Research article Special Issues

Spreading of pathological proteins through brain networks: A case study for Alzheimer's disease

  • Published: 27 January 2026
  • Given the complexity, unknown causes, and lack of effective treatments for Alzheimer's disease (AD), mathematical modeling offers a valuable approach to its understanding. Models, once validated, offer a powerful tool to test medical hypotheses that are otherwise difficult to directly verify. Here, our focus is to elucidate the spread of misfolded $ \tau $ protein, a critical hallmark of AD alongside A$ \beta $ protein, while taking the synergistic interaction between the two proteins into account. We consider distinct modeling choices, all employing network frameworks for protein evolution, differentiated by their network architecture and diffusion operators. By carefully comparing these models against clinical $ \tau $ concentration data, gathered through advanced multimodal analysis techniques, we show that certain models replicate better the protein's dynamics. This investigation underscores a crucial insight: when modeling complex pathologies, the precision with which the mathematical framework is chosen is crucial, especially when validation against clinical data is considered decisive.

    Citation: Germana Landi, Arianna Scaravelli, Maria Carla Tesi, Claudia Testa. Spreading of pathological proteins through brain networks: A case study for Alzheimer's disease[J]. Mathematical Biosciences and Engineering, 2026, 23(3): 619-635. doi: 10.3934/mbe.2026024

    Related Papers:

  • Given the complexity, unknown causes, and lack of effective treatments for Alzheimer's disease (AD), mathematical modeling offers a valuable approach to its understanding. Models, once validated, offer a powerful tool to test medical hypotheses that are otherwise difficult to directly verify. Here, our focus is to elucidate the spread of misfolded $ \tau $ protein, a critical hallmark of AD alongside A$ \beta $ protein, while taking the synergistic interaction between the two proteins into account. We consider distinct modeling choices, all employing network frameworks for protein evolution, differentiated by their network architecture and diffusion operators. By carefully comparing these models against clinical $ \tau $ concentration data, gathered through advanced multimodal analysis techniques, we show that certain models replicate better the protein's dynamics. This investigation underscores a crucial insight: when modeling complex pathologies, the precision with which the mathematical framework is chosen is crucial, especially when validation against clinical data is considered decisive.



    加载中


    [1] Alzheimer's Disease International, Alzheimer's Disease Report. Available from: https://www.alzint.org.
    [2] L. M. Ittner, J. Götz, Amyloid-$\beta$ and tau–-A toxic pas de deux in Alzheimer's disease, Nat. Rev. Neurosci., 12 (2011), 67–72. https://doi.org/10.1038/nrn2967 doi: 10.1038/nrn2967
    [3] G. S. Bloom, Amyloid-$\beta$ and tau: The trigger and bullet in Alzheimer disease pathogenesis, JAMA Neurol., 71 (2014), 505–508. https://doi.org/10.1001/jamaneurol.2013.5847 doi: 10.1001/jamaneurol.2013.5847
    [4] O. G. Tatarnikova, M. A. Orlov, N. V. Bobkova, Beta-amyloid and tau-protein: Structure, interaction, and prion-like properties, Biochemistry (Mosc.), 80 (2015), 1800–1819. https://doi.org/10.1134/S000629791513012X doi: 10.1134/S000629791513012X
    [5] R. E. Bennett, S. L. DeVos, S. Dujardin, B. Corjuc, R. Gor, J. Gonzalez, et al., Enhanced tau aggregation in the presence of Amyloid $\beta$, Am. J. Pathol., 187 (2017), 1601–1612. https://doi.org/10.1016/j.ajpath.2017.03.011 doi: 10.1016/j.ajpath.2017.03.011
    [6] S. A. Small, K. Duff, Linking A$\beta$ and Tau in late-onset Alzheimer's disease: A dual pathway hypothesis, Neuron, 60 (2008), 534–542. https://doi.org/10.1016/j.neuron.2008.11.007 doi: 10.1016/j.neuron.2008.11.007
    [7] R. Ossenkoppele, G. D. Rabinovici, R. Smith, H. Cho, M. Schöll, O. Strandberg, et al., Discriminative accuracy of [18F] flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders, JAMA, 320 (2018), 1151–1162. https://doi.org/10.1001/jama.2018.12917 doi: 10.1001/jama.2018.12917
    [8] Z. Ahmed, J. Cooper, T. K. Murray, K. Garn, E. McNaughton, H. Clarke, et al., A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: The pattern of spread is determined by connectivity, not proximity, Acta Neuropathol., 127 (2014), 667–683. https://doi.org/10.1007/s00401-014-1254-6 doi: 10.1007/s00401-014-1254-6
    [9] H. Braak, E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol., 82 (1991), 239–259. https://doi.org/10.1007/BF00308809 doi: 10.1007/BF00308809
    [10] M. J. Grothe, H. Barthel, J. Sepulcre, M. Dyrba, O. Sabri, S. J. Teipel, et al., In vivo staging of regional amyloid deposition, Neurology, 89 (2017), 2031–2038. https://doi.org/10.1212/WNL.0000000000004643 doi: 10.1212/WNL.0000000000004643
    [11] M. A. Busche, B. T. Hyman, Synergy between amyloid-$\beta$ and tau in Alzheimer's disease, Nat. Neurosci., 23 (2020), 1183–1193. https://doi.org/10.1038/s41593-020-0687-6 doi: 10.1038/s41593-020-0687-6
    [12] T. B. Thompson, P. Chaggar, E. Kuhl, A. Goriely, Protein–protein interactions in neurodegenerative diseases: A conspiracy theory, PLoS Comput. Biol., 16 (2020), e1008267. https://doi.org/10.1371/journal.pcbi.1008267 doi: 10.1371/journal.pcbi.1008267
    [13] M. Bertsch, B. Franchi, A. Raj, M. C. Tesi, Macroscopic modelling of Alzheimer's disease: Difficulties and challenges, Brain Multiphys., 2 (2021), 100040. https://doi.org/10.1016/j.brain.2021.100040 doi: 10.1016/j.brain.2021.100040
    [14] J. A. McNab, B. L. Edlow, T. Witzel, S. Y. Huang, H. Bhat, K. Heberlein, et al., The Human Connectome Project and beyond: Initial applications of 300 mT/m gradients, Neuroimage, 80 (2013), 234–245. https://doi.org/10.1016/j.neuroimage.2013.05.074 doi: 10.1016/j.neuroimage.2013.05.074
    [15] M. Bertsch, B. Franchi, M. C. Tesi, V. Tora, The role of A$\beta$ and Tau proteins in Alzheimer's disease: A mathematical model on graphs, J. Math. Biol., 87 (2023), 49. https://doi.org/10.1007/s00285-023-01985-7 doi: 10.1007/s00285-023-01985-7
    [16] S. Fornari, A. Schäfer, M. Jucker, A. Goriely, E. Kuhl, Prion-like spreading of Alzheimer's disease within the brain's connectome, J. R. Soc. Interface, 16 (2019), 20190356. https://doi.org/10.1098/rsif.2019.0356 doi: 10.1098/rsif.2019.0356
    [17] A. Raj, A. Kuceyeski, M. Weiner, A network diffusion model of disease progression in dementia, Neuron, 73 (2012), 1204–1215. https://doi.org/10.1016/j.neuron.2011.12.040 doi: 10.1016/j.neuron.2011.12.040
    [18] F. Carbonell, Y. Iturria-Medina, A. C. Evans, Mathematical modeling of protein misfolding mechanisms in neurological diseases: A historical overview, Front. Neurol., 9 (2018), 37. https://doi.org/10.3389/fneur.2018.00037 doi: 10.3389/fneur.2018.00037
    [19] S. Moravveji, N. Doyon, J. Mashreghi, S. Duchesne, A scoping review of mathematical models covering Alzheimer's disease progression, Front. Neuroinform., 18 (2024), 1281656. https://doi.org/10.3389/fninf.2024.1281656 doi: 10.3389/fninf.2024.1281656
    [20] J. Torok, C. Anand, P. Verma, A. Raj, Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis, Transl. Res., 254 (2023), 13–23. https://doi.org/10.1016/j.trsl.2022.08.008 doi: 10.1016/j.trsl.2022.08.008
    [21] J. W. Vogel, N. Corriveau-Lecavalier, N. Franzmeier, J. B. Pereira, J. A. Brown, A. Maass, et al., Connectome-based modelling of neurodegenerative diseases: Towards precision medicine and mechanistic insight, Nat. Rev. Neurosci., 24 (2023), 620–639. https://doi.org/10.1038/s41583-023-00731-8 doi: 10.1038/s41583-023-00731-8
    [22] S. Bianchi, G. Landi, C. Marella, M. C. Tesi, C. Testa, A network-based study of the dynamics of A$\beta$ and $\tau$ proteins in Alzheimer's disease, Math. Comput. Appl., 29 (2024), 113. https://doi.org/10.3390/mca29060113 doi: 10.3390/mca29060113
    [23] B. Szalkai, C. Kerepesi, B. Varga, V. Grolmusz, Parameterizable consensus connectomes from the Human Connectome Project: The Budapest Reference Connectome Server v3.0, Cogn. Neurodyn., 11 (2017), 113–116. https://doi.org/10.1007/s11571-016-9407-z doi: 10.1007/s11571-016-9407-z
    [24] M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, et al., Rapid appearance and local toxicity of amyloid-$\beta$ plaques in a mouse model of Alzheimer's disease, Nature, 451 (2008), 720–724. https://doi.org/10.1038/nature06616 doi: 10.1038/nature06616
    [25] S. Dujardin, B. T. Hyman, Tau prion-like propagation: State of the art and current challenges, Adv. Exp. Med. Biol., 1184 (2020), 305–325. https://doi.org/10.1007/978-981-32-9358-8_23 doi: 10.1007/978-981-32-9358-8_23
    [26] M. Goedert, M. G. Spillantini, Propagation of Tau aggregates, Mol. Brain, 10 (2017), 18. https://doi.org/10.1186/s13041-017-0298-7 doi: 10.1186/s13041-017-0298-7
    [27] A. Grigor'yan, Introduction to Analysis on Graphs, American Mathematical Society, 71 (2018).
    [28] H. Braak, K. Del Tredici, Alzheimer's pathogenesis: Is there neuron-to-neuron propagation, Acta Neuropathol., 121 (2011), 589–595. https://doi.org/10.1007/s00401-011-0825-z doi: 10.1007/s00401-011-0825-z
    [29] B. Ricaud, P. Borgnat, N. Tremblay, P. Gonçalves, P. Vandergheynst, Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs, C. R. Phys., 20 (2019), 474–488. https://doi.org/10.1016/j.crhy.2019.08.003 doi: 10.1016/j.crhy.2019.08.003
    [30] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., 30 (2013), 83–98. https://doi.org/10.1109/MSP.2012.2235192 doi: 10.1109/MSP.2012.2235192
    [31] J. R. Dormand, P. J. Prince, A family of embedded Runge–Kutta formulae, J. Comput. Appl. Math., 6 (1980), 19–26. https://doi.org/10.1016/0771-050X(80)90013-3 doi: 10.1016/0771-050X(80)90013-3
    [32] B. Szalkai, C. Kerepesi, B. Varga, V. Grolmusz, High-resolution directed human connectomes and the consensus connectome dynamics, PLoS One, 14 (2019), e0215473. https://doi.org/10.1371/journal.pone.0215473 doi: 10.1371/journal.pone.0215473
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(80) PDF downloads(7) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog