Research article Special Issues

On the global stability of the discrete-time epidemic models: A new approach

  • Published: 29 January 2026
  • We developed a unified analytical framework for the global dynamics of discrete-time susceptible infectious susceptible (SIS) epidemic models with nonlinear recruitment. Emphasis was placed on demographic feedback through Beverton-Holt and Ricker-type recruitment, which regulates host population size and thereby shapes transmission and long-term persistence (Persistence allows population densities to approach zero asymptotically, wheras uniform persistence requires them to remain bounded away from zero). Under minimal assumptions, we reduced non-autonomous systems to appropriately defined autonomous limiting systems and used this reduction to obtain a complete global threshold characterization: When the basic reproduction number $ R_{0} > 1 $, the endemic equilibrium existed and was globally asymptotically stable; when $ R_{0}\le 1 $, solutions converged to the disease-free state. The approach extended to periodically forced SIS models, which showed that the threshold and stability conclusions persisted in the periodic non-autonomous setting. The results unified and strengthened prior work and clarify how recruitment dynamics govern persistence in discrete-time epidemic systems.

    Citation: Omaima Slimani, Bouchra Aylaj, Saber Elaydi. On the global stability of the discrete-time epidemic models: A new approach[J]. Mathematical Biosciences and Engineering, 2026, 23(3): 702-721. doi: 10.3934/mbe.2026027

    Related Papers:

  • We developed a unified analytical framework for the global dynamics of discrete-time susceptible infectious susceptible (SIS) epidemic models with nonlinear recruitment. Emphasis was placed on demographic feedback through Beverton-Holt and Ricker-type recruitment, which regulates host population size and thereby shapes transmission and long-term persistence (Persistence allows population densities to approach zero asymptotically, wheras uniform persistence requires them to remain bounded away from zero). Under minimal assumptions, we reduced non-autonomous systems to appropriately defined autonomous limiting systems and used this reduction to obtain a complete global threshold characterization: When the basic reproduction number $ R_{0} > 1 $, the endemic equilibrium existed and was globally asymptotically stable; when $ R_{0}\le 1 $, solutions converged to the disease-free state. The approach extended to periodically forced SIS models, which showed that the threshold and stability conclusions persisted in the periodic non-autonomous setting. The results unified and strengthened prior work and clarify how recruitment dynamics govern persistence in discrete-time epidemic systems.



    加载中


    [1] W. O. Kermack, A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [2] L. J. S. Allen, Some discrete-time SI, SIR and SIS epidemic models, Math. Biosci., 124 (1994), 83–105. https://doi.org/10.1016/0025-5564(94)90025-6
    [3] H. W. Hethcote, J. A. Yorke, Gonorrhea Transmission Dynamics and Control, $1^{st}$ edition, Springer, 1984. https://doi.org/10.1007/978-3-662-07544-9
    [4] A. Lajmanovich, J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221–236. https://doi.org/10.1016/0025-5564(76)90125-5 doi: 10.1016/0025-5564(76)90125-5
    [5] D. Clancy, A stochastic SIS infection model incorporating indirect transmission, J. Appl. Probab., 42 (2005), 726–737. https://doi.org/10.1239/jap/1127322023 doi: 10.1239/jap/1127322023
    [6] M. Martcheva, An Introduction to Mathematical Epidemiology, $1^{st}$ edition, Springer, 2015. https://doi.org/10.1007/978-1-4899-7612-3
    [7] L. Cai, X. Li, Analysis of a simple vector-host epidemic model with direct transmission, Discrete Dyn. Nat. Soc., 2010 (2010). https://doi.org/10.1155/2010/679613
    [8] R. J. H. Beverton, S. J. Holt, On the Dynamics of Exploited Fish Populations, $1^{st}$ edition, Springer, 1993. https://doi.org/10.1007/978-94-011-2106-4
    [9] W. E. Ricker, Stock and recruitment, J. Fish. Res. Board Can., 11 (1954), 559–623. http://doi.org/10.1139/f54-039
    [10] X. Ma, Y. Zhou, H. Cao, Global stability of the endemic equilibrium of a discrete SIR epidemic model, Adv. Differ. Equations, 2013 (2013), 42. https://doi.org/10.1186/1687-1847-2013-42 doi: 10.1186/1687-1847-2013-42
    [11] C. Castillo-Chavez, A. Yakubu, Dispersal, disease and life-history evolution, Math. Biosci., 173 (2001), 35–53. https://doi.org/10.1016/S0025-5564(01)00065-7 doi: 10.1016/S0025-5564(01)00065-7
    [12] J. E. Franke, A. A. Yakubu, Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models, J. Math. Biol., 57 (2008), 755–790. https://doi.org/10.1007/s00285-008-0188-9 doi: 10.1007/s00285-008-0188-9
    [13] S. N. Elaydi, J. M. Cushing, Discrete Mathematical Models in Population Biology: Ecological, Epidemic, and Evolutionary Dynamics, $1^{st}$ edition, Springer, 2024. https://doi.org/10.1007/978-3-031-64795-6
    [14] E. D'Aniello, S. Elaydi, The structure of $\omega$-limit sets of asymptotically non-autonomous discrete dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 903–915. https://doi.org/10.3934/dcdsb.2019195 doi: 10.3934/dcdsb.2019195
    [15] S. Elaydi, R. J. Sacker, Global stability of periodic orbits of non-autonomous difference equations and population biology, J. Differ. Equations, 208 (2005), 258–273. https://doi.org/10.1016/j.jde.2003.10.024 doi: 10.1016/j.jde.2003.10.024
    [16] J. Li, Z. Ma, F. Brauer, Global analysis of discrete-time SI and SIS epidemic models, Math. Biosci. Eng., 4 (2007), 699–710. https://doi.org/10.3934/mbe.2007.4.699 doi: 10.3934/mbe.2007.4.699
    [17] J. E. Franke, A. Yakubu, Periodically forced discrete-time SIS epidemic model with disease-induced mortality, Math. Biosci. Eng., 8 (2011), 385–408. https://doi.org/10.3934/mbe.2011.8.385 doi: 10.3934/mbe.2011.8.385
    [18] I. Papst, D. J. D. Earn, Invariant predictions of epidemic patterns from radically different forms of seasonal forcing, J. R. Soc. Interface, 16 (2019), 20190202. https://doi.org/10.1098/rsif.2019.0202 doi: 10.1098/rsif.2019.0202
    [19] L. J. S. Allen, P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Differ. Equations Appl., 14 (2008), 1127–1147. https://doi.org/10.1080/10236190802332308 doi: 10.1080/10236190802332308
    [20] F. Brauer, Z. Feng, C. Castillo-Chávez, Discrete epidemic models, Math. Biosci. Eng., 7 (2010), 1–15. http://doi.org/10.3934/mbe.2010.7.1
    [21] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [22] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/bf00178324 doi: 10.1007/bf00178324
    [23] N. J. Cunniffe, C. A. Gilligan, A theoretical framework for biological control of soil-borne plant pathogens: Identifying effective strategies, J. Theor. Biol., 278 (2011), 32–43. https://doi.org/10.1016/j.jtbi.2011.02.023 doi: 10.1016/j.jtbi.2011.02.023
    [24] N. G. Becker, Analysis of Infectious Disease Data, $1^{st}$ edition, Chapman and Hall/CRC, 1989. https://doi.org/10.1201/9781315137407
    [25] N. T. J. Bailey, The Elements of Stochastic Processes with Applications to the Natural Sciences, Wiley, 1964.
    [26] S. N. Elaydi, Discrete Chaos: With Applications in Science and Engineering, $2^{nd}$ edition, Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420011043
    [27] K. Mokni, S. Elaydi, M. CH-Chaoui, A. Eladdadi, Discrete evolutionary population models: A new approach, J. Biol. Dyn., 14 (2020), 454–478. https://doi.org/10.1080/17513758.2020.1772997 doi: 10.1080/17513758.2020.1772997
    [28] C. Castillo-Chavez, A. Yakubu, Discrete-time S-I-S models with complex dynamics, Nonlinear Anal. Theory Methods Appl., 47 (2001), 4753–4762. https://doi.org/10.1016/S0362-546X(01)00587-9 doi: 10.1016/S0362-546X(01)00587-9
    [29] A. Yakubu, J. E. Franke, Discrete-time SIS epidemic model in a seasonal environment, SIAM J. Appl. Math., 66 (2006), 1563–1587. https://doi.org/10.1137/050638345 doi: 10.1137/050638345
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(34) PDF downloads(6) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog