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Abstract: We developed a unified analytical framework for the global dynamics of discrete-time
susceptible infectious susceptible (SIS) epidemic models with nonlinear recruitment. Emphasis was
placed on demographic feedback through Beverton-Holt and Ricker-type recruitment, which regulates
host population size and thereby shapes transmission and long-term persistence (Persistence allows
population densities to approach zero asymptotically, wheras uniform persistence requires them
to remain bounded away from zero). Under minimal assumptions, we reduced non-autonomous
systems to appropriately defined autonomous limiting systems and used this reduction to obtain a
complete global threshold characterization: When the basic reproduction number R0 > 1, the endemic
equilibrium existed and was globally asymptotically stable; when R0 ≤ 1, solutions converged to
the disease-free state. The approach extended to periodically forced SIS models, which showed
that the threshold and stability conclusions persisted in the periodic non-autonomous setting. The
results unified and strengthened prior work and clarify how recruitment dynamics govern persistence
in discrete-time epidemic systems.
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1. Introduction

Mathematical modeling has played a fundamental role in understanding the dynamics of infectious
diseases. The pioneering work of Kermack and McKendrick [1] introduced a deterministic
compartmental framework that has since evolved into a cornerstone of mathematical epidemiology.
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While continuous-time models remain dominant in theoretical studies, discrete-time models are
particularly suited for applications involving data collected in discrete intervals, such as weekly case
counts or seasonal variations and they offer increased flexibility in modeling periodic and
non-autonomous effects.

Among these, the discrete-time susceptible infectious susceptible (SIS) model is of particular
interest for diseases where recovered individuals return immediately to the susceptible class [2], such
as gonorrhea [3, 4], hospital-acquired infections (HAIs) [5], and certain vector-borne diseases [6, 7].
Despite its apparent simplicity, the discrete SIS model becomes mathematically intricate when
realistic demographic processes such as nonlinear recruitment are introduced. Traditional analyses
often sidestep these complications by assuming constant or geometrically growing
populations. However, in many biological contexts, recruitment is regulated by density-dependent
factors such as those modeled by the Beverton and Holt [8] or Ricker [9] functions.

Incorporating such nonlinear recruitment poses significant challenges, particularly in establishing
the global dynamics of the system. Although several previous works have addressed local stability
and persistence [10–12], the global stability of endemic equilibrium (EE) in discrete-time models has
remained unresolved in most settings, especially when the basic reproduction number is R0 > 1. This
paper fills that gap by establishing general and verifiable conditions under which the EE is globally
asymptotically stable (GAS) in both autonomous and periodic discrete SIS models.

Our key innovation lies in a reduction technique that allows us to analyze a non-autonomous
epidemic model by linking it to a suitably defined autonomous limiting system [13, 14]. This
approach not only simplifies the mathematical analysis, but also yields powerful global results that
have previously been accessible only in restricted cases. In particular, we prove that:

• If R0 ≤ 1, the disease-free equilibrium (DFE) is GAS.

• If R0 > 1, the EE exists and is GAS.

These global results are obtained without relying on monotonicity or Lyapunov techniques that often
require strong assumptions or restrictive functional forms. Furthermore, we apply this framework to
both Beverton–Holt and Ricker recruitment structures and demonstrate that the conclusions remain
valid even in periodically varying environments.

In doing so, this paper advances the theory of discrete-time epidemiological modeling by offering
a comprehensive and general methodology to address a long-standing open problem. Our findings not
only unify previous efforts, but also open the door to a broader class of models, including those with
time-dependent interventions or seasonally varying parameters [15–18].

The paper is structured as follows. Section 2 introduces the general framework of discrete-time
epidemic system and key preliminaries. Section 3 presents the discrete-time SIS epidemic model.
Section 4 analyzes the global stability properties under Beverton-Holt recruitment. Section 5
investigates the analogous case with Ricker-type recruitment. Section 6 extends the results to periodic
systems. The extension of our technique to susceptible infected recovered (SIR) or susceptible
exposed infectious recovered (SEIR) models is still an open problem.
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2. Mathematical framework for discrete-time epidemic models

Following the general framework of Elaydi and Cushing [13], we consider discrete-time
compartmental infectious disease models of the form

y(t + 1) = g(y(t)), t ∈ Z+, (2.1)

where
y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn

+.

We make the following assumption:

Assumption 2.1 (Smoothness and Positivity). The function g is continuously differentiable on an open
set Ω ⊂ Rn containing Rn

+. Moreover, g maps

g : Rn
+ → R

n
+, g : int(Rn

+)→ int(Rn
+),

where int(Rn
+) denotes the interior of Rn

+ (all vectors with strictly positive components).

We are interested in equilibrium solutions y∗ satisfying

y∗ = g(y∗). (2.2)

We decompose the population into infectious and non-infectious classes:

y = (y0, y1)T ,

where y0 = (y1, . . . , ym)T denotes the m infectious states, and y1 = (ym+1, . . . , yn)T denotes the n − m
non-infectious states. Then system (2.1) can be written as

y0(t + 1) = g0(y0(t), y1(t)),
y1(t + 1) = g1(y0(t), y1(t)).

(2.3)

By Assumption 2.1, both g0 and g1 are continuously differentiable and map the positive orthant
to itself:

g0 : int(Rm
+)→ int(Rm

+), g1 : int(Rn−m
+ )→ int(Rn−m

+ ).

We assume that the only source of infection comes from contacts between infectious and non-
infectious individuals. Thus, if no infectious individuals are present at time t, then none will be present
at time t + 1:

g0(0, y1) ≡ 0, ∀ y1 ∈ R
n−m
+ . (2.4)

An equilibrium (0, y∗1) in which no infectious individuals are present is called a DFE. The non-
infectious component y∗1 satisfies

y∗1 = g1(0, y∗1), (2.5)

which is the equilibrium of the non-infectious subsystem.
An important stability tool for determining diagnostic quantity that is often more analytically

tractable is the inherent or basic reproduction number R0, which provides insight when designing
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prevention and control strategies for established disease infections [19, 20]. A next generation matrix
method for defining and computing the basic reproduction number R0 for discrete-time
compartmental epidemic models with a stable fixed point was first developed by Allen, van den
Driessche and Watmough in [19, 21].

In epidemiology, R0 is biologically defined as the expected number of infections produced by a
single infectious individual introduced into a totally susceptible population [22]. Consequently, values
of R0 < 1 are expected to imply that the number of infections will decrease over time and that the
disease will eventually die out as the chain of transmission cannot be maintained. However, values
of R0 > 1 imply that a low level of infection will increase infections in the population and a disease
outbreak will occur. We will use the next-generation approach to compute R0.

Our analytical framework relies on a limiting autonomous system. If the host population remains
asymptotically constant and converges to a positive state, we can study the global stability of the
original system using the following theorem:

Theorem 2.1 (Global Stability via Limiting Equation). [14] Consider the non-autonomous system
x(t + 1) = gt(x(t)), x(t) ∈ Rn

+. Assume that gt converges uniformly to g as t → ∞ and gt, g are
continuous on int(Rn

+). If x∗ ∈ int(Rn
+) is a GAS equilibrium of the limiting system x = g(x), then all

orbits of the original system with x(0) ∈ int(Rn
+) converge to x∗ as t → ∞.

Remark 2.1. Theorem 2.1 does not assert uniqueness of positive equilibria; uniqueness must be
verified for each specific model (e.g., discrete-time SIS with nonlinear recruitment often has a unique
EE under certain conditions).

3. Discrete-time susceptible infectious susceptible model

In this section, we show how to apply the general framework of non-autonomous difference
equations to the discrete-time SIS epidemic model. While discrete-time SIS models have been
extensively studied, establishing the global stability of the EE remains challenging.

The total population is divided into two compartments:

• Susceptible (S ): individuals who are disease-free or have recovered from prior infection.
Population density at time t is S (t).

• Infectious (I): individuals who are actively infected and capable of transmitting the disease.
Population density at time t is I(t).

The total population density is N(t) = S (t) + I(t). Its temporal dynamics follow a demographic
equation N(t + 1) = h (N(t)) (see Section 4), with a limiting positive steady state

lim
t→∞

N(t) = N∗,

whenever it exists.
The transitions between the susceptible (S ) and infected (I) states occur through the

following mechanisms:

• Infection: Susceptible individuals become infected upon contact with infectious individuals. The
transition from susceptible to infected is governed by the contact rate between susceptibles and
the prevalence of infectives in the population.
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• Survival: Susceptible and infected individuals survive each generation with constant probabilities
γS and γI , respectively.

• Recovery: Infected individuals may recover and return to the susceptible class, as recovery does
not confer permanent immunity. This is represented by a recovery probability σ.

• Recruitment: New susceptibles are recruited per unit time according to a function f (N(t)),
representing the typically nonlinear birth or recruitment process.

These assumptions and notations lead to the following SIS epidemic model:
S (t + 1) = f (N(t)) + γSφ

(
I(t)
N(t)

)
S (t) + γIσI(t),

I(t + 1) = γS

[
1 − φ

(
I(t)
N(t)

)]
S (t) + γI(1 − σ)I(t).

(3.1)

with initial conditions S (0) ≥ 0, I(0) ≥ 0, and parameters 0 < γS , γI , σ < 1. The right-hand sides are
sums of non-negative terms, ensuring S (t), I(t),N(t) ≥ 0 for all t.

The model dynamics are illustrated in Figure 1.

Figure 1. Compartmental diagram of the discrete-time SIS model. Parameters: γS /γI

(survival probability), σ (recovery probability), f (recruitment function), φ (escape function).

The escape function φ : [0, 1] → [0, 1] represents the probability that a susceptible individual
escapes infection during a time step, depending on the proportion of infectious individuals I/N.

Assumption 3.1 (Escape Function). The function φ satisfies the following conditions:
1) 0 ≤ φ(I/N) ≤ 1 for I ≥ 0, and φ(0) = 1.
2) φ is concave, monotone decreasing, and continuously differentiable.
3) φ′′(x) > 0 for all x ∈ [0, 1].

Our study generalizes any function φ that satisfies all the above conditions.

Remark 3.1. When infections are modeled using Poisson processes, φ takes the form

φ

(
I(t)
N(t)

)
= exp

(
−β

I(t)
N(t)

)
,

where β > 0 is the transmission parameter. In other words, β reflects how the level of prevalence
shapes the function φ.

Mathematical Biosciences and Engineering Volume 23, Issue 3, 702–721.
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The Poisson approximation is often preferred because it provides a simple and analytical way to
model the random number of infections occurring within a given time interval. It is particularly
suitable when the probability of transmission per contact is low but the number of potential contacts
is high, which is typically the case for soil-borne diseases [23]. In such settings, infection events can
be considered rare, independent, and scattered among a large number of susceptible hosts. This
approach has therefore been adopted in several modelling studies, such as [24]. Moreover, the
Poisson process is widely used in continuous-time epidemic models as well [25].

In what follows, we consider φ
(

I(t)
N(t)

)
= e−

βI(t)
N(t) , and examine discrete-time SIS models, assuming that

both susceptible and infected individuals have the same probability of surviving from one generation
to the next, i.e. γS = γI = γ.

Remark 3.2. For example, in HAIs in a short-stay facility, both susceptible and infected patients have a
similar probability of remaining in the facility from one discrete time step to the next [6] (see also [11]
and the references cited therein).

In the following sections, we will consider specific recruitment functions f (Beverton-Holt and
Ricker typest) and extend the analysis to periodic environments.

4. Discrete SIS model with Beverton-Holt demography

The Beverton-Holt recruitment function is widely used to model density-dependent population
growth in ecology and epidemiology [8]. It is typically expressed as

f (N) =
aN

1 + bN
,

where a > 0 represents the maximum per capita recruitment rate at low population densities, and
b > 0 measures the strength of density dependence. As N increases, the recruitment rate saturates at
the carrying capacity K = a−1

b , reflecting limited resources or space that constrain population growth.
This functional form allows the population to approach a positive equilibrium even when recruitment
is nonlinear, which is particularly useful for modeling host populations in epidemic models.

Substituting the Beverton-Holt recruitment function into model (3.1), we obtain the following
discrete-time SIS epidemic model with Beverton-Holt type recruitment :

S (t + 1) =
aN(t)

1 + bN(t)
+ γφ

(
I(t)
N(t)

)
S (t) + γσI(t),

I(t + 1) = γ
[
1 − φ

(
I(t)
N(t)

)]
S (t) + γ(1 − σ)I(t).

(4.1)

4.1. Demographic equation

Our simple deterministic discrete-time epidemic model is formulated under the assumptions that
the dynamics of the total population size in generation t, denoted by N(t), are governed by a one-
dimensional equation of the form:
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N(t + 1) = f (N(t)) + γN(t), (4.2)

where γ ∈ (0, 1) is the constant probability of surviving per generation, and f : R+ → R+ represents
the typically non-linear birth or recruitment process, and f (N) ∈ C1(R+,R+). Let the map h : R+ → R+

be defined by: h(N) = f (N)+γN, then the set of iterates of the map h is equivalent to the set of density
sequences generated by Eq (4.2), and is used to describe its dynamics.

In this section, we briefly review the demographic equation with the Beverton-Holt recruitment
function, highlighting key results relevant to our study. The Ricker recruitment function will be
discussed later in the paper.

If the recruitment function is the classic Beverton-Holt model, then the demographic Eq (4.2)
reduces to the nonlinear difference equation: N(t + 1) = h(N(t)) = aN(t)

1+bN(t) + γN(t). This demographic
equation has a positive equilibrium, denoted by N∗, which is GAS.

This equilibrium is obtained by solving N(t + 1) = N(t), yielding N∗ = a−(1−γ)
b(1−γ) =

1
b

(
a

1−γ − 1
)

Let

h(N) =
aN

1 + bN
+ γN.

So, h
′

(N) = a
(1+bN)2 + γ with h

′

(0) = a + γ and h
′

(N∗) = (1−γ)2

a + γ.
We have two cases:

a) a + γ > 1 that is implies that N∗ > 0 exists and h′(0) > 1.

b) a + γ ≤ 1 that is implies that N∗ > 0 does not exist and N∗ = 0 is the only equilibrium point. We
have 0 < h′(0) ≤ 1.

Lemma 4.1. h(N) is a monotone function.

Proof. Let N1 < N2 then h(N1) = aN1
1+bN1

+ γN1 , h(N2) = aN2
1+bN2

+ γN2 clearly γN1 < γN2.
Now, aN1 + abN1N2 < aN2 + abN1N2 which imply that aN1

1+bN1
+ γN1 <

aN2
1+bN2

+ γN2.
Thus h(N1) < h(N2). Consequently, h is a monotone function. □

Theorem 4.1. The following statements hold true:

i) if a + γ ≤ 1 , then lim
t→∞

N(t) = 0 (biologically unrealistic).

ii) if a + γ > 1 , then lim
t→∞

N(t) = N∗.

Proof. (i) Assume that a + γ ≤ 1 then 0 < h
′

(0) ≤ 1. Since h
′

(N) > 0 and h
′′

(N) < 0, h(N) < N for all
N > 0. Thus for any N0 > 0, the sequence {N0, h(N0), ...., ht(N0), ...} is decreasing and bounded below
by 0. Hence it must converge to a point N̂ which must be an equilibrium point. But since 0 is the only
equilibrium point, N̂ = 0.
(ii) Assume that a + γ > 1. Then h

′

(0) > 1. Since h
′

(N) > 0 and h
′′

(N) < 0, h(N) > N for N < N∗ and
h(N) < N for N > N∗.
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N < N∗ ⇔ N <
a − 1 + γ
b(1 − γ)

⇔ bN(1 − γ) < a − 1 + γ
⇔ (a + γ − 1) + bN(γ − 1) > 0⇔ h(N) − N > 0

N > N∗ ⇔ N >
a − 1 + γ
b(1 − γ)

⇔ bN(1 − γ) > a − 1 + γ
⇔ (a + γ − 1) + bN(γ − 1) < 0⇔ h(N) − N < 0.

Using a similar argument as before, for N > N∗ the sequence {N0, h(N0), ...., ht(N0), ...} is decreasing
and bounded below by N∗. Hence it must converge to a point which must be an equilibrium point.
But since N∗ is the only equilibrium point, then lim

t→∞
N(t) = N∗ and for N < N∗ the sequence

{N0, h(N0), ...., ht(N0), ...} is increasing and bounded above by N∗. Hence it must converge to a point
which must be an equilibrium point. Since N∗ is the only one, all orbits converges to N∗. □

Using the demographic Eq (4.2), we showed that if a + γ > 1, then the total population converges
to a positive steady state

lim
t→∞

N(t) = N∗ =
a − (1 − γ)

b(1 − γ)
.

This means that the dynamics are compensatory in (0,∞) and the total population is uniformly
persistent (and hence, persistent) in (0,∞). They conclude that when the recruitment function is the
Beverton-Holt type the population dynamics are compensatory† and the total population is uniformly
persistent and lives on a globally attracting positive fixed point.

Remark 4.1. The survival probability, denoted γ, replaces natural mortality via the expression 1 − γ,
since this quantity represents the probability of death due to natural causes. Thus, the population
dynamics account for mortality through this survival probability, making explicit removal unnecessary.
Indeed, including recruitment, with or without natural removal, leads the population to a positive
asymptotic state in all cases studied.

We can then define the associated limiting model by replacing N(t) with its asymptotic value N∗ in
the SIS equations. 

S (t + 1) =
aN∗

1 + bN∗
+ γ φ

(
I(t)
N∗

)
S (t) + γσ I(t),

I(t + 1) = γ
[
1 − φ

(
I(t)
N∗

)]
S (t) + γ(1 − σ) I(t).

(4.3)

†Compensatory means the per capita growth decreases smoothly with density without oscillations. This is observed in certain insects
or fish.
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4.2. Basic reproduction number

We have

I(t + 1) = γ
[
1 − φ

(
I(t)
N∗

)]
S (t) + γ(1 − σ)I(t),

With the vector of new infections is F(t) = γ
[
1 − φ

(
I(t)
N∗

)]
S (t) and the vector of other transitions is

T(t) = γ(1 − σ)I(t)

F =
∂F(t)
∂I

∣∣∣∣
(S ∗,0)
=
∂

∂I

[
γ (1 − φ(I/N∗)) S

]∣∣∣∣
(S ∗,0)
= βγ

T =
∂T(t)
∂I

∣∣∣
(S ∗ ,0)

=
∂

∂I
[
γ(1 − σ)I

]∣∣∣
(S ∗ ,0)

= γ(1 − σ).

Using the next-generation matrix approach [19, 21], we have

R0 =
βγ

1 − γ(1 − σ)
.

The product βγ represents the effective transmission rate of the infection. The denominator, 1 −
γ(1−σ), combines the effects of the recovery probability (σ) and the survival probability (γ). A larger
value of σ (i.e., faster removal of infected individuals) or a smaller value of γ (i.e., lower survival)
increases the denominator, thereby reducing R0.

Mathematically, R0 acts as a critical threshold that governs the dynamics of both the system and
the disease.

Epidemiologically, it represents the expected number of secondary infections generated by a single
infectious individual in a fully susceptible population [22]. If R0 ≤ 1 the number of infected individuals
progressively diminishes until the disease is eradicated. Conversely, if R0 > 1 the disease persists
within the population, leading to an epidemic.

Remark 4.2. An effective way to reduce the basic reproduction number R0. Figure 2 illustrates how
R0 influences the dynamics of the disease: when R0 < 1, the infection dies out, whereas for R0 > 1, the
infection can spread and establish itself in the population.

Figure 2. Illustration of the role of R0 in determining whether a disease dies out or persists.
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For the SIS model considered here, R0 is given by

R0 =
β γ

1 − γ(1 − σ)
.

The sensitivity of R0 to changes in survival probability γ and recovery probability σ can be
computed as

∂R0

∂γ
=

β

(1 − γ(1 − σ))2 > 0,
∂R0

∂σ
= −

βγ2

(1 − γ(1 − σ))2 < 0.

This analysis shows that:

• R0 increases with γ, indicating that higher host survival may promote disease transmission.

• R0 decreases with increasing σ, meaning that faster recovery reduces transmission and helps
control the epidemic.

Thus, Figure 2 provides a visual representation of these effects, highlighting how adjusting
parameters such as β, γ, or σ can influence the overall epidemic outcome.

4.3. Global asymptotic stability of the equilibria

In this part, we will apply the new approach that is based on a simple tool, that is, we consider
the limiting Eq (4.4) as we have the population in the case a + γ > 1 is asymptotically constant and
converges to N∗ then by S (t) = N∗ − I(t) we have:

I(t + 1) = γ(1 − e
−βI(t)

N∗ )(N∗ − I(t)) + γ(1 − σ)I(t). (4.4)

For I ∈ R+, let
g(I) = γ(1 − e

−βI
N∗ )(N∗ − I) + γ(1 − σ)I.

Corollary 4.1. If R0 ≤ 1, then (S ∗, 0) is GAS in the limiting Eq (4.4). Moreover, if R0 > 1, (S ∗, 0)
is unstable.

Proof. Using the limiting equation with a + γ > 1 and lim
t→∞

N(t) = N∗ =
a + γ − 1
b(1 − γ)

,

g
′

(I) = −γ(1 − e
−βI
N∗ ) +

γβ

N∗
e
−βI
N∗ (N∗ − I) + γ(1 − σ)

= γ
[
e
−βI
N∗

(
β
(
1 −

I
N∗

)
+ 1

)
− σ

]
.

Recall that,

R0 =
βγ

1 − γ(1 − σ)
and g

′

(0) = γ(β + 1 − σ).

If R0 ≤ 1, then 0 < g
′

(0) ≤ 1. Moreover, g
′

(I) = γβe
−βI
N∗

(
1 − I

N∗

)
+ γ(1 − σ) < γβ + γ(1 − σ) ≤ 1.

Thus by integrating between 0 and I: g(I) < I for all I > 0.
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This implies that gt(I) 7−→ Î as t → ∞. But since I∗ = 0 is the only equilibrium point so Î = 0.
Hence, lim

t→∞
I(t) = 0.

Now, we have S (t) = N(t) − I(t). Hence lim
t→∞

S (t) = lim
t→∞

N(t) − lim
t→∞

I(t) = N∗ − 0 = N∗.
Therefore, lim

t→∞
(S (t), I(t)) = (S ∗, 0). □

By invoking Theorem 2.1, we may now establish the global stability stated in the following theorem.

Theorem 4.2. If R0 ≤ 1, then (S ∗, 0) is GAS in the S IS model. Moreover, if R0 > 1, (S ∗, 0) is unstable.

Next, we investigate the case when R0 > 1. In this case, g
′

(0) > 1. Moreover,

g
′′

(I) =
−β2γ

N∗
e
−βI
N∗

(
1 −

I
N∗

)
−

2βγ
N∗

e
−βI
N∗ < 0.

Hence, g(I) is concave down. Now, g(N∗) = γ(1 − σ)N∗ < N∗. So, there exists a unique positive fixed
point I∗.

Theorem 4.3. [13, 14, 26, 27]
Assume that g is continuous on an interval I such that all the orbits of the equation x(t+1) = g(x(t))

are bounded. Then every orbit converges to an equilibrium point if and only if there are no 2− periodic
cycles (that is, the only solutions of the equation g(g(x)) = x are the equilibrium points of g).

One of the challenges in using Theorem 4.3 is to show that the difference equation has no periodic
orbits of minimal period 2. The following result may help in this.

Lemma 4.2. Let T (x) = x + g(x) . If T is monotone, then g has no points of minimal period 2.
Equivalently, if 1 + g

′

(x) , 0 for all x, then g has no periodic orbits of period 2.

Corollary 4.2. If R0 > 1 all orbits in the interior of R2+ converge to (S ∗, I∗) in the limiting Eq (4.4).

Proof. First, we will show that all orbits are bounded.

I(t + 1) < N∗ + (1 − σ)I(t)

< (1 − σ)tI0 +
N∗(1 − (1 − σ)t)

σ

< I0 +
N∗

σ
.

Second, we will show that there are no periodic orbit of period 2. Assume not then let I1, I2 be a
two periodic cycle, i.e., g(I1) = I2 and g(I2) = I1 with I1 < I2.

Now, T (I) = I + g(I) is monotone. Since, T
′

(I) = 1 + g
′

(I) = 1 + γ(1 − σ) + γβe
−βI
N∗

(
1 − I

N∗

)
> 0

because of 1 + γ(1 − σ) > 1 and γβe
−βI
N∗

(
1 − I

N∗

)
> 0. Therefore, 1 + g

′

(I) , 0.

T (I1) = I1 + g(I1) = I1 + I2 and T (I2) = I2 + g(I2) = I2 + I1.

Contradiction since T (I1) < T (I2).
It follows by Theorem 4.3 that every orbit converge to an equilibrium point. Since 0 is unstable, all

orbits must converged to I∗ > 0, and I∗ is GAS.
We have lim

t→∞
S (t) = lim

t→∞
N(t) − lim

t→∞
I(t) = N∗ − I∗. □
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According to Theorem 2.1, we can now establish the global stability result stated below.

Corollary 4.3. If R0 > 1 all orbits in the interior of R2+ converge to (S ∗, I∗) in the S IS model 4.1.

All of the above analysis is illustrated in Figure 3.

Figure 3. (a) Shows the global stability of the disease free equilibrium (S ∗, 0) when R0 ≤ 1
(β = 0.5, γ = 0.8, σ = 0.5). (b) Shows the global stability of the EE (S ∗, I∗) when R0 > 1
(β = 0.9, γ = 0.8, σ = 0.5). Both graphs are for the models SIS when the recruitment
function is the Beverton-Holt.

5. Discrete SIS model with Ricker demography

The Ricker recruitment function, widely used in population dynamics [9], is represented by

f (N(t)) = r N(t) e−cN(t), (5.1)

where r > 0 is the intrinsic growth rate of the population and c > 0 is the density-dependence
coefficient, which captures the strength of competition among individuals. This function models
overcompensatory dynamics, meaning that at high population densities, recruitment decreases due to
limited resources, while at low densities, recruitment increases approximately exponentially.

Substituting this recruitment function into model (3.1), we obtain the discrete-time SIS epidemic
model with Ricker-type recruitment:

S (t + 1) = rN(t)e−cN(t) + γφ

(
I(t)
N(t)

)
S (t) + γσI(t),

I(t + 1) = γ
[
1 − φ

(
I(t)
N(t)

)]
S (t) + γ(1 − σ)I(t).

(5.2)

The function φ denotes the escape function, as introduced in the previous sections, i.e., φ = φ
(

I
N

)
.
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In this case, the demographic Eq (4.2) reduces to the nonlinear difference equation: N(t + 1) =
k(N(t)) = rN(t)e−cN(t)+γN(t). Then the demographic equation has a positive equilibrium which is GAS.

This equilibrium is obtained by solving N(t + 1) = N(t), which gives N∗ = 1
c ln

(
r

1−γ

)
Let

k(N) = rNe−cN + γN.

So, k
′

(N) = (1 − cN)re−cN + γ with k
′

(0) = r + γ and k
′

(N∗) = 1 − (1 − γ)ln
(

r
1−γ

)
.

We have two cases:

a) r + γ > 1 that is implies that N∗ > 0 exists and k′(0) > 1 .

b) r + γ ≤ 1 that is implies that N∗ > 0 does not exist and N∗ = 0 is the only equilibrium point. We
have 0 < k′(0) ≤ 1.

Before we start the next theorem we need to show that N(t) is bounded above. Let us write N(t+1) =
rN(t)e−cN(t) + γN(t) = h(N(t) + γN(t). Now h

′

(N) = (1 − cN)re−cN = 0 if N = 1
c . Moreover h

′′

( 1
c ) < 0.

Hence max(h(N)) = h( 1
c ) = r

ce Thus N(t + 1) ≤ r
ce + γN(t). This implies that N(t) ≤ γtN0 +

r
ce

1−γt

1−γ ≤ M,
for some constant M.

Theorem 5.1. The following statements hold true:

i) If r + γ ≤ 1 , then lim
t→∞

N(t) = 0 (not relevant biologically).

ii) If r + γ > 1 and c < 1
M , then lim

t→∞
N(t) = N∗.

Proof. • (i) If r+γ ≤ 1 then 0 < k
′

(0) ≤ 1.Now N(t+1) = rN(t)e−cN(t)+γN(t) = N(t)(γ+re−cN(t)) <
N(t)(γ + r) ≤ N(t).

Hence N(t) is decreasing and bounded below by 0. Thus it must converge, and the limit must be a
fixed point of the map. But the only fixed point in this case is 0. This implies that limt→∞ N(t) = 0

• (ii) If r + γ > 1, then k
′

(0) = r + γ > 1.

Now k
′

(N) = γ + (1 − cN)re−cN . Since c < 1
M , c < 1

N , and consequently, k
′

(N) > 0. Hence N(t)
is increasing and bounded above by M Hence, it must converge to a limit which must be a fixed
point of the map k. But the only positive fixed point is N∗ and thus lim

t→∞
N(t) = N∗.

□

The associated limiting model, obtained by replacing N(t) by N∗, is given below.
S (t + 1) = rN∗e−cN∗ + γ φ

(
I(t)
N∗

)
S (t) + γσ I(t),

I(t + 1) = γ
[
1 − φ

(
I(t)
N∗

)]
S (t) + γ(1 − σ) I(t).

(5.3)

We have the same analysis that was presented before in the previous section, Concerning the study of
the existence and stability of the equilibria, the same approach will be applied. All the above analysis
is illustrated in Figure 4.
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Figure 4. (a) Shows the global stability of the disease free equilibrium (S ∗, 0) when R0 ≤ 1
(β = 0.5, γ = 0.8, σ = 0.5). (b) Shows the global stability of the EE (S ∗, I∗) when R0 > 1
(β = 0.9, γ = 0.8, σ = 0.5). Both graphs are for the models SIS when the recruitment
function is the Ricker.

Although the Ricker recruitment function can exhibit non-monotone dynamics for certain parameter
values, we impose a sufficient condition ensuring that the population update map remains monotone.
Under this assumption, the stability thresholds remain fully characterized by the basic reproduction
number R0 : The DFE is GAS whenever R0 ≤ 1, while the EE is GAS whenever R0 > 1, paralleling the
Beverton-Holt case.

6. Non-autonomous periodic SIS model with Beverton-Holt

To present the non-autonomous p-periodic SIS epidemic model with period p ≥ 2, we consider a
host population divided into two compartments: susceptibles, denoted by S (t), and infectives, denoted
by I(t). The demographic dynamics follow a p-periodic Beverton-Holt model to account for seasonal or
other regularly varying environmental effects, which makes the model particularly relevant for diseases
exhibiting seasonal patterns or other periodic fluctuations in population or transmission rates.

The system is described by the following difference equations:
S (t + 1) =

aN(t)
1 + bN(t)

+ γφ

(
I(t)
N(t)

)
S (t) + γσI(t),

I(t + 1) = γ
[
1 − φ

(
I(t)
N(t)

)]
S (t) + γ(1 − σ)I(t).

(6.1)

where a(t), b(t), γ(t), σ(t), β(t) are all p-periodic functions, i.e., at+p = at, bt+p = bt, γt+p = γt, σt+p = σt,

βt+p = βt for all t ∈ Z+.
The function φ denotes the escape function. While we could keep it general, here we use the

commonly applied exponential form:

φ

(
I(t)
N(t)

)
= exp

(
−
β(t)I(t)

N(t)

)
,
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which arises naturally when infections are modeled as Poisson processes. This form simplifies
computations while retaining the essential nonlinear dependence on the prevalence of infection.

By summing the two compartments, the total population N(t) = S (t) + I(t) evolves according to:

N(t + 1) =
a(t)N(t)

1 + b(t)N(t)
+ γ(t)N(t), (6.2)

which can be written compactly as N(t + 1) = gt(N(t)), with gt+p = gt for all t ∈ Z+. Define

ϕt = gt−1 ◦ gt−2 ◦ · · · ◦ g0,

where gi(N(i)) = N(i + 1).

Lemma 6.1. The composition of monotone maps is a monotone map.

Corollary 6.1. The composition map ϕp is a monotone map.

Theorem 6.1. The following statements hold:

i) If
p−1∏
i=0

(ai + γi) < 1, then lim
t→∞

N(t) = 0 (case of limited biological relevance).

ii) If
p−1∏
i=0

(ai + γi) > 1, then all the orbits converge to a unique positive p-periodic cycle

{N0,N1, ...,Np−1} = N∗p.

Proof. (i) From the (Section 4), it was shown that 0 < g
′

i(0) ≤ 1, g
′

i(N) > 0 and g
′′

i (N) < 0, gi(N) < N
for all N > 0. It follows that

ϕ
′

p(0) = g
′

p−1(0) ◦ g
′

p−2(0) ◦ .... ◦ g
′

0(0) =
p−1∏
i=0

(ai + γi) < 1.

Since ϕ
′

p(N) > 0 and ϕ
′′

p(N) < 0 we have ϕp(N) < N for all N > 0 (see Section 4), one may show that
lim
t→∞

N(t) = 0.

(ii) If
p−1∏
i=0

(ai + γi) > 1. Then ϕ
′

p(0) > 1. From Section 4, we have shown that g
′

i(N) > 0, i =

0, 1, 2..., p − 1. Hence ϕ
′

p(N) > 0 and thus ϕp is increasing. Moreover, since ϕ
′′

p(N) < 0, ϕp is concave
down. Since each gi is bounded above ϕp is also bounded above. Thus, there exists N0 such that
ϕp(N0) = N0, and thus {N0,N1, ...,Np−1} is a p−periodic cycle, which is GAS in the interior of R2+. □

In the sequel, we assume that
p−1∏
i=0

(ai + γi) > 1. In this case, we have

lim
t→∞

N(t) = N∗p = {N0,N1, ...,Np−1} where N∗p(t + p) = N∗p(t).
Since S (t) + I(t) = N∗p and S (t) = N∗p − I(t). Hence we have the limiting equation:

I(t + 1) = γ(t)(1 − e
−β(t)I(t)

N∗p )(N∗p − I(t)) + γ(t)(1 − σ(t))I(t). (6.3)
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Let I(t + 1) = ht(I(t)) and ψp(I) = hp−1 ◦ hp−2 ◦ .... ◦ h0(I) is the composition map. And ψ
′

p(0) =
p−1∏
i=0

γi(βi + (1 − σi)).

The net reproduction number is given by

R0 =

p−1∏
i=0

βiγi

1 − γi(1 − σi)
.

The quantity R0 represents the expected number of secondary infections produced by a single
infectious individual introduced into a fully susceptible population over one full period of
environmental or demographic fluctuations. If R0 > 1, then each infected individual generates, on
average, more than one new case across a complete cycle, leading to the persistence of the disease.
Conversely, if R0 < 1, transmission is insufficient to sustain infection and the disease eventually dies
out. Hence, R0 plays the role of a global invasion threshold even in non-autonomous systems.

Theorem 6.2. If R0 ≤ 1 , then lim
t→∞

I(t) = 0.

Proof. Since R0 ≤ 1 it follows that 0 < ψ
′

p(0) ≤ 1. Moreover,

ψ
′

p(I) =
p−1∏
i=0

[
γiβie

−βi I
N∗p

(
1 −

I
N∗p

)
+ γi(1 − σi)

]
<

p−1∏
i=0

(γiβi + γi(1 − σi)) ≤ 1.

Thus ψp(I) < I for all I > 0, this implies that limt→∞ I(t) = cp, where cp is a p−periodic cycle. But,
since I = 0 is the only p−periodic (fixed) point it follows that lim

t→∞
I(t) = 0. □

Corollary 6.2. If R0 ≤ 1, then the DFE (S ∗p, 0) is GAS in the limiting Eq (6.3). Moreover, if R0 > 1,
(S ∗p, 0) is unstable.

Proof. Since S (t) = N(t) − I(t) it follows that

lim
t→∞

S (t) = lim
t→∞

N(t) − lim
t→∞

I(t) = N∗p − 0 = N∗p.

So, lim
t→∞

(S (t), I(t)) = (S ∗p, 0). □

By Theorem 2.1 we summarize,

Corollary 6.3. If R0 ≤ 1 , then the DFE (S ∗p, 0) is GAS in the original S IS model (6.1). Moreover, if
R0 > 1 , (S ∗p, 0) is unstable.

We now turn our attention to the case of, R0 > 1, that is, ψ
′

p(0) > 1.

Recall that ψ
′

p(I) =
p−1∏
i=0

[
γiβie

−βi I
N∗p

(
1 −

I
N∗p

)
+ γi(1 − σi)

]
=

p−1∏
i=0

Hi(t).

As well,

ψ
′′

p(I) =
p−1∑
j=0

H′

j(I)
p−1∏
i=0

Hi(I)

 < 0.
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Because of H
′

i (I) = γiβi

(
−βi
N∗p

e
−βi I
N∗p

(
1 − I

N∗p

)
− 1

N∗p
e
−βi I
N∗p

)
hence ψp(I) is concave down.

Besides, ψp(N∗p) =
p−1∏
i=0

γi(1 − σi)N∗p < N∗p. Then, there exists a unique p-periodic cycle (fixed)

point I∗p.

Corollary 6.4. If R0 > 1 all orbits converge to the p-periodic cycle (S ∗p, I
∗
p) in the S IS model (6.1).

Proof. ψp is continuous as a composition of continuous maps, assume that γ(t), σ(t) ∈]0, 1[, β(t) > 0,
for all I(t) ∈ [0,max(Ni)], 0 ≤ i < p we have

I(t + 1) < γ(t)max(Ni) + γ(t)I(t) < 2max(Ni).

So each composition is bounded and has values in (0, 2max(Ni)). Therefore, the composition remains
within this interval. Thus by recurrence,

ψ1(I) = h0(I) < 2max(Ni), ψ2(I) = h1(h0)(I) < 2max(Ni), ........, ψp(I) < 2max(Ni).

The sequence of compositions is uniformly bounded on [0,max(Ni)]. Assume that I1 , I2 are two
periodic cycles then h(I1) = I2 and h(I2) = I1.

Now, for F(I) = h(I) + I is monotone: F(I1) = h(I1) + I1 = I2 + I1 and F(I2) = h(I2) + I2 =

I1 + I2 which is false. Hence, all orbits should converge to I∗p, which is the only fixed point of the
composition map. □

7. Conclusions

In this paper we have developed a new and unified analytical framework for the global dynamics of
discrete-time SIS epidemic models with nonlinear recruitment functions, concentrating on the
Beverton-Holt and Ricker demographic structures. The main contribution is the establishment of
rigorous threshold results: The DFE is GAS whenever R0 ≤ 1, while the EE is GAS whenever R0 > 1.
This completes a longstanding gap in the theory of discrete epidemic models and extends earlier
approaches in discrete dynamical systems and population biology [13, 14, 27].

Our method, based on limiting equations for non-autonomous systems, provides an alternative to
traditional techniques such as Lyapunov functions and monotone dynamical systems. Unlike those
methods, which often require strong assumptions and do not easily extend to non-autonomous or
periodic settings, the limiting equation approach yields global stability in both autonomous and
time-dependent environments. This not only generalizes earlier results but also situates our analysis
within the broader theory of asymptotically autonomous difference equations [11, 28, 29].

From a modeling perspective, the results highlight the decisive role of demographic feedback. In the
Beverton-Holt case, density dependence produces smooth monotonic convergence toward equilibrium.
In contrast, the classical Ricker recruitment function is known to generate oscillations and even chaotic
fluctuations under suitable parameter regimes. However, in the present work we restrict our attention to
a parameter range in which the population map remains monotone, so that complex oscillatory behavior
does not arise. Within this regime, our theory guarantees that the basic reproduction number R0 still acts
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as a sharp threshold separating extinction from persistence. Thus, the central epidemiological insight–
that controlling R0 below one guarantees eradication-remains valid even in discrete-time, nonlinear,
and demographically structured settings.

Beyond resolving this fundamental stability problem, the framework opens several avenues for
future research. It can be extended to multi-compartment epidemic models (such as SIR and SEIR), to
host-vector systems, and to metapopulation models with spatial dispersal. Another promising
direction is the study of stochastic perturbations and environmental noise, where the limiting equation
method may yield novel insights into persistence and extinction. These extensions would broaden the
scope of discrete-time epidemiology and connect it with current developments in ecological and
evolutionary dynamics.
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