photonics9110810 doi: 10.3390/photonics9110810
|
| [40] |
N. Riina, A. Harris, B. A. Siesky, L. Ritzer, L. R. Pasquale, J. C. Tsai, et al., Using multi-layer perceptron driven diagnosis to compare biomarkers for primary open angle glaucoma, Invest. Ophthalmol. Vis. Sci., 65 (2024), 16. https://doi.org/10.1167/iovs.65.11.16 doi: 10.1167/iovs.65.11.16
|
| [41] |
M. Aloudat, M. Faezipour, A. El-Sayed, Automated vision-based high intraocular pressure detection using frontal eye images, IEEE J. Transl. Eng. Health Med., 7 (2019), 1–13. https://doi.org/10.1109/jtehm.2019.2915534 doi: 10.1109/jtehm.2019.2915534
|
| [42] |
K. Pappelis, L. Choritz, N. M. Jansonius, Microcirculatory model predicts blood flow and autoregulation range in the human retina: In vivo investigation with laser speckle flowgraphy, Am. J. Physiol. Heart Circ. Physiol., 319 (2020), H1253–H1273. https://doi.org/10.1152/ajpheart.00404.2020 doi: 10.1152/ajpheart.00404.2020
|
| [43] |
K. Pappelis, N. M. Jansonius, U-shaped effect of blood pressure on structural OCT metrics and retinal perfusion in ophthalmologically healthy subjects, Invest. Ophthalmol. Vis. Sci., 62 (2021), 5. https://doi.org/10.1101/2021.01.14.21249808 doi: 10.1101/2021.01.14.21249808
|
| [44] |
H. Alashwal, M. El Halaby, J. J. Crouse, A. Abdalla, A. Moustafa, The application of unsupervised clustering methods to Alzheimer's disease, Front. Comput. Neurosci., 13 (2019), 31. https://doi.org/10.3389/fncom.2019.00031 doi: 10.3389/fncom.2019.00031
|
| [45] |
F. Topouzis, M. R. Wilson, A. Harris, P. Founti, F. Yu, E. Anastasopoulos, et al., Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study, Am. J. Ophthalmol., 155 (2013), 843–851. https://doi.org/10.1016/j.ajo.2012.12.007 doi: 10.1016/j.ajo.2012.12.007
|
| [46] | Y. Ostchega, C. D. Fryar, T. Nwankwo, D. T Nguygen, Hypertension prevalence among adults aged 18 and over: United States, 2017–2018, (2020). Available from: https://www.cdc.gov/nchs/data/databriefs/db364-h.pdf |
| [47] |
J. Fang, C. Gillespie, C. Ayala, F. Loustalot, Prevalence of self-reported hypertension and antihypertensive medication use among adults aged $\geq$18 years – United States, 2011–2015, MMWR Morb. Mortal Wkly. Rep., 67 (2018). https://doi.org/10.15585/mmwr.mm6707a4 doi: 10.15585/mmwr.mm6707a4
|
| [48] |
A. A. Divney, S. E. Echeverria, L. E. Thorpe, C. Trinh-Shevrin, N. S. Islam, Hypertension prevalence jointly influenced by acculturation and gender in US immigrant groups, Am. J. Hypertens., 32 (2019), 104–111. https://doi.org/10.1093/ajh/hpy130 doi: 10.1093/ajh/hpy130
|
| [49] |
D. Wang, M. Hatahet, Y. Wang, H. Liang, Y. Bazikian, C. L. Bray, Multivariate analysis of hypertension in general US adults based on the 2017 ACC/AHA guideline: Data from the national health and nutrition examination survey 1999 to 2016, Blood Press, 28 (2019), 191–198. https://doi.org/10.1080/08037051.2019.1593042 doi: 10.1080/08037051.2019.1593042
|
| [50] |
H. Y. Chen, S. P. Chauhan, Hypertension among women of reproductive age: Impact of 2017 American College of Cardiology/American Heart Association high blood pressure guideline, Int. J. Cardiol. Hypertens., 1 (2019), 100007. https://doi.org/10.1016/j.ijchy.2019.100007 doi: 10.1016/j.ijchy.2019.100007
|
| [51] |
J. J. Mpofu, C. L. Robbins, E. Garlow, F. M. Chowdhury, E. Kuklina, Surveillance of hypertension among women of reproductive age: A review of existing data sources and opportunities for surveillance before, during, and after pregnancy, J. Women's Health, 30 (2021), 466–471. https://doi.org/10.1089/jwh.2020.8977 doi: 10.1089/jwh.2020.8977
|
| [52] |
A. A. Abrahamowicz, J. Ebinger, S. P. Whelton, Y. Commodore-Mensah, E. Yang, Racial and ethnic disparities in hypertension: Barriers and opportunities to improve blood pressure control, Curr. Cardiol. Rep., 25 (2023), 17–27. https://doi.org/10.1007/s11886-022-01826-x doi: 10.1007/s11886-022-01826-x
|
| [53] |
G. M. Al Kibria, Racial/ethnic disparities in prevalence, treatment, and control of hypertension among US adults following application of the 2017 American College of Cardiology/American Heart Association guideline, Prev. Med. Rep., 14 (2019), 100850. https://doi.org/10.1016/j.pmedr.2019.100850 doi: 10.1016/j.pmedr.2019.100850
|
| [54] |
R. Aggarwal, N. Chiu, R. K. Wadhera, A. E. Moran, I. Raber, C. Shen, et al., Racial/ethnic disparities in hypertension prevalence, awareness, treatment, and control in the United States, 2013 to 2018, Hypertension, 78 (2021), 1719–1726. https://doi.org/10.1161/hypertensionaha.121.18023 doi: 10.1161/hypertensionaha.121.18023
|
| [55] |
D. K. Hayes, S. L. Jackson, Y. Li, G. Wozniak, S. Tsipas, Y. Hong, et al., Blood pressure control among non-Hispanic Black adults is lower than non-Hispanic White adults despite similar treatment with antihypertensive medication: NHANES 2013–2018, Am. J. Hypertens., 35 (2022), 514–525. https://doi.org/10.1093/ajh/hpac011 doi: 10.1093/ajh/hpac011
|
| [56] |
F. Galassi, A. Sodi, F. Ucci, G. Renieri, B. Pieri, M. Baccini, Ocular hemodynamics and glaucoma prognosis: A color Doppler imaging study, Arch. Ophthalmol., 121 (2003), 1711–1715. https://doi.org/10.1001/archopht.121.12.1711 doi: 10.1001/archopht.121.12.1711
|
| [57] |
L. Carichino, A. Harris, S. Lapin, G. Guidoboni, S. Cassani, A. De Silvestri, et al., Waveform parameters of retrobulbar vessels in glaucoma patients with different demographics and disease severity, Eur. J. Ophthalmol., 30 (2020), 1019–1027. https://doi.org/10.1177/1120672119848259 doi: 10.1177/1120672119848259
|
| [58] |
F. Agnesi, L. Carlucci, G. Burjanadze, F. Bernini, K. Gabisonia, J. W. Osborn, et al., Complex hemodynamic responses to trans-vascular electrical stimulation of the renal nerve in anesthetized pigs, IEEE Open J. Eng. Med. Biol., 5 (2024), 750–758. https://doi.org/10.1109/OJEMB.2024.3429294 doi: 10.1109/OJEMB.2024.3429294
|
| [59] |
M. Zang, P. Mukund, B. Forsyth, A. F. Laine, K. A. Thakoor, Predicting clinician fixations on glaucoma OCT reports via CNN-based saliency prediction methods, IEEE Open J. Eng. Med. Biol., 5 (2024), 191–197. https://doi.org/10.1109/OJEMB.2024.3367492 doi: 10.1109/OJEMB.2024.3367492
|
| [60] |
A. Thakur, M. Goldbaum, S. Yousefi, Convex representations using deep archetypal analysis for predicting glaucoma, IEEE J. Transl. Eng. Health Med., 8 (2020), 1–7. https://doi.org/10.1109/jtehm.2020.2982150 doi: 10.1109/jtehm.2020.2982150
|
| [61] |
K. Zhou, S. Yang, Fuzzifier selection in fuzzy c-means from cluster size distribution perspective, Informatica, 30 (2019), 613–628. https://doi.org/10.15388/informatica.2019.221 doi: 10.15388/informatica.2019.221
|
| [62] | M. Joyce, J. Keller, G. Guidoboni, R. Rai, B. A. Siesky, A. Verticchio, et al., Transferring clusters of glaucoma cases across studies to demonstrate the significance of selectiveness in machine learning methods. Invest. Ophthalmol. Vis. Sci., 65, (2024) 1629–1629. Available from: https://iovs.arvojournals.org/article.aspx?articleid = 2795782 |