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Abstract: This work investigated the combined effects of intraocular pressure (IOP) and blood pres-
sure (BP) on retinal hemodynamics and glaucoma progression using a novel, physiology-based digital
twin for ocular hemodynamics (DT-OH). The DT-OH integrates a mathematical model of ocular phys-
iology with machine learning to simulate retinal blood flow dynamics based on individualized IOP and
BP inputs. The DT-OH was applied to clinical data from the Indianapolis Glaucoma Progression Study
(IGPS) to characterize how IOP and BP jointly influence retinal hemodynamics and their association
with glaucoma progression. The DT-OH identified three distinct hemodynamic profiles based on the
combined effects of IOP and BP. Membership in one specific profile at baseline was associated with
a significantly higher risk of glaucoma progression. These profiles reflect distinct patterns of ocular
blood flow regulation and provide physiological insight into the interplay between systemic and ocu-
lar factors in glaucoma. These findings enhance our understanding of glaucoma pathophysiology and
support the development of personalized risk assessment tools that account for both IOP and BP.
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1. Introduction

Glaucoma is a multi-factorial disease characterized by progressive optic nerve damage and irre-
versible vision loss. Historically, glaucoma has been associated with elevated intraocular pressure
(IOP); however, many patients develop and experience disease and its progression despite low or ther-
apeutically lowered IOP [1]. Non-IOP risk factors include advancing age, myopia, both high and low
blood pressure (BP), and dysregulated ocular blood flow [2-6].

As the significance of ocular hemodynamics continues to be demonstrated in glaucoma [7], the
impact of BP on blood flow and subsequent disease progression is likely extremely high. However,
translating and predicting disease onset and progression from factors other than IOP, including BP and
ocular blood flow, remains an urgent unmet challenge. Multiple clinical and population-based studies
have attempted to shed light on the relationship between IOP, BP, ocular blood flow, and glaucoma.
However results are conflicting, with some pointing to low BP [8-10] and others to high BP [11-13]
and BP variability [14—17] as increasing risk. The enigma of contributing mechanism(s) linking IOP,
BP, and glaucoma remains a major hurdle for developing new management strategies aimed at co-
regulating IOP, BP, and blood flow [2, 18].

In recent years, digital twins have emerged as useful tools to understand the behavior of complex
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Figure 1. Schematic of the digital twin for ocular hemodynamics (DT-OH) and its applica-
tion for a personalized prediction of glaucoma progression.

IOP (mmHg)

Mathematical Biosciences and Engineering Volume 23, Issue 3, 678-701.



680

systems, especially when intervening on the physical systems may be too costly, time-intensive, or
infeasible [19-21]. Stemming from mechanism-driven modeling and propelled by the rapid advance-
ments in machine learning (ML) and artificial intelligence (Al), digital twins are rapidly unlocking
new possibilities for understanding the human body [22]. Recent work in computational modeling and
digital twin systems in biomedical engineering has further validated their utility for predictive, per-
sonalized healthcare applications [23,24]. While cardiology and oncology remain at the forefront of
digital twin applications, their potential in ophthalmology is beginning to emerge [25].

This work develops a new digital twin approach, named the digital twin for ocular hemodynamics
(DT-OH), to aid the study and management of glaucoma. The DT-OH is an integrated personalized
digital twin that combines a physiology-based mathematical model of retinal circulation with an un-
supervised clustering pipeline to produce individualized hemodynamic biomarkers and assign hemo-
dynamic phenotypes to generate personalized risk profiles for glaucoma progression. The workflow
is a multi-step process as schematized in Figure 1: A subset of easily accessible measurements (IOP,
BP, HR) is used as individualized inputs for a physiology-based mathematical model of the retinal
circulation [26, 31] that provides enhanced features quantifying the impact of the individual-specific
IOP and BP values on ocular hemodynamics (Section 2.2). Next, unsupervised clustering methods
from machine learning are used for hemodynamic profiling, namely to identify the eye group that is
hemodynamically similar to the one under consideration (Section 2.3). Individualized risk of glau-
coma progression is then evaluated by investigating structural and functional markers on the basis of
the DT-OH-enabled individualized profiling (Section 2.4).

When applied to a longitudinal clinical study on glaucoma eyes (Section 2.1), the Indianapolis
Glaucoma Progression Study [27], the DT-OH approach successfully identified three clusters of hemo-
dynamically similar eyes based on their IOP and BP baseline values. Importantly, belonging to one
specific cluster was indicative of reduced risk for glaucoma progression based on retinal nerve fiber
layer thickness, cup-to-disc ratio, and visual field mean deviation (Section 3.4). The DT-OH profiling
enables us to formulate hypotheses on the potential mechanisms underlying glaucoma risk, which may
be driven by limited regulation capacity or elevated venous compression depending on the eye-specific
[IOP-BP combinations.

2. Materials and methods
The DT-OH approach developed in this work is based on two main components, namely:

1. a physiology-based mathematical model that takes eye-specific inputs to generate enhanced
hemodynamic features quantifying eye-specific impact of IOP and BP values measured clinically
(Section 2.2);

2. an unsupervised machine learning and clustering analysis that profiles the eyes on the grounds of
their similarities in terms of the enhanced feature set (Section 2.3).

The DT-OH is applied to data from the Indianapolis Glaucoma Progression Study (Section 2.1), and
the outcomes are analyzed using glaucoma markers characterizing progression in terms of structural
and functional changes in the eye (Section 2.4).
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2.1. Clinical dataset

The dataset utilized here comes from the Indianapolis Glaucoma Progression Study (IGPS), an
observational study comprising 114 eyes (70 females, 44 males) diagnosed with open angle glaucoma
(OAG). Throughout the study, assessments of patients were conducted every 6 months over a span of
several years. We remark that the evaluations are based on one eye per patient. The IGPS dataset
contains values of IOP, systolic BP (SBP), diastolic BP (DBP) and HR, along with the following
clinical OAG markers: (i) horizontal and vertical cup-to-disc (C/D) ratios defined as the ratios between
corresponding cup and disc diameters (Figure 2(a), and retinal nerve fiber layer (RNFL) thickness,
measured through Stratus (Zeiss, Meditec, Dublin, CA) optical coherence tomography (OCT). For
this study, we specifically consider the average RNFL thickness, defined as the mean thickness across
all circumpapillary sectors (temporal, superior, nasal, and inferior) around the optic nerve head, as
illustrated in Figure 2(b); (i1) mean deviation (MD) and pattern standard deviation (PSD), obtained
via visual field testing; and (iii) blood velocities in the central retinal artery and ophthalmic artery
obtained via color doppler imaging (CDI), a noninvasive ultrasound technique used to assess ocular
blood flow. Specifically, the derived CDI markers include peak-systolic velocity, end-diastolic velocity,
and resistivity index in the ophthalmic artery (OAsys, OAdys, OAri) and the central retinal artery
(CRAsys, CRAdys, CRAri) [2,30]. In the IGPS, the data collection was performed by the same two
operators throughout the duration of the study, including all follow-up visits. All visits for the same
patient were scheduled approximately at the same time of the day.

J Gregory ©2025 Mount Sinai Health System
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Figure 2. (a) Illustrative optic nerve head images: vertical C/D ratio (blue lines), courtesy of
Ms. Jill Gregory; horizontal C/D ratio (magenta lines); (b) illustrative OCT RNFL profiles
from a standard circumpapillary scan around the optic nerve head.
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2.2. Physiology-based mathematical model

The first component of the DT-OH involves a previously validated mathematical model [26], which
is used to obtain physiology-based hemodynamic features of an individual’s eye based on clinically
measured IOP and BP data. The model consists of a set of nonlinear ordinary differential equations
(ODEs) simulating blood flow through the retinal vasculature, as depicted in Figure 3, along with a
schematic illustration of the eye for ease of reference. The central retinal artery (CRA) and the central
retinal vein (CRV) run parallel to each other in the optic nerve. After passing through the lamina
cribrosa, the CRA enters the intraocular space and branches into arterioles, capillaries, and venules,
which ultimately converge into the CRV before leaving the eye. The intraocular vessels are exposed to
IOP, while the CRA and CRV segments within the optic nerve are exposed to the retrolaminar tissue
pressure (RLT p). The blood flow through the retinal circulation is driven by the pressure difference on
the arterial inlet (P;,) and the venous outlet (P,,,).
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Figure 3. Representation of the physiology-based mathematical model for the retinal circula-
tion based on the electric analogy to fluid flow (left), accompanied by a schematic illustration
of the eye (right). Image of eye by brgfx on FreePIK.

Leveraging the electric analog to fluid flow, the model comprises capacitances and resistances to in-
clude the deformability of blood vessels and the viscous effects of blood flow through them. Nonlinear
resistances are indicated with an arrow and they capture the IOP-induced blood vessel deformation.
We note that here the model is utilized with a constant arteriolar resistance, in order to predict hemo-
dynamic conditions in the absence of autoregulation.

IOP values obtained from clinical measurements are utilized as individualized model input for the
pressure in the intraocular space. Furthermore, individualized clinical measurements of SBP, DBP, and
HR are used to define P;,, following the procedure detailed in Rai et al [31]. All other model parameters
are kept at their baseline values reported in the original article [26]. For each set of clinically measured
individualized inputs, the nonlinear ODE system provides time-dependent pressures, resistances, and
flow rates. The system is solved over a time interval corresponding to 10 cardiac cycles, in order to
ensure that a periodic solution is attained. The last simulated cycle is then utilized to compute all quan-
tities of interest, which include averages of the total retinal blood flow (Q), vascular pressures (P), and
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Table 1. Physiology-based model inputs and outputs simulating different possible patient
conditions. IOP, mean arterial pressure (MAP), Py, P,, P4, Ps are in [mmHg]; R4, Rs are in
[10> mmHg s ml~']; Qis in [10™* ml s7'].

IOP SBP DBP MAP HR P, P, P, Ps O R, Rs
16 9 60 70 80 34 29 19 17 5 58 22
16 120 8 93 80 43 36 22 19 7 51 22
16 130 90 103 80 47 38 23 20 8 48 22
25 90 60 70 80 38 34 27 16 3 121 181
25 120 80 93 80 48 42 31 18 5 51 147
25 130 90 103 80 51 44 32 18 6 47 134

vascular resistances (R). Here we focus on the pressures associated with deformable vascular compart-
ments, namely P; with i = 1,2,4,5, and resistances associated with venous compartments, namely R,
and Rs. This choice is supported by the leading role that these quantities have in characterizing retinal
hemodynamic status, as studied in [31]. Denoting by (#, t.,s) the time interval corresponding to the
last cardiac cycle, the averaged pressures are computed as

1 Tend
P, = f pi(dt, i=1,2,4,5, 2.1)
Tena — 1o 1o

whereas the average resistances are computed as

1 Lend
Ry = f [Faat) + ran(0)]dt 2.2)
lena — 1o fo
1 Lend
Rs = f [75a(8) + 75p(1) + 15c + T5q]dt (2.3)
lend — 1o to

Finally, the average total flow rate is taken to be the mean of the integral averages within different
sections of the retinal vasculature, namely:

0= Q1+ O + Qss 2.4)
3
where
1 fend p1(t) — p2(2)
O, = f dt 2.5)
? Tend — 1o fo rp + rlc(t) + rld(t) t+ g
1 fend P2(1) — pa(t)
= dt 2.6
Qu fena — o L rap + T3q + 13p + 144(0) (20)
1 fend pa(t) — ps(2)
Qs = f dt. (2.7)
P tona — o o Tap() + 1sa(0) + rsp(t) + rsc

Table 1 reports the value of the model outputs for different combinations of IOP and BP values. As
shown, the resulting average pressures, flow, and resistances do not scale linearly with the correspond-
ing inputs. The model exhibits pronounced nonlinear behavior: modest increases in IOP or decreases

Mathematical Biosciences and Engineering Volume 23, Issue 3, 678-701.



684

in MAP produce reductions in downstream pressures (P,, Py, Ps) and disproportionately large changes
in the venous resistances R4 and Rs. For example, at MAP = 70 mmHg, increasing IOP from 16 to
25 mmHg reduces Q from 5 x 107 to 3 x 10™* mls~! while more than doubling R, from 50 x 10? to
121 x 10> mmHg s ml~'. These nonlinear trends are also illustrated in Figure 4.

2.3. Unsupervised machine learning and clustering

The second component of the DT-OH focuses on translating the physiology-enhanced hemody-
namic representation of each eye obtained in Section 2.2 into phenotypes. To do this, we apply an un-
supervised machine learning approach to cluster the eyes based on their individualized representations.
These DT-OH-based groupings provide a data-driven way to evaluate whether shared hemodynamic
patterns correspond to distinct risks of glaucoma progression, which is assessed a-posteriori based on
structural and functional markers, as described in Section 2.4.
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Figure 4. Average pressure and resistance values for different combinations of IOP and MAP
throughout different compartments of the physiology-based mathematical model. Notably,
lower MAP and higher IOP lead to a stark increase in the venous resistances.

The 7 physiology-enhanced model outputs (Table 2, lower part) are combined with 5 patient-specific
clinical data (Table 2, upper part) to define a 12-dimensional (12-D) feature space that is analyzed
using unsupervised clustering methods, as described in the next section. We note that the mean arterial
pressure (MAP) defined as MAP = (1/3) SBP + (2/3) DBP is included as one of the clinical features
even though it is not directly utilized as an input for the physiology-based model. This choice is
motivated by the fact that MAP is a quantity of established clinical interest in defining the pressure
status of a patient and, consequently, it has been added to the feature space. While the physiology-
based enhancement of the initial dataset enriches it by increasing the size of the feature set, the dataset
is still quite modest for machine learning. Hence, we require an algorithm that is relatively simple
in design and parameters, and yet powerful enough to delineate structure and provide clinical links to
glaucoma progression.

We chose the fuzzy C-means (FCM) algorithm based on Euclidean distance and min-max normal-
ization as that approach. The FCM algorithm allows for each point in the dataset to have memberships
in all clusters. These memberships are also referred to as “soft memberships” and capture the fact
that each point may belong simultaneously to multiple clusters with different degrees of memberships
ranging between 0 and 1. When cluster labels are assigned to each data point based on the highest
membership value, then we talk about “hard memberships”. In the context of glaucoma, this means
that each eye will be most similar to those in the cluster for which it has the highest membership. The
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same eye will also have some degree of membership in the other clusters, and this provides a quan-
titative metric to assess how definite the cluster classification is for that eye. This ability of FCM to
capture overlapping patterns through soft memberships is particularly suitable for glaucoma datasets,
that are often characterized by measurements with intrinsic uncertainty and variability (e.g., BP and
IOP measurements) [32, 33].

Table 2. Features comprising the 12-dimensional feature set used for unsupervised clus-
tering. The feature set includes five clinical measurements and seven physiology-enhanced
hemodynamic outputs generated by the physiology-based mathematical model that consti-
tutes the first component of the DT-OH framework.

Type Symbol  Quantity
Clinical Data I0P Intraocular Pressure
SBP Systolic Blood Pressure
DBP Diastolic Blood Pressure
MAP Mean Arterial Pressure
HR Heart Rate
Physiology- 0 Total retinal blood flow
Enhanced P, Average blood pressure in the central retinal artery
Features ) Average blood pressure in retinal arterioles
Py Average blood pressure in retinal venules
Ps Average blood pressure in the central retinal vein
Ry Average resistance in retinal venules
Rs Average resistance in the central retinal vein

FCM requires two parameters to be set a priori, namely the degree of fuzziness, m, and the number
of clusters, C. In the absence of better knowledge, m is commonly set to 2 [61]; this is the value adopted
in this study. The choice of C leads to the classical question of determining the optimal number of
clusters that best complies with the structure of the clustered data. This problem is referred to as cluster
validity and can be addressed using cluster validity indices (CVIs). A CVI is commonly defined as a
function of intra-cluster cohesion (within-group scatter) and inter-cluster separation (between-group
scatter) to estimate the quality of a clustering partition. The CVI usually reaches its maximum or
minimum value when the “correct” number of well-separated clusters is found, meaning that the intra-
cluster compactness is preserved while also increasing inter-cluster separability. A common method to
get the optimal number of clusters C is as follows: (1) run the clustering algorithm on the given dataset
multiple times with different values of C; (i1) calculate the CVI from the final partition produced by
each run; (iii) take the value of C corresponding to the maximum (or minimum) value of the CVI as
the optimal number of clusters. In this paper, we use two CVIs, namely the Xie-Beni index, defined
as the quotient between the total mean squared error and the minimum separation (distance between
prototypes) of the clusters [34], and the Davies-Bouldin index, defined as the quotient between the
mean distance of data samples to their respective cluster prototype and the distance between cluster
prototypes [35].

FCM also requires a random initialization, which may lead to different outcomes if the cluster
structure within the dataset is not robust. Thus, in this study we test the cluster stability with respect to

Mathematical Biosciences and Engineering Volume 23, Issue 3, 678-701.



686

the initialization in order to ensure that the clusters identified via FCM are actually capturing inherent
structures of the dataset and not mere numerical artifacts.

2.4. Glaucoma progression markers

Due to its longitudinal design, the IGPS dataset offers a unique opportunity to investigate how
belonging to a certain cluster at the baseline visit correlates with glaucoma progression. It is important
to note that multiple definitions of glaucoma progression have been utilized in the clinical literature
to capture changes in structure and visual function. The progression criteria utilized in this work are
consistent with previous clinical studies analyzing the IGPS dataset [36].

Structural progression is defined as two consecutive visits with an average RNFL thickness decrease
> 8%, and/or horizontal or vertical C/D ratio increase by > 0.2 from baseline [36]. Functional progres-
sion is defined as two consecutive visits with a decrease of 2 dB or more in visual field mean deviation
(MD) compared to baseline [36]. The definitions of structural and functional progression given above
require each eye to have at least two consecutive visits. Thus, eyes were discarded from the analysis
if they did not meet this requirement. To mitigate the risks of false positives, the overall trend of these
markers over time was considered. Specifically, for RNFL-based progression, confirmed progressors
were those exhibiting a negative correlation (Spearman’s rank correlation coefficient r < —0.3) between
average RNFL and time. For C/D ratio-based progression, confirmed progressors were those exhibit-
ing a positive correlation (r > 0.3) between C/D ratios and time. Confirmed progressors were those
exhibiting a negative correlation (r < —0.3) between MD and time. Only correlations with p-values
< 0.01 were considered statistically significant for changes in clinical markers over time.

Based on these definitions, among all eyes in the IGPS dataset, 10% progressed structurally, 22%
progressed functionally, and 4% progressed both structurally and functionally.

3. Results

The DT-OH approach is applied to the IGPS dataset to identify IOP-MAP that could be more indica-
tive of glaucoma progression. After enhancing the dataset with the physiology-based model outcomes
(Section 3.1), the structure of the dataset and its cluster tendency are explored (Section 3.2). The
relationship between cluster membership at baseline and structural and functional progression over
four years is investigated (Section 3.3). Next, the clusters are analyzed with respect to their charac-
teristic features, which enables physiology-based hemodynamic profiling based on specific [OP-MAP
combinations (Section 3.4).

3.1. Physiology-based dataset enhancement

Figure 5(a) displays the values measured in each eye as a point in the two-dimensional (2-D) plane
with IOP and MAP on the horizontal and vertical axes, respectively. The graph appears as a cloud of
dispersed points, without obvious clusters. We further analyzed the distributions of MAP and 10OP by
visualizing the frequency histogram plots, see Figure 5(d) and Figure 5(e), and the normal probability
plots, see Figure 5(b) and Figure 5(c). These results suggest that, when considered independently, the
values of MAP and IOP appear reasonably normally distributed.

The 3-D visualization of the distribution of the physiology-enhanced variables obtained with the
mathematical model based on individualized inputs of SBP, DBP, HR, and IOP shows interesting re-

Mathematical Biosciences and Engineering Volume 23, Issue 3, 678-701.



687

160 0.999 0.999

. (b) e (©
@ 2 095 2 0095
S 075 S 075
140 B o5 ® o5
_ S 025 S 025
:Ic:n ot o, Q- 0.05 A 0.05
g 120 e 0005 12—~ o005l —
2, % e 75 100 125 150 10 20 30 40
£ . P E P LI T MAP (mmHg) IOP (mmHg)
o o28% o e
) DR A P . 2{(q) L@
=2 RN I ‘ 3 9
e .8 e c 20 c
o $ [ 20
80 ° . S =
° o o
. L 10 010
o [y i
60 0 0
5 10 15 20 25 30 35 75 100 125 150 0 10 20 30 40
IOP (mmHg) MAP (mmHg) IOP (mmHg)

Figure 5. (a) Two-dimensional plot of the values of mean arterial pressure (MAP) and in-
traocular pressure (IOP) for all eyes at their baseline visit of the Indianapolis Glaucoma
Progression Study (IGPS); (b,c) normal probability plots for MAP and IOP for all eyes at
their baseline IGPS visit; (d,e) frequency histogram plots for MAP and IOP for all eyes at
their baseline IGPS visit.

sults, see Figure 6. Frequency histogram plots are portrayed for the distributions of MAP and IOP,
see Figure 6(a), vascular resistance in the venules (R;) and IOP, see Figure 6(b), and vascular resis-
tance in the CRV (Rs) and IOP, see Figure 6(c). The highly nonlinear relationship between MAP, 10OP,
and the model-estimated variables results in a non-uniform “shift” of the histogram plots relative to
the IOP-MAP histograms in Figure 6(a). That is, while Figure 6(a) shows a centered bell shape for
the IOP-MAP frequency bars, the plots for the R,-IOP and Rs5-IOP plots appear to be shifted along a
line, see Figure 6(b), or toward the left, see Figure 6(c). These shifts indicate that the mathematical
model has performed a nonlinear transformation of the clinical input variables and suggests that eyes
that are relatively “close” in terms of their MAP and IOP values can actually experience very differ-
ent hemodynamic conditions due to the highly nonlinear effects that specific [IOP-MAP combinations
have on the blood circulation. This provides motivation for considering the clustering of eyes with the
physiology-enhanced features.

3.2. Exploration of cluster tendency

Figure 7 displays the results obtained by running the FCM algorithm with C = 3 and m = 2 in
the 12-D physiology-enhanced baseline dataset within IGPS and carrying the hardened cluster labels
into the projection space. Figure 7(a) reports a popular cluster visualization based on a non-linear 3-D
projection of the 12-D enhanced feature vectors, known as t-distributed stochastic neighbor embedding
(t-SNE), which projects the data points from the original 12-D space onto a 3-D space. While the axes
are unit-less and do not carry any clinical meaning, they help us visualize the separable structures that
may exist in the 12-D feature space in 3-D, marked by the three distinct colors in Figure 7(a). The
figure suggests that when MAP and IOP are considered along with the impact that they have on ocular
circulation, as quantified via the features from the mathematical model, a cluster structure is unveiled
and it is separable in the 12-D feature space. Figure 7(b) shows the same 3 clusters projected on the
IOP-MAP plane for clinical interpretation and relevance.
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Figure 6. Three-dimensional visualization of the distribution of mean arterial pressure
(MAP) and two physiology-enhanced variables (vascular resistance in the venules (R4) and

in the CRV (Rs)) with respect to intraocular pressure (IOP).

After performing 10 FCM runs with randomly initialized cluster centers and iteratively updating
the centers and membership degrees until convergence, the resulting cluster centers derived from the
12-D feature set exhibited minimal variation. Figure 8(a) shows cluster centers in the IOP-MAP plane,
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Figure 7. Clustering results obtained by applying FCM with C = 3 and m = 2 to the 12-D
physiology-enhanced baseline dataset within IGPS. Results are displayed via t-distributed
stochastic neighbor embedding (t-SNE) visualization (a) and via a projection on the IOP-
MAP plane (b) for clinical interpretation, carrying the hardened cluster labels into the pro-

jection space.
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highlighting the stability of cluster centers across the different runs when the full 12-D feature set
was used. In stark contrast, when clustering was performed using only IOP and MAP values, see
Figure 8(b), the cluster centers varied significantly and lacked a clear separation.

These results provide confidence in the stability of the FCM clusters obtained for the 12-D
physiology-enhanced dataset, but not for the case in which IOP and MAP are considered as stand-
alone values without physiology-based model enhancement.

Figure 9 shows the hardened and soft memberships for all eyes in each cluster. We recall that the
clustering occurs in the 12-D space and then the results are projected into the 2-D IOP-MAP plane;
this explains why the membership distributions appear more complex than a simple spatial gradient.
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Figure 8. Cluster stability analysis with respect to FCM initialization was performed
on the baseline dataset in two cases: (a) all 12-D features were considered, including
the physiology-enhanced variables; (b) only IOP and MAP were considered, without the
physiology-enhanced variables.

Figure 10 shows the Xie-Beni and Davies-Bouldin indices, as the number of clusters, C, is varied
between 2 and 9. For each value of C, FCM was run 100 times on the 12-D enhanced dataset of the 114
eyes in the IGPS study. For each run, the initialization of the first cluster centers was done randomly
from the data. The Xie-Beni and Davies-Bouldin indices were calculated from the final partition from
each run. The validity indices for each C represent the average of all 100 runs, and the vertical bar
represents the standard deviation. Validity measures, while very useful guidelines, are not absolute
rules; they have their own assumptions and parameters. Both indices show C = 2 is favored. However,
from a practical standpoint, C = 2 for the IGPS data, when projected back onto the [OP-MAP plane
splits the eyes into low BP vs. high BP, with no influence of IOP. Considering that elevated IOP is
the only treatable risk factor for glaucoma, this option limits the underlying potential for studying
glaucoma progression. While the validity measures of C = 3 and C = 4 are close, C = 4 could lead
to very small partitions in a dataset of only 114 data points, thereby reducing the power of subsequent
statistical analyses. Hence, in this study, we have analyzed the cluster structure found with C = 3.

3.3. Clustering and glaucoma progression

The main question addressed in this section is whether the clusters are indicative of glaucoma risk.
To this end, we consider the definitions of structural and functional progression given in Section 2.4
and we apply them to the eyes in each cluster. Figure 11 reports the percentage of eyes that progressed
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Figure 9. Hardened memberships (a) and soft memberships (b,c,d) for all eyes in each cluster
projected onto the IOP-MAP plane.

structurally (a), functionally (b), or both (c), when all IGPS eyes are considered as a single group (red
dashed lines) or by cluster (color bars). Height and whiskers of the color bars represent median and
25/75 percentiles over 100 FCM runs, respectively. The analysis is performed over multiple runs to
ensure the robustness of the results with respect to the random FCM initialization. Overall, results in
Figure 11 suggest that:

o Cluster 1 may be a relatively “safer zone” with respect to structural and functional progression
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Figure 10. Xie-Beni (a) and Davies-Bouldin (b) cluster validity measures for 100 runs of
FCM on the IGPS datafor C =2to C =9, withm = 2.
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when considered separately Figure 11(a,b) or in combination Figure 11(c). The median values
of structural, functional, and combined progressors in Cluster 1 are 8.8%, 16.5%, and 2.9%,
respectively, which are lower than those obtained when all eyes are considered together.

o Cluster 2 may be a relatively “riskier zone” with respect to structural and functional progression
when considered separately Figure 11(a,b) or in combination Figure 11(c). The median values
of structural, functional, and combined progressors in Cluster 2 are 16.2%, 31.9%, and 6.1%,
respectively, which are higher than those obtained when all eyes are considered together.

o Cluster 3 may be a relatively “riskier zone” with respect to functional progression Figure 11(b).
The median value of functional progressors in Cluster 3 is 23.8%, which is higher than that
obtained when all eyes are considered together.

3.4. Physiology-based hemodynamic profiling

The results of Section 3.3 suggest that eyes in Cluster 1 may be at lower risk for glaucoma progres-
sion than those in Clusters 2 and 3. Here, we analyze the clusters with respect to their characteristic
features. This important aspect of the DT-OH approach enables physiology-based hemodynamic pro-
filing of eyes based on their specific IOP-MAP combinations.

Figure 12 summarizes the median values of the 12 features in the physiology-enhanced dataset
used for clustering, see Table 2, using a heatmap visualization. Each cell corresponds to the median
value of a specific feature (row) in one of the three clusters (column), and the intensity of the color
visualizes the feature magnitude as specified by the colorbars. It is interesting to notice that Cluster 3 is
characterized by high IOP and low MAP, resulting in higher values of the venous resistances R4 and R;
and lower values of blood flow Q. Thus, the eyes in Cluster 3 may be in a condition of low flow and high
resistance, which might make them more vulnerable to ischemia. In contrast, Cluster 2 is characterized
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Figure 11. Bar graphs showing results for (a) structural, (b) functional, and (c) structural
and functional progression across 100 FCM runs. Bar height represents the median, and the
whiskers represent the 25/75 quartiles across runs for each cluster. The results obtained when
all IGPS eyes are considered as a single group are also reported (red dashed lines).
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Figure 12. Heatmaps showing the medians of the features in the physiology-enhanced
dataset for each cluster. Specifically, the figure shows the median values of IOP and the
pressures throughout the retinal vasculature (P, P,, P4, Ps) [mmHg] (a); systolic, diastolic,
and mean arterial pressures (SBP, DBP, MAP) [mmHg], and heart rate (HR) [bpm] (b); vas-
cular resistances (R4, Rs) [10° mmHg s ml~'] and total retinal blood flow (Q) [10~* ml s7!].

by high MAP, which results in higher values for the total retinal blood flow Q since autoregulatory
effects are switched off in the model. We recall that this has been an intentional choice, meaning that
the physiology-based mathematical model is purposely run without accounting for autoregulation so
that pressure-driven blood flow changes are unmasked. In other words, the higher Q values estimated
by the model are unmasking the extent by which vascular regulation may be engaged to compensate
the higher MAP values characterizing the eyes in Cluster 2. As a result of this underlying regulatory
engagement, the capability of the vasculature to adjust for physiological variations in BP and IOP may
be reduced. These findings support the formulation of the following hypotheses:

e When MAP is high, regardless of IOP, the arterial side of the circulation may be heavily recruited
in blood flow regulation, thereby limiting its capacity to compensate for inevitable variations in
BP and IOP due to, for example, the circadian rhythm or activity levels. Thus, we hypothesize
that the compromised capacity of arterial regulation may be driving glaucoma progression in eyes
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Figure 13. Heatmaps (a), (b), and (c) show the median peak systolic velocity [cm s~'], peak
diastolic velocity [cm s7!], and the resistivity index [—] in the CRA and OA for each cluster.

that at baseline belong to Cluster 2.

e When MAP is low and IOP is high, as it happens in Cluster 3, the venous side of the circulation
may be experiencing a higher degree of external compression, thereby increasing venous resis-
tance and the venous susceptibility to collapse. Thus, we hypothesize that the venous compression
vulnerability may be driving glaucoma progression in eyes that at baseline belong to Cluster 3.

The plausibility of the aforementioned hypotheses is explored by comparing the cluster character-
istic values of OAsys, OAdys, OAri and CRAsys, CRAdys, CRAri. The results are reported in the
heatmaps in Figure 13. The values of OAsys and OAdys are notably higher for eyes in Cluster 2 when
compared to those in Clusters 1 and 3 (Figure 13(a,b)). However, in the CRA, CRAdys of eyes in
Cluster 2 are comparable to those in Clusters 1 and 3 (Figure 13(b)). The similarity in CRA velocities
despite higher OA velocities could be reflecting a more prominent engagement of vascular regulation
in the retinal circulation for the eyes in Cluster 2. This could, in turn, limit their capacity to compensate
for physiological pressure fluctuations, thereby leaving them more vulnerable to damage. Interestingly,
the CRATri and OAri in both Clusters 2 and 3 are higher than in Cluster 1 (Figure 13(c)). This differ-
ence points to a higher resistance to blood flow in both Clusters 2 and 3. However, CRAsys and both
OAsys and OAdys differ more between Clusters 1 and 2, than Clusters 1 and 3, thereby suggesting that
a different factor may be causing the increased resistance. Our DT-OH approach indicates that such
a mechanism may be related to an increased venous compression, but direct clinical data on venous
hemodynamic imaging in the eye are not fully developed yet.

4. Discussions
The proposed DT-OH approach is highly novel as it combines different modeling approaches
(physiology-based mathematical modeling and machine learning methods), each being used in a dif-

ferent and complementary way. In this approach, the digital twin of an eye consists of: i) the individual
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specific values of IOP, BP, and HR, and the associated physiology-based model estimates of vascu-
lar pressures, resistances, and flow rates; and ii) the cluster label for hemodynamic status and glau-
coma risk profiling. The method builds on the foundation of computational modeling and digital-twin
paradigms described in [23], which advocate for combining biophysical and data-driven methods in
healthcare. Previous approaches to understand hemodynamic responses in different parts of the body
include animal models [58], and bias-prone imaging techniques [59]. Previous applications of machine
learning and Al in glaucoma research have predominantly focused on neural network performance, of-
ten with limited emphasis on physiological interpretability [60]. Our approach leverages a fully in
silico digital twin, enabling noninvasive and objective analysis of hemodynamic status and personal-
ized glaucoma risk profiling, while additionally providing physiologically grounded explanations for
the outcomes. Physiology-based mathematical modeling is used to quantify the hemodynamic status
associated with specific combinations of IOP, BP, and HR. Given that measurements of IOP, BP, and
HR are available to virtually any clinic, the outcomes of our analyses have immediate clinical relevance
and could be implemented even in clinics that do not have access to advanced imaging techniques. Ma-
chine learning methods are used to identify eyes for which specific combinations of IOP, BP, and HR
yield a similar hemodynamic status in the retina. The application of machine learning techniques in
ophthalmology has gained significant traction in recent years, with applications focusing mostly on
glaucoma diagnosis and prediction of progression based on imaging data [37—41]. The richness of
the approach presented in this study lies in the enhancement of the standard clinical measurements
with hemodynamic variables generated by a validated physiology-based mathematical model of blood
flow in the eye [26]. The stability analysis with respect to FCM initialization has revealed that this
enhancement is crucial to achieve stable clustering.

The proposed DT-OH approach applied to IGPS proved capable of identifying specific eye profiles
that are indicative of different degrees of glaucoma progression, based on their IOP and BP values at
baseline.

Interestingly, two profiles are found to be at higher risk for progression, namely those corresponding
to Cluster 2 and Cluster 3, but for different reasons. Eyes in Cluster 3 may be characterized by higher
venous resistances, whereas eyes in Cluster 2 may be experiencing limited regulation capacity. These
findings are consistent with those of Pappelis et al. [42], who used a similar rationale to model the BP
and IOP limits outside which autoregulation fails and the retina could undergo hypoperfusion. In a
subsequent publication [43], the authors used these predictions and showed that BP status, especially
intensively treated hypertensives, and autoregulation limits were indeed correlated with ganglion cell
thickness. Carichino et al. analyzed velocity waveforms obtained with color doppler imaging and
found that glaucoma patients with higher BP have a higher peak systolic velocity in the ophthalmic
artery (OAsys) [57]. Additionally, a higher resistivity index in the ophthalmic artery (OAri) measured
via color doppler imaging has previously been linked to a higher likelihood of visual field deterioration,
as shown by Galassi et al. in [56], where the odds of deterioration for patients with OAri > 0.78 were
found to be six times higher than those with lower OAri.

The discovery of clinically meaningful subgroups of patients in a dataset is essential for develop-
ing precision in therapy. Statistical analysis based on cohorts, groups, or classes is often performed
to investigate whether relationships between clinical markers are more pronounced in certain groups
than in others. Unsupervised cluster analysis has been an important data-based approach to find such
retrospective or post-hoc subgroups in observational studies, see, e.g., Alashwal et al. [44] and the
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references therein. The novelty of our work lies in the choice of variables used in the cluster analysis,
which include a subset of the clinical data (BP, IOP, HR) augmented by hemodynamic features (vascu-
lar pressure, flow, vascular resistance) that are estimated using a validated mathematical model based
on physiology [20]. The rationale for our approach is twofold: (i) it is based on simple measurements
available virtually anywhere (IOP and BP), and (ii) it uses the imaging data only for a-posteriori as-
sessment of progression and not for cluster building. In so doing, the outcomes of our approach are
broadly accessible for clinics that may not have access to the new cutting-edge imaging technologies.

This work focuses on the IGPS study, which provides valuable multimodal longitudinal clinical
data for glaucoma patients evaluated at the same clinic by the same operators. However, only 114 eyes
are included in IGPS. Although this is a relatively small sample size it is fairly typical of studies on
conditions with low incidence, such as glaucoma. Indeed, even large population-based studies with
patients numbering in the thousands have comparable sample sizes to the ones used here. For example,
Singapore Epidemiology of Eye Diseases (SEED) included a total of 19,587 eyes, among which only
293 had glaucoma [28, 29]. The Thessaloniki Eye Study included 2261 subjects and only 135 had
glaucoma [45].

Testing the findings of this study on larger datasets that include multiple longitudinal assessments
of glaucoma progression would be the next step.

In the present analysis, baseline values refer to those measured during the first visit at which a patient
entered the IGPS. While the IGPS was designed to ensure homogeneity in terms of disease stage, this
might not be the case in the population. Hence, examining the temporal trajectories of each eye’s
physiology-enhanced features and potential transitions between clusters could reveal whether dynamic
changes in ocular hemodynamics are predictive of structural or functional progression. Incorporating
such temporal analyses represents an important next step toward extending the DT-OH framework from
static risk profiling to dynamic modeling of glaucoma evolution.

Beyond its value for disease stratification, the clustering framework developed here has potential
applications in personalized medicine in a clinical setting. Once a patient’s IOP, BP, and HR are mea-
sured, they can be used to assign the patient to one of the identified clusters in the IOP-MAP plane.
This classification may help tailor management strategies for said patient based on their hemodynamic
profile. In a preliminary external evaluation of the findings using the SEED cohort, the clusters de-
rived from IGPS were transferred using feature-alignment techniques. Eyes corresponding to Cluster
2 in SEED exhibited the greatest decline in VF (measured using MD) over time, despite concomitant
lowering of both IOP and BP. In contrast, eyes in Cluster 3, whose management emphasized IOP re-
duction, showed no significant decline in VF. Lastly, eyes in Cluster 1, which did not receive aggressive
therapeutic interventions, also remained stable [62]. These findings suggest that distinct hemodynamic
profiles may respond differently to therapy, underscoring the potential of DT-OH-based stratification
to guide personalized treatment decisions.

Currently, the only approved modifiable risk factor for glaucoma is IOP, which can be reduced
pharmaceutically or surgically. Thus, if the results on IOP-BP profiling enabled by DT-OH is confirmed
in multi-center, large-scale, longitudinal progression studies, these findings would provide a practical
way to guide individualized approaches for glaucoma care accounting for both IOP and BP.
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5. Conclusions

The enigma preventing translation of BP outcomes for enhancing glaucoma care has a significant
impact due to the high prevalence of hypertension and hypertensive treatments in the US and world-
wide populations [46—49]. It is important to note that BP-related disease impact involves significant
disparities based on sex, age, race, and reported ethnicities [47-55]. Clustering analysis is highly useful
in such situations to help identify those groups of patients with shared variables and elevated risk of
disease onset and progression. Clusters are especially meaningful when data-driven analysis from
targeted clinical studies with comprehensive assessments may be applied to larger population-based
studies that lack specific imagery or diagnostic capabilities.

Finally, we acknowledge that, despite its usefulness, the mathematical model utilized in this study
has several limitations, including the fact that it does not account for the circulation within the optic
nerve head or include oxygen transport across the vessels and tissues. The overall multistep approach,
though, is modular and it lends itself to swap the mechanistic module with more advanced physiology-
based models as they become available.
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