In this paper, the classical Poisson-Nernst-Planck (PNP) model describing ion transport through a membrane channel is used to study the effects of small permanent charges and the structures of ion channels on ionic flows. The model under study includes two oppositely charged ion species, and the permanent charge in this model is a piecewise constant function with two nonzero regions. By rescaling, the classical PNP model can be viewed as a singularly perturbed differential equation system. Therefore, the geometric singular perturbation theory is employed to get a singular orbit. Assuming that the permanent charge density is small, a regular perturbation expansion is used to obtain the first-order approximation of the individual flux, which acts as a basis for our analysis. Then, the effects of small permanent charges on the fluxes and the current-voltage relation, which not only depend on the boundary conditions, but also depend on the structures of ion channels and the ratio between two nonzero permanent charge densities, are analyzed in this paper. Particularly, our results indicate that the geometric structures of three-dimensional ion channels have a short and narrow cross-section, which is explained in [
Citation: Guojian Lin. Effects of multi-component small permanent charges on the dynamics of Poisson-Nernst-Planck models[J]. Mathematical Biosciences and Engineering, 2026, 23(3): 636-677. doi: 10.3934/mbe.2026025
In this paper, the classical Poisson-Nernst-Planck (PNP) model describing ion transport through a membrane channel is used to study the effects of small permanent charges and the structures of ion channels on ionic flows. The model under study includes two oppositely charged ion species, and the permanent charge in this model is a piecewise constant function with two nonzero regions. By rescaling, the classical PNP model can be viewed as a singularly perturbed differential equation system. Therefore, the geometric singular perturbation theory is employed to get a singular orbit. Assuming that the permanent charge density is small, a regular perturbation expansion is used to obtain the first-order approximation of the individual flux, which acts as a basis for our analysis. Then, the effects of small permanent charges on the fluxes and the current-voltage relation, which not only depend on the boundary conditions, but also depend on the structures of ion channels and the ratio between two nonzero permanent charge densities, are analyzed in this paper. Particularly, our results indicate that the geometric structures of three-dimensional ion channels have a short and narrow cross-section, which is explained in [
| [1] |
S. Ji, W. Liu, M. Zhang, Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson–Nernst–Planck models, SIAM J. Appl. Math., 75 (2015), 114–135. https://doi.org/10.1137/140992527 doi: 10.1137/140992527
|
| [2] |
S. Chung, S. Kuyucak, Recent advances in ion channel research, Biochim. Biophys. Acta, 1565 (2002), 267–286. https://doi.org/10.1016/s0005-2736(02)00574-6 doi: 10.1016/s0005-2736(02)00574-6
|
| [3] |
B. Corry, T. Allen, S. Kuyucak, S. Chung, Mechanisms of permeation and selectivity in calcium channels, Biophys. J., 80 (2001), 195–214. https://doi.org/10.1016/S0006-3495(01)76007-9 doi: 10.1016/S0006-3495(01)76007-9
|
| [4] |
H. Hwang, G. Schatz, M. Ratner, Incorporation of inhomogeneous ion diffusion coefficients into kinetic lattice grand canonical Monte Carlo simulations and application to ion current calculations in a simple model ion channel, J. Phys. Chem. A, 111 (2007), 12506–12512. https://doi.org/10.1021/jp075838o doi: 10.1021/jp075838o
|
| [5] |
B. Roux, T. Allen, S. Bernèche, W. Im, Theoretical and computational models of biological ion channels, Q. Rev. Biophys., 37 (2004), 15–103. https://doi.org/10.1017/s0033583504003968 doi: 10.1017/s0033583504003968
|
| [6] |
D. Tieleman, P. Biggin, G. Smith, M. Sansom, Simulation approaches to ion channel structure-function relationships, Q. Rev. Biophys., 34 (2001), 473–561. https://doi.org/10.1017/s0033583501003729 doi: 10.1017/s0033583501003729
|
| [7] |
D. P. Chen, R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J., 64 (1993), 1405–1421. https://doi.org/10.1016/S0006-3495(93)81507-8 doi: 10.1016/S0006-3495(93)81507-8
|
| [8] |
R. D. Coalson, Discrete-state model of coupled ion permeation and fast gating in ClC chloride channels, J. Phys. A, 41 (2009), 115001. https://doi.org/10.1088/1751-8113/41/11/115001 doi: 10.1088/1751-8113/41/11/115001
|
| [9] |
B. Eisenberg, Ion channels as devices, J. Comput. Electron., 2 (2003), 245–249. https://doi.org/10.1023/B:JCEL.0000011432.03832.22 doi: 10.1023/B:JCEL.0000011432.03832.22
|
| [10] |
B. Eisenberg, Proteins, channels, and crowded ions, Biophys. Chem., 100 (2003), 507–517. https://doi.org/10.1016/S0301-4622(02)00302-2 doi: 10.1016/S0301-4622(02)00302-2
|
| [11] |
D. Gillespie, R. S. Eisenberg, Physical descriptions of experimental selectivity measurements in ion channels, Eur. Biophys. J., 31 (2002), 454–466. https://doi.org/10.1007/s00249-002-0239-x doi: 10.1007/s00249-002-0239-x
|
| [12] |
D. Gillespie, W. Nonner, R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, J. Phys. Condens. Matter, 14 (2002), 12129–12145. https://doi.org/10.1088/0953-8984/14/46/317 doi: 10.1088/0953-8984/14/46/317
|
| [13] |
W. Im, D. Beglov, B. Roux, Continuum solvation model: Electrostatic forces from numerical solutions to the Poisson-Bolztmann equation, Comput. Phys. Commun., 111 (1998), 59–75. https://doi.org/10.1016/S0010-4655(98)00016-2 doi: 10.1016/S0010-4655(98)00016-2
|
| [14] |
S. Y. Noskov, S. Berneche, B. Roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands, Nature, 431 (2004), 830–834. https://doi.org/10.1038/nature02943 doi: 10.1038/nature02943
|
| [15] |
S. Y. Noskov, B. Roux, Ion selectivity in potassium channels, Biophys. Chem., 124 (2006), 279–291. https://doi.org/10.1016/j.bpc.2006.05.033 doi: 10.1016/j.bpc.2006.05.033
|
| [16] |
D. Boda, D. Busath, B. Eisenberg, D. Henderson, W. Nonner, Monte Carlo simulations of ion selectivity in a biological Na channel: Charge-space competition, Phys. Chem. Chem. Phys., 4 (2002), 5154–5160. https://doi.org/10.1039/B203686J doi: 10.1039/B203686J
|
| [17] |
S. Chung, S. Kuyucak, Predicting channel function from channel structure using Brownian dynamics simulations, Clin. Exp. Pharmacol. Physiol., 28 (2001), 89–94. https://doi.org/10.1046/j.1440-1681.2001.03408.x doi: 10.1046/j.1440-1681.2001.03408.x
|
| [18] |
W. Im, B. Roux, Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory, J. Mol. Biol., 322 (2002), 851–869. https://doi.org/10.1016/S0022-2836(02)00778-7 doi: 10.1016/S0022-2836(02)00778-7
|
| [19] |
S. Y. Noskov, W. Im, B. Roux, Ion permeation through the $\alpha$-hemolysin channel: Theoretical studies based on brownian dynamics and Poisson-Nernst-Planck electrodiffusion theory, Biophys. J., 87 (2004), 2299–2309. https://doi.org/10.1529/biophysj.104.044008 doi: 10.1529/biophysj.104.044008
|
| [20] |
Z. Schuss, B. Nadler, R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Phys. Rev. E, 64 (2001), 1–14. https://doi.org/10.1103/PhysRevE.64.036116 doi: 10.1103/PhysRevE.64.036116
|
| [21] |
V. Barcilon, Ion flow through narrow membrane channels: Part Ⅰ, SIAM J. Appl. Math., 52 (1992), 1391–1404. https://doi.org/10.1137/0152080 doi: 10.1137/0152080
|
| [22] |
B. Eisenberg, Y. Hyon, C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys., 133 (2010), 104104. https://doi.org/10.1063/1.3476262 doi: 10.1063/1.3476262
|
| [23] |
B. Eisenberg, Y. Hyon, C. Liu, Energy variational analysis EnVarA of ions in calcium and sodium channels, Biophys. J., 98 (2010), 515A. https://doi.org/10.1016/j.bpj.2009.12.2802 doi: 10.1016/j.bpj.2009.12.2802
|
| [24] |
Y. Hyon, B. Eisenberg, C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci., 9 (2010), 459–475. https://doi.org/10.4310/cms.2011.v9.n2.a5 doi: 10.4310/cms.2011.v9.n2.a5
|
| [25] |
Y. Hyon, J. Fonseca, B. Eisenberg, C. Liu, A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls, Biophys. J., 100 (2011), 578A. https://doi.org/10.1016/j.bpj.2010.12.3342 doi: 10.1016/j.bpj.2010.12.3342
|
| [26] |
P. M. Biesheuvel, Two-fluid model for the simultaneous flow of colloids and fluids in porous media, J. Colloid Interface Sci., 355 (2011), 389–395. https://doi.org/10.1016/j.jcis.2010.12.006 doi: 10.1016/j.jcis.2010.12.006
|
| [27] |
D. Chen, R. Eisenberg, J. Jerome, C. Shu, Hydrodynamic model of temperature change in open ionic channels, Biophys. J., 69 (1995), 2304–2322. https://doi.org/10.1016/S0006-3495(95)80101-3 doi: 10.1016/S0006-3495(95)80101-3
|
| [28] | J. Jerome, Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices, Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-3-642-79987-7 |
| [29] |
Y. Wang, K. Pant, Z. Chen, G. Wang, W. Diffey, P. Ashley, et al., Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow, Microfluid. Nanofluid., 7 (2009), 683–696. https://doi.org/10.1007/s10404-009-0428-3 doi: 10.1007/s10404-009-0428-3
|
| [30] |
W. Liu, B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dyn. Differ. Equations, 22 (2010), 413–437. https://doi.org/10.1007/s10884-010-9186-x DOI 10.1007/s10884-010-9186-x doi: 10.1007/s10884-010-9186-x
|
| [31] |
W. Nonner, R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels, Biophys. J., 75 (1998), 1287–1305. https://doi.org/10.1016/S0006-3495(98)74048-2 doi: 10.1016/S0006-3495(98)74048-2
|
| [32] |
M. Burger, R. S. Eisenberg, H. W. Engl, Inverse problems related to ion channel selectivity, SIAM J. Appl. Math., 67 (2007), 960–989. https://doi.org/10.1137/060664689 doi: 10.1137/060664689
|
| [33] |
A. E. Cardenas, R. D. Coalson, M. G. Kurnikova, Three-dimensional Poisson-Nernst-Planck theory studies: Influence of membrane electrostatics on gramicidin a channel conductance, Biophys. J., 79 (2000), 80–93. https://doi.org/10.1016/S0006-3495(00)76275-8 doi: 10.1016/S0006-3495(00)76275-8
|
| [34] |
M. Saraniti, S. Aboud, R. Eisenberg, The simulation of ionic charge transport in biological ion channels: An introduction to numerical methods, Rev. Comput. Chem., 22 (2005), 229–294. https://doi.org/10.1002/0471780367.ch4 doi: 10.1002/0471780367.ch4
|
| [35] |
V. Barcilon, D. P. Chen, R. S. Eisenberg, Ion flow through narrow membrane channels: Part Ⅱ, SIAM J. Appl. Math., 52 (1992), 1405–1425. https://doi.org/10.1137/0152081 doi: 10.1137/0152081
|
| [36] |
P. Bates, Y. Jia, G. Lin, H. Lu, M. Zhang, Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions, SIAM J. Appl. Dyn. Syst., 16 (2017), 410–430. https://doi.org/10.1137/16M1071523 doi: 10.1137/16M1071523
|
| [37] |
B. Eisenberg, W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 38 (2007), 1932–1966. https://doi.org/10.1137/060657480 doi: 10.1137/060657480
|
| [38] |
A. Singer, D. Gillespie, J. Norbury, R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: Applications to ion channels, Eur. J. Appl. Math., 19 (2008), 541–569. https://doi.org/10.1017/S0956792508007596 doi: 10.1017/S0956792508007596
|
| [39] |
W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 65 (2005), 754–766. https://doi.org/10.1137/S0036139903420931 doi: 10.1137/S0036139903420931
|
| [40] |
W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differ. Equations, 246 (2009), 428–451. https://doi.org/10.1016/j.jde.2008.09.010 doi: 10.1016/j.jde.2008.09.010
|
| [41] |
W. Liu, H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differ. Equations, 258 (2015), 1192–1228. https://doi.org/10.1016/j.jde.2014.10.015 doi: 10.1016/j.jde.2014.10.015
|
| [42] |
H. Mofidi, B. Eisenberg, W. Liu, Effects of diffusion coefficients and permanent charge on reversal potentials in ionic channels, Entropy, 22 (2020), 1–23. https://doi.org/10.3390/e22030325 doi: 10.3390/e22030325
|
| [43] |
H. Mofidi, W. Liu, Reversal potential and reversal permanent charge with unequal diffusion coefficients via classical Poisson–Nernst–Planck models, SIAM J. Appl. Math., 80 (2020), 1908–1935. https://doi.org/10.1137/19M1269105 doi: 10.1137/19M1269105
|
| [44] |
H. Mofidi, New insights into the effects of small permanent charge on ionic flows: A higher order analysis, Math. Biosci. Eng., 21 (2024), 6042–6076. https://doi.org/10.3934/mbe.2024266 doi: 10.3934/mbe.2024266
|
| [45] |
J. K. Park, J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math., 57 (1997), 609–630. https://doi.org/10.1137/S0036139995279809 doi: 10.1137/S0036139995279809
|
| [46] |
I. Rubinstein, Multiple steady states in one-dimensional electrodiffusion with local electroneutrality, SIAM J. Appl. Math., 47 (1987), 1076–1093. https://doi.org/10.1137/0147070 doi: 10.1137/0147070
|
| [47] |
A. Singer, J. Norbury, A Poisson-Nernst-Planck model for biological ion channels–-An asymptotic analysis in a three-dimensional narrow funnel, SIAM J. Appl. Math., 70 (2009), 949–968. https://doi.org/10.1137/070687037 doi: 10.1137/070687037
|
| [48] |
A. Singer, D. Gillespie, J. Norbury, R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: Applications to ion channels, Eur. J. Appl. Math., 19 (2008), 541–560. https://doi.org/10.1017/S0956792508007596 doi: 10.1017/S0956792508007596
|
| [49] |
H. Steinrück, A bifurcation analysis of the one-dimensional steady-state semiconductor device equations, SIAM J. Appl. Math., 49 (1989), 1102–1121. https://doi.org/10.1137/0149066 doi: 10.1137/0149066
|
| [50] |
L. Zhang, W. Liu, Effects of large permanent charges on ionic flows via Poisson-Nernst-Planck models, SIAM J. Appl. Dyn. Syst., 19 (2020), 1993–2029. https://doi.org/10.1137/19M1289443 doi: 10.1137/19M1289443
|
| [51] |
B. Corry, S. Kuyucak, S. H. Chung, Dielectric self-energy in Poisson-Boltzmann and Poisson Nernst-Planck models of ion channels, Biophys. J., 84 (2003), 3594–3606. https://doi.org/10.1016/S0006-3495(03)75091-7 doi: 10.1016/S0006-3495(03)75091-7
|
| [52] |
M. S. Kilic, M. Z. Bazant, A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. Ⅱ. Modified Poisson-Nernst-Planck equations, Phys. Rev. E, 75 (2007), 021503. https://doi.org/10.1103/PhysRevE.75.021503 doi: 10.1103/PhysRevE.75.021503
|
| [53] |
A. Mamonov, R. Coalson, A. Nitzan, M. Kurnikova, The role of the dielectric barrier in narrow biological channels: A novel composite approach to modeling single-channel currents, Biophys. J., 84 (2003), 3646–3661. https://doi.org/10.1016/S0006-3495(03)75095-4 doi: 10.1016/S0006-3495(03)75095-4
|
| [54] |
D. Gillespie, W. Nonner, R. S. Eisenberg, Crowded charge in biological ion channels, Nanotech, 3 (2003), 435–438. https://doi.org/10.1002/9781118158715.ch2 doi: 10.1002/9781118158715.ch2
|
| [55] |
S. Ji, W. Liu, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: Ⅰ-Ⅴ relations and critical potentials. Part Ⅰ: Analysis, J. Dyn. Differ. Equations, 24 (2012), 955–983. https://doi.org/10.1007/s10884-012-9277-y doi: 10.1007/s10884-012-9277-y
|
| [56] |
G. Lin, W. Liu, Y. Yi, M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential, SIAM J. Appl. Dyn. Syst., 12 (2013), 1613–1648. https://doi.org/10.1137/120904056 doi: 10.1137/120904056
|
| [57] |
G. Lin, Effects of ion sizes on Poisson–Nernst–Planck systems with multiple ions, Math. Meth. Appl. Sci., 46 (2022), 1–27. https://doi.org/10.1002/mma.8954 doi: 10.1002/mma.8954
|
| [58] |
W. Huang, W. Liu, Y. Yu, Permanent charge effects on ionic flow: A numerical study of flux ratios and their bifurcation, Commun. Comput. Phys., 30 (2021), 486–514. https://doi.org/10.4208/cicp.OA-2020-0057 doi: 10.4208/cicp.OA-2020-0057
|
| [59] | C. Jones, Geometric singular perturbation theory, in Dynamical Systems. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1609 (1995), 44–118. https://doi.org/10.1007/BFB0095239 |
| [60] |
C. Jones, N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differ. Equations, 108 (1994), 64–88. https://doi.org/10.1006/jdeq.1994.1025 doi: 10.1006/jdeq.1994.1025
|
| [61] |
F. Hummel, C. Kuehn, Slow manifolds for infinite-dimensional evolution equations, Comment. Math. Helv., 97 (2022), 61–132. https://doi.org/10.4171/CMH/527 doi: 10.4171/CMH/527
|
| [62] |
L. Dong, D. He, Y. Qin, Z. Zhang, A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck (PNP) system, J. Comput. Appl. Math., 444 (2023), 115784. https://doi.org/10.1016/j.cam.2024.115784 doi: 10.1016/j.cam.2024.115784
|
| [63] |
D. He, K. Pan, X. Yue, A positivity preserving and free energy dissipative difference scheme for the Poisson–Nernst–Planck system, J. Sci. Comput., 81 (2019), 436–458. https://doi.org/10.1007/s10915-019-01025-x doi: 10.1007/s10915-019-01025-x
|
| [64] |
C. Liu, C. Wang, S. M. Wise, X. Yue, S. Zhou, A positivity preserving energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system, Math. Comput., 90 (2021), 2071–2106. https://doi.org/10.1090/mcom/3642 doi: 10.1090/mcom/3642
|
| [65] |
C. Liu, C. Wang, S. M. Wise, X. Yue, S. Zhou, An iteration solver for the Poisson-Nernst-Planck system and its convergence analysis, J. Comput. Appl. Math., 406 (2022), 114017. https://doi.org/10.1016/j.cam.2021.114017 doi: 10.1016/j.cam.2021.114017
|
| [66] |
C. Liu, C. Wang, S. M. Wise, X. Yue, S. Zhou, A second order accurate, positivity preserving numerical method for the Poisson–Nernst–Planck system and its convergence analysis, J. Sci. Comput., 97 (2023), 23. https://doi.org/10.1007/s10915-023-02345-9 doi: 10.1007/s10915-023-02345-9
|
| [67] |
J. Shen, X. Jie, Unconditionally positivity preserving and energy dissipative schemes for Poisson–Nernst– Planck equations, Numer. Math., 148 (2021), 671–697. https://doi.org/10.1007/s00211-021-01203-w doi: 10.1007/s00211-021-01203-w
|